首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural consequences of MgADP binding at the vicinity of the ATPase-related thiol SH1 (Cys-707) have been examined by subjecting myosin subfragment 1, premodified at SH2 (Cys-697) with N-ethylmaleimide (NEM), to reaction with the bifunctional reagent p-phenylenedimaleimide (pPDM) in the presence and absence of MgADP. By monitoring the changes in the Ca2(+)-ATPase activity as a function of reaction time, it appears that the reagent rapidly modifies SH1 irrespective of whether MgADP is present or not. In the absence of nucleotide, only extremely low levels of cross-linking to the 50-kDa middle segment of S1 can be detected, while in the presence of MgADP substantial cross-linking to this segment is observed. A similar cross-link is also formed if MgADP is added subsequent to the reaction of the SH2-NEM-pre-modified S1 with pPDM in the absence of nucleotide. Isolation of the labeled tryptic peptide from the cross-linked adduct formed with [14C]pPDM, and subsequent partial sequence analyses, indicates that the cross-link is made from SH1 to Cys-522. Moreover, it appears that this cross-link results in the trapping of MgADP in this S1 species. These data suggest that the binding of MgADP results in a change in the structure of S1 in the vicinity of the SH1 thiol relative to the 50-kDa "domain" which enables Cys-522 to adopt the appropriate configuration to enable it to be cross-linked to SH1 by pPDM.  相似文献   

2.
The site of photocross-linking between Cys-697 (SH2), prelabeled with 4'-[14C]maleimidylbenzophenone, and the 50-kDa segment of myosin S1 on irradiation in the absence of nucleotide has been determined by isolation of the 20-50-kDa adduct and subsequent tryptic proteolysis. Isolation and partial sequencing of the radioactively labeled peptide indicate that the site of cross-linking is Arg-239. This result indicates that, in the absence of nucleotide, Arg-239 resides at about 1.0 nm from SH2 and, on the basis of the recent work of Sutoh and Hiratsuka (Sutoh, K. and Hiratsuka T. (1988) Biochemistry 27, 2964-2969) places Arg-239 at no more than 1.45 nm from either Lys-184 or Lys-189 of the nucleotide-binding "glycine-rich" loop prior to the binding of nucleotide.  相似文献   

3.
The effect of ligand binding on the environment near the SH2 and SH1 thiols in myosin subfragment 1 has been investigated by photocross-linking after specific labeling of these thiols individually with 4-(N-maleimido)benzophenone (MBP). On photolysis, cross-linking occurred from SH2-MBP to the middle 50-kDa segment, and subsequent immunopeptide mapping revealed that the cross-link was made to a peptide stretch 31-32 kDa from the N terminus in the absence of MgADP, whereas in its presence the cross-link occurred at about 60-61 kDa from the N terminus. Photolysis of SH1-MBP in the absence of MgADP resulted in a major cross-link to the 27-kDa N-terminal segment and minor cross-links to the 50-kDa middle segment. In the presence of MgADP, no new cross-link occurred but the amount of cross-linking to the 50-kDa segment increased at the expense of the other. Immunopeptide mapping indicated that the regions in the 27- and 50-kDa peptides that were cross-linked to SH1-MBP are at about 14-16 and 55-56 kDa from the N terminus respectively. These results indicate that when nucleotide binds to S1, SH2 is displaced relative to the 50-kDa segment, whereas the local environment around SH1 does not change significantly because photolysis in the presence of MgADP resulted in a change at the site of cross-linking for SH2-MBP but caused only a redistribution of the relative amounts of the cross-links formed from SH1-MBP.  相似文献   

4.
Past biochemical work on myosin subfragment 1 (S1) has shown that the bent alpha-helix containing the reactive thiols SH1 (Cys(707)) and SH2 (Cys(697)) changes upon nucleotide and actin binding. In this study, we investigated the conformational dynamics of the SH1-SH2 helix in two actin-bound states of myosin and examined the effect of temperature on this helix, using five cross-linking reagents that are 5-15 A in length. Actin inhibited the cross-linking of SH1 to SH2 on both S1 and S1.MgADP for all of the reagents. Because the rate of SH2 modification was not altered by actin, the inhibition of cross-linking must result from a strong stabilization of the SH1-SH2 helix in the actin-bound states of S1. The dynamics of the helix is also influenced by temperature. At 25 degrees C, the rate constants for cross-linking in S1 alone are low, with values of approximately 0.010 min(-1) for all of the reagents. At 4 degrees C, the rate constants, except for the shortest reagent, range between 0.030 and 0.070 min(-1). The rate constants for SH2 modification in SH1-modified S1 show the opposite trend; they increase with the increases in temperature. The greater cross-linking at the lower temperature indicates destabilization of the SH1-SH2 helix at 4 degrees C. These results are discussed in terms of conformational dynamics of the SH1-SH2 helix.  相似文献   

5.
R C Lu  A Wong 《Biochemistry》1989,28(11):4826-4829
The thiol-specific photoactivatable reagent benzophenone iodoacetamide (BPIA) can be selectively incorporated into the most reactive thiol, SH-1, of myosin S1, and upon photolysis, an intramolecular cross-link is formed between SH-1 and the N-terminal 25-kDa region of S1. If a Mg2+-nucleotide is present during photolysis, cross-links can be formed either with the 25-kDa region or with the central 50-kDa region [Lu et al. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 6392]. Comparison of the peptide maps of cross-linked and un-cross-linked S1 heavy chains indicates that the segment located about 12-16 kDa from the N-terminus of the heavy chain can be cross-linked to SH-1 via BPIA independently of the presence of a nucleotide whereas the segment located 57-60 kDa from the N-terminus can be cross-linked to SH-1 only in the presence of a Mg2+-nucleotide [Sutoh & Lu (1987) Biochemistry 26, 4511]. In this report, S1 was labeled with radioactive BPIA, photolyzed in the absence of nucleotide, and then degraded with proteolytic enzymes. Peptides containing cross-links were isolated by liquid chromatography and subjected to amino acid sequence analyses. The results show that Glu-88 is the major site and Asp-89 and Met-92 are the minor sites involved in cross-linking with SH-1 (Cys-707) via BPIA. These residues are very near the reactive lysine residue (Lys-83) but relatively remote in the primary structure from the putative nucleotide binding region.  相似文献   

6.
T Hiratsuka 《Biochemistry》1987,26(11):3168-3173
When myosin subfragment 1 (S-1) reacts with the bifunctional reagents with cross-linking spans of 3-4.5 A, p-nitrophenyl iodoacetate and p-nitrophenyl bromoacetate, the 20-kilodalton (20-kDa) segment of the heavy chain is cross-linked to the 26-kDa segment via the reactive thiol SH2. The well-defined reactive lysyl residue Lys-83 of the 26-kDa segment was not involved in the cross-linking. The cross-linking was completely abolished by nucleotides. Taking into account the recent report that SH2 is cross-linked to a thiol of the 50-kDa segment of S-1 using a reagent with a cross-linking span of 2 A [Chaussepied, P., Mornet, D., & Kassab, R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2037-2041], present results suggest that SH2 of S-1 lies close to both the 26- and 50-kDa segments of the heavy chain. The data also encourage us to confirm our previous suggestion that the ATPase site of S-1 residues at or near the region where all three segments of 26, 50, and 20 kDa are contiguous [Hiratsuka, T. (1984) J. Biochem. (Tokyo) 96, 269-272; Hiratsuka, T. (1985) J. Biochem. (Tokyo) 97, 71-78].  相似文献   

7.
The myosin SH2-50-kilodalton fragment cross-link: location and consequences   总被引:6,自引:0,他引:6  
Some of us recently described a new interthiol cross-link which occurs in the skeletal myosin subfragment 1-MgADP complex between the reactive sulfhydryl group "SH2" (Cys-697) and a thiol (named SH chi) of the 50-kilodalton (kDa) central domain of the heavy chain; this link leads to the entrapment of the nucleotide at the active site [Chaussepied, P., Mornet, D., & Kassab, R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2037-2041]. In the present study, we identify SH chi as Cys-540 of the 50-kDa fragment. The portion of the heavy chain including this residue and also extending to Cys-522 that is cross-linkable to the "SH1" thiol [Ue, K. (1987) Biochemistry 26, 1889-1894] is near the SH2-SH1 region. Furthermore, various spectral and enzymatic properties of the (Cys697-Cys540)-N,N'-p-phenylenedimaleimide (pPDM)-cross-linked myosin chymotryptic subfragment 1 (S-1) were established and compared to those for the well-known (SH1-SH2)-pPDM-cross-linked S-1. The circular dichroism spectra of the new derivative were similar to those of native S-1 complexed to MgADP. At 15 mM ionic strength, (Cys697-Cys540)-S-1 binds very strongly to unregulated actin (Ka = 7 X 10(6) M-1), and the actin binding is very weakly affected by ionic strength. Joining actin with the (Cys697-Cys540)-S-1 heavy chain, using 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide, produces different species than does joining unmodified S-1 with actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Y Doi  Y Kanatani  F Kim 《FEBS letters》1992,301(1):99-102
It has been shown that the EGTA-resistant actin, one of the two actin molecules associated to gelsolin, can be predominantly cross-linked to gelsolin by benzophenone-4-maleimide (BPM), a photoaffinity-labeling reagent, which was conjugated to Cys-374 of actin prior to cross-linking (Doi, Y., Banba, M. and Vertut-Do?, A. (1991) Biochemistry 30, 5769-5777). When a chymotryptic digest of gelsolin containing the amino-terminal 15-kDa fragment was mixed with BPM-actin (42 kDa) and irradiated for cross-linking, a band of 58 kDa appeared on SDS-PAGE which was shown to contain actin molecule by using fluorescently labeled actin. The amino-terminal sequence of the 58-kDa complex was identical to that of gelsolin, confirming that the amino-terminal segment (residues 1-133) of pig plasma gelsolin lies closely to Cys-374 of actin in the EGTA-resistant complex.  相似文献   

9.
The conformations of myosin subfragment 1 containing trapped MgADP or MgPPi have been studied by investigating the spatial disposition of the remainder of the subfragment 1 structure to the covalently bridged ATPase-related thiols SH1 and SH2. This has been done by synthesizing a trifunctional photoactivatable reagent 4,4'-bis(N-maleimido)benzophenone and reacting it with subfragment 1 in the presence of these ligands. Modification of subfragment 1 by this reagent mimics closely the changes in the ATPase properties as noted previously for modification with p-phenylenedimaleimide. In addition, noncovalent trapping of nucleotide also results, presumably by the bridging of the SH1 and SH2 thiols. On photolysis, cross-linking from the reagent bridging the thiols to other regions in subfragment 1 can be observed, but the extent and course of the photoinduced cross-linking depend on the nature of the trapped ligand. For subfragment 1 with trapped MgADP, a high efficiency cross-linking occurs between the 21-kDa segment and the 50-kDa segment. With MgPPi as the trapped ligand, low efficiency cross-linking occurs between the bridged thiols and either the 27-kDa N-terminal or the 50-kDa segments of the heavy chain. These results indicate that without the adenosine moiety, the binding of MgPPi to subfragment 1 leaves the protein in a flexible state so that residues in both the 27-kDa and the 50-kDa segment can move within the cross-linking span of the activated benzophenone triplet. The trapping of MgADP apparently results in a more rigid state for the subfragment 1 in which residues in the 50-kDa segment are spatially close to the bridged thiols, thus enabling photocross-linking to proceed with higher efficiency.  相似文献   

10.
Recently, by treating the head portion of skeletal myosin subfragment-1 (S1) with the bifunctional agent dibromobimane, we introduced an intramolecular covalent cross-link which resulted in the stabilisation of an internal loop in the heavy chain structure of the head [Mornet et al. (1984) Proc. Natl Acad. Sci. USA 82, 1658-1662]. In order to define the functional properties of this new S1 conformational state, we have first determined the experimental conditions for the optimum modification of S1 by dibromobimane. We finally settled on a 60% yield of cross-linked S1. Because the modification occurs between the 50-kDa and the 20-kDa tryptic heavy chain fragments which have been postulated to be involved in the interaction of native S1 with actin, we have investigated the association of dibromobimane-treated S1 with actin, using chemical cross-linking of their rigor complex with 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide. The cross-linked species obtained were analyzed by polyacrylamide gel electrophoresis and compared with those known for unmodified S1. The carbodiimide-catalyzed linkage between actin and dibromobimane-modified S1 led to a singlet protein band migrating with an apparent molecular mass of 155 kDa, in contrast to the usual doublet bands of 175 kDa and 185 kDa produced with native S1. This result suggests that a change has occurred at the actin interface on the dibromobimane-treated S1 heavy chain. The covalent complex generated by carbodiimide cross-linking between actin and dibromobimane-modified S1 (27-kDa + 50-kDa + 20-kDa fragments) was submitted to chemical hydrolysis with hydroxylamine. The nature of the products identified is consistent with the conclusion that the internal freezing of the heavy chain structure by dibromobimane induces the loss of the ability to cross-linkage of the actin site on the 20-kDa domain but does not affect the conformation of the second site on the 50-kDa segment, which becomes the unique actin region cross-linkable by actin.  相似文献   

11.
T Hiratsuka 《Biochemistry》1988,27(11):4110-4114
The chemotherapeutic alkylating reagent tris(2-chloroethyl)amine (TCEA) was used as a trifunctional cross-linking reagent with a cross-linking span of 5 A for myosin subfragment 1 (S-1). When S-1 was incubated with TCEA, all three domains of 20, 26, and 50 kDa in the S-1 heavy chain were cross-linked via the highly reactive sulfhydryl group SH1 (Cys-707) on the 20-kDa domain. The cross-linking was accelerated by nucleotides. The present observation is consistent with the proposal that SH1 is close to both the 26- and 50-kDa domains of S-1 and that movement within S-1 associated with the nucleotide binding occurs around SH1 as well as around another reactive thiol, SH2 & Wong, A. G. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 6392-6396; Hiratsuka, T. (1987) Biochemistry 26, 3168-3173].  相似文献   

12.
We reported in the preceding paper [Muno, D., et al. (1987) J. Biochem. 101, 661-669] that the dinitrophenyl group exclusively introduced to SH1 on the 20-kDa fragment of myosin subfragment 1 was cross-linked to the 50-kDa fragment by irradiation, and that limited trypsinolysis of the cross-linked S1 generated an 83-kDa peptide, a cross-linking product between the 20- and 50-kDa fragments. This paper will deal with the location of the cross-linked residue on the 50-kDa fragment. When the 83-kDa fragment labeled at SH2 with a fluorogenic SH reagent was subjected to bromocyanolysis, a main fluorescent band, which implied a cross-linked peptide, appeared in the position with an apparent molecular mass of 18.5-kDa on SDS-PAGE. On the other hand, another cross-linked peptide was obtained from a complete tryptic digest of a 83-kDa fragment rich fraction. Amino acid sequence analysis of the two cross-linked peptides revealed that the DNP moiety attached at SH1 was cross-linked with a residue in the segment of the heavy chain spanning the 485-493 region from the N-terminus of the heavy chain.  相似文献   

13.
A series of thiol-specific cross-linking reagents were prepared for studying the kinetics of cross-linking between SH1 (Cys(707)) and SH2 (Cys(697)) in rabbit skeletal muscle myosin subfragment 1. The reagents were of the type RSS(CH(2))(n)()SSR, with R = 3-carboxy-4-nitrophenyl and n = 3, 6, 7, 8, 9, 10, and 12, spanning distances from 9 to 20 A. The reactions were monitored spectrophotometrically by measuring the release of 2-nitro-5-thiobenzoate. Reaction rates for modification of SH1 (k(1)) and for cross-linking (k(2)) were measured by the decrease of the K(+)(EDTA)-ATPase activity and the decrease of the Ca(2+)-ATPase activity, respectively, and corrected for the different reactivities of C(n). Cross-linking rates in the presence and absence of MgADP showed similar dependence on the length of the reagents: While the cross-linking rates for n = 3 or n = 6 were close to those for n = 0 (Ellman's reagent), those for n = 7 and 8 were significantly increased. Thus the distance between SH1 and SH2 appears to be equal in both states and can be estimated as >/=15 A, based on the length of the reagent with n = 8 in stretched conformation. Under rigor conditions, reactivity of SH1 differed significantly from that in the presence of MgADP, presumably because of shielding through a lipophilic domain. Similarly, the cross-linking rates k(2) for C(3), C(6), and C(7) in the absence of MgADP were ca. 15 times lower than in the presence of MgADP, suggesting a change in the structure of the SH2 region that depends on nucleotide binding. The results are discussed in terms of recent X-ray structures of S1 and S1-MgADP [Rayment et al. (1993) Science 261, 50-58; Gulick et al. (1997) Biochemistry 36, 11619-11628].  相似文献   

14.
The actin-dependent ATPase activity of myosin is retained in the separated heads (S1) which contain the NH2-terminal 95-kDa heavy chain fragment and one or two light chains. The S1 heavy chain can be degraded further by limited trypsin treatment into characteristic 25-, 50-, and 20-kDa peptides, in this order from the NH2-terminal end. The 20-kDa peptide contains an actin-binding site and SH1 and SH2, two thiols whose modification dramatically affects ATPase activity. By treating myosin filaments with trypsin at 4 degrees C in the presence of 2 mM MgCl2, we have now obtained preferential cleavage at the 50-20-kDa heavy chain site without any cleavage at the head-rod junction and hinge region in the rod. Incubation of these trypsinized filaments at 37 degrees C in the presence of MgATP released a new S1 fraction which lacked the COOH-terminal 20-kDa heavy chain peptide region. This fraction, termed S1'(75K), has more than 50% of the actin-activated Mg2+-ATPase activity of S1 and the characteristic Ca2+-ATPase and K+-EDTA ATPase activities of myosin. These results show that SH1 and SH2 are not essential for ATPase activity and that binding of actin to the 20-kDa region is not essential for the enhancement of the Mg2+-ATPase activity.  相似文献   

15.
PomA and PomB form a complex that conducts sodium ions and generates the torque for the Na(+)-driven polar flagellar motor of Vibrio alginolyticus. PomA has four transmembrane segments. One periplasmic loop (loop(1-2)) connects segments 1 and 2, and another (loop(3-4)), in which cysteine-scanning mutagenesis had been carried out, connects segments 3 and 4. When PomA with an introduced Cys residue (Cys-PomA) in the C-terminal periplasmic loop (loop(3-4)) was examined without exposure to a reducing reagent, a 43-kDa band was observed, whereas only a 25-kDa band, which corresponds to monomeric PomA, was observed under reducing conditions. The intensity of the 43-kDa band was enhanced in most mutants by the oxidizing reagent CuCl(2). The 43-kDa band was strongest in the P172C mutant. The motility of the P172C mutant was severely reduced, and P172C showed a dominant-negative effect, whereas substitution of Pro with Ala, Ile, or Ser at this position did not affect motility. In the presence of DTT, the ability to swim was partially restored, and the amount of 43-kDa protein was reduced. These results suggest that the disulfide cross-link disturbs the function of PomA. When the mutated Cys residue was modified with N-ethylmaleimide, only the 25-kDa PomA band was labeled, demonstrating that the 43-kDa form is a cross-linked homodimer and suggesting that the loops(3-4) of adjacent subunits of PomA are close to each other in the assembled motor. We propose that this loop region is important for dimer formation and motor function.  相似文献   

16.
A heterobifunctional cross-linking reagent, 125I-N-(3-iodo-4-azidophenylpropionamido-S-(2-thiopyridyl) cysteine (125-ACTP), has been synthesized. 125I-ACTP has been used to derivative reduced sulfhydryls of the retinal G protein, transducin (Gt), to form a mixed disulfide bond under mild, nondenaturing conditions (pH 7.4, 4 degrees C). The resulting disulfide was easily cleaved using reducing reagents. A 200-fold molar excess of 125I-ACTP relative to Gt resulted in the incorporation of 1-1.3 mol of the 125I-N-(3-iodo-4-azidophenylpropionamido)cysteine moiety of ACTP into Gt alpha. In contrast to 125I-ACTP, dithionitrobenzoate and dithiopyridone derivatized six sulfhydryls in native Gt. Incubation of a 10-fold molar excess of 125I-ACTP relative to Gt resulted in the derivatization of 0.75-0.9 and 0.1 mol of reduced sulfhydryls/mol Gt alpha and beta, respectively. Gt gamma was not derivatized by 125I-ACTP. Thus, Gt alpha was preferentially derivatized by 125I-ACTP. Tryptic digestion and amino acid sequencing of Gt alpha indicated that both Cys-347 near the carboxyl terminus and Cys-210 between the second and third consensus sequences forming the GTP-binding site were derivatized by 125I-ACTP in a ratio of approximately 70 and 30%, respectively. Thus, both Cys-210 and Cys-347 are labeled, even though derivatization by 125I-ACTP does not exceed 1 mol of SH/mol Gt alpha. It appears that derivatization of one sulfhydryl, either Cys-210 or Cys-347, excludes labeling of the second cysteine either by steric hindrance or induced conformational change making the second cysteine inaccessible to 125I-ACTP. Consistent with this finding was the observation that pertussis toxin-catalyzed ADP-ribosylation of Cys-347 inhibited 125I-ACTP derivatization of Cys-210. Derivatization of Gt alpha at either Cys-210 or Cys-347 by 125I-ACTP inhibited rhodopsin-catalyzed guanosine 5'-3-O-(thio)triphosphate binding to Gt, mimicking the effect of ADP-ribosylation of Cys-347 by pertussis toxin. ACTP contains a radioiodinated phenylazide moiety which, upon activation, can cross-link the derivatized cysteine to an adjacent polypeptide domain. Following reduction of the disulfide, the [125I] iodophenyl moiety will be transferred to the azide-inserted polypeptide. When photoactivation of the phenylazide moiety of 125I-ACTP after sulfhydryl derivatization was performed, insertion of the Cys-347 which contains Cys-210, was found.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Interactions of rat FXYD4 (corticosteroid hormone-induced factor (CHIF)), FXYD2 (gamma), or FXYD1 (phospholemman (PLM)) proteins with rat alpha1 subunits of Na(+),K(+)-ATPase have been analyzed by co-immunoprecipitation and covalent cross-linking. In detergent-solubilized membranes from HeLa cells expressing both gamma and CHIF or CHIF and hemagglutinin A-tagged CHIF, mixed complexes of CHIF and gamma or CHIF and hemagglutinin A-tagged CHIF with alpha/beta subunits are undetectable. This implies that the alpha/beta/FXYD protomer is the major species in detergent solution. A lipid-soluble cysteine-cysteine bifunctional reagent, dibromobimane, cross-links CHIF to alpha in colonic membranes but not gamma or PLM to alpha in kidney or heart membranes, respectively. Sequence comparisons of the FXYD proteins suggested that Cys-49 in the trans-membrane segment of CHIF could be involved. In detergent-solubilized HeLa cell membranes, dibromobimane cross-links wild-type CHIF to alpha but not the C49F mutant, and also the corresponding F36C mutant but not wild-type gammab, and F48C but not wild-type PLM. C140S, C338A, C804A, and C966S mutants of the alpha subunit have been expressed. Only the C140S mutant prevents cross-linking with CHIF. The data demonstrated the proximity of trans-membrane segments of CHIF, gamma, and PLM to M2 of alpha. Molecular modeling is consistent with location of the trans-membrane segment of all FXYD proteins between M2, M6, and M9 and the proximity of Cys-49 of CHIF or Phe-36 of gamma with Cys-140 of M2. Cross-linking also demonstrated CHIF-alpha and CHIF-beta proximities in extra-membrane regions, similar to the evidence for gamma-alpha and gamma-beta cross-links.  相似文献   

18.
The alpha-helix containing the thiols, SH1 (Cys-707) and SH2 (Cys-697), has been proposed to be one of the structural elements responsible for the transduction of conformational changes in the myosin head (subfragment-1 (S1)). Previous studies, using a method that isolated and measured the rate of the SH1-SH2 cross-linking step, showed that this helix undergoes ligand-induced conformational changes. However, because of long incubation times required for the formation of the transition state complexes (S1.ADP.BeF(x), S1.ADP.AlF(4)-, and S1.ADP.V(i)), this method could not be used to determine the cross-linking rate constants for such states. In this study, kinetic data from the SH1-SH2 cross-linking reaction were analyzed by computational methods to extract rate constants for the two-step mechanism. For S1.ADP.BeF(x), the results obtained were similar to those for S1.ATPgammaS. For reactions involving S1.ADP.AlF(4)- and S1.ADP.V(i), the first step (SH1 modification) is rate limiting; consequently, only lower limits could be established for the rate constants of the cross-linking step. Nevertheless, these results show that the cross-linking rate constants in the transition state complexes are increased at least 20-fold for all the reagents, including the shortest one, compared with nucleotide-free S1. Thus, the SH1-SH2 helix appears to be destabilized in the post-hydrolysis state.  相似文献   

19.
To detect movement of Cys-697 (SH2) in myosin subfragment-1 (S-1) associated with ATP hydrolysis, SH2 was labeled with the environmentally sensitive fluorescent analog of maleimide, 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS). Complex formation of S-1 labeled at Cys-697 with MIANS (MIANS-S-1) with adenyl-5'-yl imidodiphosphate and ADP resulted in a significant decrease in the fluorescence intensity of approximately 40 and 30%, respectively. When ATP was added to MIANS-S-1, the fluorescence intensity decreased rapidly by approximately 40%, and this fluorescence level was maintained during the steady state of ATP hydrolysis. As the substrate was used up, the fluorescence intensity increased to approximately 70% of the original value. These results together with model experiments with MIANS-N-acetylcysteine indicate that in the presence of ATP, the MIANS fluorophore attached to SH2 is located in a less hydrophobic environment than is the fluorophore in the absence of ligand and that the hydrolysis of ATP enhances hydrophobicity around the fluorophore. Acrylamide fluorescence quenching studies of MIANS-S-1 confirmed these results, indicating that addition of ATP and ADP to MIANS-S-1 results in an increase in the Stern-Volmer quenching constant of the fluorophore by factors of approximately 3 and 2.5, respectively. The present observations suggest that binding of ATP causes a movement of SH2 toward the protein surface, whereas it goes back into the protein interior after ATP hydrolysis. The results also confirmed previous observations by a chemical cross-linking approach (Hiratsuka, T. (1987) Biochemistry 26, 3168-3173).  相似文献   

20.
Subunit a plays a key role in promoting H(+) transport and the coupled rotary motion of the subunit c ring in F(1)F(0)-ATP synthase. H(+) binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of F(0) subunit c. H(+) are thought to reach Asp-61 via aqueous pathways mapping to the surfaces of TMHs 2-5 of subunit a based upon the chemical reactivity of Cys substituted into these helices. Here we substituted Cys into loops connecting TMHs 1 and 2 (loop 1-2) and TMHs 3 and 4 (loop 3-4). A large segment of loop 3-4 extending from loop residue 192 loop to residue 203 in TMH4 at the lipid bilayer surface proved to be very sensitive to inhibition by Ag(+). Cys-161 and -165 at the other end of the loop bordering TMH3 were also sensitive to inhibition by Ag(+). Further Cys substitutions in residues 86 and 93 in the middle of the 1-2 loop proved to be Ag(+)-sensitive. We next asked whether the regions of Ag(+)-sensitive residues clustered together near the surface of the membrane by combining Cys substitutions from two domains and testing for cross-linking. Cys-161 and -165 in loop 3-4 were found to cross-link with Cys-202, -203, or -205, which extend into TMH4 from the cytoplasm. Further Cys at residues 86 and 93 in loop 1-2 were found to cross-link with Cys-195 in loop 3-4. We conclude that the Ag(+)-sensitive regions of loops 1-2 and 3-4 may pack in a single domain that packs at the ends of TMHs 3 and 4. We suggest that the Ag(+)-sensitive domain may be involved in gating H(+) release at the cytoplasmic side of the aqueous access channel extending through F(0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号