首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Differentiation of mesenchymal stem cells (MSCs) into anterior cruciate ligament (ACL) cells is regulated by many factors. Mechanical stress affects the healing and remodeling process of ACL after surgery in important ways. Besides, co-culture system had also showed the promise to induce MSCs toward different kinds of cells on current research. The purpose of this study was to investigate the gene expression of ACL cells' major extracellular matrix (ECM) component molecules of MSCs under three induction groups. In addition, to follow our previous study, cell electrophoresis technique and mRNA level gene expression of MSC protein were also used to analyze the differentiation of MSCs. The results reveal that specific regulatory signals which released from ACL cells appear to be responsible for supporting the selective differentiation toward ligament cells in co-culture system and mechanical stress promotes the secretion of key ligament ECM components. Therefore, the combined regulation could assist the development of healing and remolding of ACL tissue engineering. Furthermore, this study also verifies that cell electrophoresis could be used in investigation of cell differentiation. Importantly, analysis of the data suggests the feasibility of utilizing MSCs in clinical applications for repairing or regenerating ACL tissue.  相似文献   

2.
Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow-derived mesenchymal stem cells (BM-MSCs) in three-dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in situ. The chondrogenic capability of human BM-MSCs was first verified in a pellet culture. The BM-MSCs were then either seeded onto a composite scaffold rhCo-PLA combining polylactide and collagen type II (C2) or type III (C3), or commercial collagen type I/III membrane (CG). The BM-MSCs were either cultured in a proliferation medium or chondrogenic culture medium. Adult human chondrocytes (ACs) served as controls. After 3, 14, and 28 days, the constructs were analyzed with quantitative polymerase chain reaction and confocal microscopy and sulfated glycosaminoglycans (GAGs) were measured. The differentiated BM-MSCs entered a hypertrophic state by Day 14 of culture. The ACs showed dedifferentiation with no expression of chondrogenic genes and low amount of GAG. The CG membrane induced the highest expression levels of hypertrophic genes. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM-MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. Thus, caution for cell fate is required when designing cell-biomaterial constructs for cartilage regeneration.  相似文献   

3.
《Cytotherapy》2014,16(5):586-598
Background aimsThe graft-healing potential of mesenchymal stromal cells (MSCs) derived from the remnants of ruptured anterior cruciate ligaments (ACLs) after ACL reconstruction may depend on the chronicity of the injury. The aim of this study was to assess the quantitative and phenotypic differences between MSCs isolated from ACL remnants in patients with (sub)acute and chronic tearing.MethodsTorn ACL remnants were harvested during ACL reconstruction from 41 patients, 24 with (sub)acute ACL (<6 months from injury to surgery) and 17 with chronic ACL (time interval >6 months) tears. MSCs isolated from these samples were assessed for quantitative and phenotypic differences, and the correlation between the proportion of MSCs and the chronicity of ACL tear was evaluated.ResultsAt passage 0, the mean proportion of MSCs (CD34, CD44+, CD90+ and CD105+) was higher in (sub)acute than in chronic ACL tear samples (20.69% ± 7.82% versus 9.85% ± 8.01%, P < 0.001). At passages 1 and 2, however, MSC proportions did not differ significantly in the two groups. Time interval showed a negative correlation with MSC proportion only at passage 0 (r = −0.505, P < 0.001). The optimal cutoff value for time from injury to surgery yielding <10% freshly isolated ACL-MSCs, a percentage expected to have low tissue healing potential, was 23.5 months.ConclusionsThe proportion of freshly isolated MSCs was higher in samples from patients with (sub)acute tearing than in chronic ACL tearing and negatively correlated with the time interval between trauma and surgery.  相似文献   

4.
Composition of cell-polymer cartilage implants   总被引:10,自引:0,他引:10  
Cartilage implants for potential in vivo use for joint repair or reconstructive surgery can be created in vitro by growing chondrocytes on biodegradable polymer scaffolds. Implants 1 cm in diameter by 0.176 cm thick were made using isolated calf chondrocytes and polyglucolic acid (PGA). By 6 weeks, the total amount of glycosaminoglycan (GAG) and collagen (types I and II) increased to 46% of the implant dry weight; there was a corresponding decrease in the mass of PGA. Implant biochemical and histological compositions depended on initial cell density, scaffold thickness, and the methods of cell seeding and implant culture. Implants seeded at higher initial cell densities reached higher GAG contents (total and per cell), presumably due to cooperative cell-to-cell interactions. Thicker implants had lower GAG and collagen contents due to diffusional limitations.Implants that were seeded and cultured under mixed conditions grew to be thicker and more spatially uniform with respect to the distribution of cells, matrix, and remaining polymer than those seeded and/or cultured statically. Implants from mixed cultures had a 20-40-mum thick superficial zone of flat cells and collagen oriented parallel to the surface and a deep zone with perpendicular columns of cells surrounded by GAG Mixing during cell seeding and culture resulted in a more even cell distribution ad enhanced nutrient diffusion which could be related to a more favorable biomechanical environment for chondrogenesis. Cartilage with appropriate for and function for in vivo implantation ca thus be created by selectively stimulating the growth and differentiated function of chondrocytes (i.e., GAG and collagen synthesis) through optimization of the in vitro culture environment. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs). In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL), collagen I, and hydroxyapatite (HA) nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA). The cytocompatibility of this tri-component scaffold was compared with three other scaffold formulations: 100% PCL (PCL), 100% collagen I (col), and a bi-component scaffold containing 80% PCL/20% HA (PCL/HA). Scanning electron microscopy, fluorescent live cell imaging, and MTS assays showed that MSCs adhered to the PCL, PCL/HA and PCL/col/HA scaffolds, however more rapid cell spreading and significantly greater cell proliferation was observed for MSCs on the tri-component bone-mimetic scaffolds. In contrast, the col scaffolds did not support cell spreading or survival, possibly due to the low tensile modulus of this material. PCL/col/HA scaffolds adsorbed a substantially greater quantity of the adhesive proteins, fibronectin and vitronectin, than PCL or PCL/HA following in vitro exposure to serum, or placement into rat tibiae, which may have contributed to the favorable cell responses to the tri-component substrates. In addition, cells seeded onto PCL/col/HA scaffolds showed markedly increased levels of phosphorylated FAK, a marker of integrin activation and a signaling molecule known to be important for directing cell survival and osteoblastic differentiation. Collectively these results suggest that electrospun bone-mimetic matrices serve as promising degradable substrates for bone regenerative applications.  相似文献   

6.
目的:探讨前交叉韧带(anterior cruciate ligament,ACL)在膝关节不同屈曲角度时的方位角变化,为ACL损伤诊断和重建研究提供解剖学支持。方法:成人膝关节标本10具,解剖观察ACL形态,用Photoshop软件测量膝关节不同屈曲角度下ACL方位角变化。结果:0°、30°位膝关节中ACL胫骨角大于ACL股骨角,有显著性差异(P0.01);60°、90°位膝关节中的ACL胫骨角小于股骨角,有显著性差异(P0.01)。膝关节0°、30°、60°、90°ACL胫骨角由大渐小,各角度间均有显著性差异(均P0.01)。膝关节0°和30°的ACL股骨角比60°和90°时小,有显著性差异(均P0.01),0°与30°间无显著性差异(P0.05),60°小于90°,有显著性差异(P0.01)。结论:ACL于膝关节0°和30°位时,后外侧束(posterolateral bundle,PLB)发挥主要作用,ACL诊断或重建主要参考胫骨角;60°、90°时ACL前内侧束(anteromedial bundle,AMB)发挥主要作用,ACL诊断或重建主要参考股骨角。ACL方位角可作为ACL损伤诊断和手术重建的重要参考。  相似文献   

7.
Mao X  Chu CL  Mao Z  Wang JJ 《Tissue & cell》2005,37(5):349-357
The purposes of this study were to develop a new cultural method for the rat bone marrow stromal cells (MSCs) to differentiate into osteoblasts well in vitro, and to investigate the feasibility of using MSCs as seed cells and three-dimensional porous nano-hydroxylapatite as scaffolds for constructing tissue-engineered bone. MSCs of rats were isolated, cultured, induced to differentiate into osteoblasts, and then observed with inverted microscopy. Histochemical staining and radio-immunological analysis were applied for identifying MSCs. Whereafter MSCs were seeded onto three-dimensional porous nano-hydroxylapatite scaffolds, and scanning electron microscopy was applied to evaluate their growth on scaffolds. Results showed that MSCs were typical fibroblast-like and possessed a better proliferating capability; the activity of alkaline phosphatase (ALP) and the secretion of osteocalcin of MSCs were produced gradually and increased continuously; the cells seeded on three-dimensional porous nano-hydroxylapatite scaffolds adhered, proliferated and differentiated well. These results demonstrated that the new improved culture method had the advantages of short isolating time, less risk of contamination and higher efficiency and accordingly was conducive to MSCs proliferating and differentiating into osteoblasts, and that it was advantageous to constructing tissue-engineered bone using MSCs as seed cells and three-dimensional porous nano-hydroxylapatite as scaffolds.  相似文献   

8.
In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 μm were optimal for cell seeding and cultivating. However, before clinical application and transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human.Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential potential of marmoset MSCs in adipogenic, osteogenic and chondrogenic lineages and the suitability of collagen scaffolds as carrier material undisturbing differentiation of primate mesenchymal stem cells.  相似文献   

9.
Chondrocytes isolated from human fetal epiphyseal cartilage were seeded under mixed conditions into 15-mm-diameter polyglycolic acid (PGA) scaffolds and cultured in recirculation column bioreactors to generate cartilage constructs. After seeding, the cell distributions in thick (4.75 mm) and thin (2.15 mm) PGA disks were nonuniform, with higher cell densities accumulating near the top surfaces. Composite scaffolds were developed by suturing together two thin PGA disks after seeding to manipulate the initial cell distribution before bioreactor culture. The effect of medium flow direction in the bioreactors, including periodic reversal of medium flow, was also investigated. The quality of the tissue-engineered cartilage was assessed after 5 weeks of culture in terms of the tissue wet weight, glycosaminoglycan (GAG), total collagen and collagen type II contents, histological analysis of cell, GAG and collagen distributions, and immunohistochemical analysis of collagen types I and II. Significant enhancement in construct quality was achieved using composite scaffolds compared with single PGA disks. Operation of the bioreactors with periodic medium flow reversal instead of unidirectional flow yielded further improvements in tissue weight and GAG and collagen contents with the composite scaffolds. At harvest, the constructs contained GAG concentrations similar to those measured in ex vivo human adult articular cartilage; however, total collagen and collagen type II levels were substantially lower than those in adult tissue. This study demonstrates that the location of regions of high cell density in the scaffold coupled with application of dynamic bioreactor operating conditions has a significant influence on the quality of tissue-engineered cartilage.  相似文献   

10.
In order to achieve successful wound repair by regenerative tissue engineering using mesenchymal stem cells (MSCs), it is important to understand the response of stem cells in the scaffold matrix to mechanical stress.
To investigate the clinical effects of mechanical stress on the behavior of cells in scaffolds, bone marrow-derived mesenchymal stem cells (MSCs) were grown on a type-I collagen-glycosaminoglycan (GAG) scaffold matrix for one week under cyclic stretching loading conditions.
The porous collagen-GAG scaffold matrix for skin wound repair was prepared, the harvested canine MSCs were seeded on the scaffold, and cultured under three kinds of cyclic stretching loading conditions ( 0%: control, 5% strain, 15% strain ). After 7 days incubation, MSCs were evaluated histologically and immunohistochemically regarding the proliferation and differentiation.
Cultured MSCs in the high strain (15% strain) group showed activea-smooth muscle actin (α-SMA) expression and poor differentiation into type-I collagen-positive cells, whereas enhanced differentiation into type-I collagen positive cells and a lack ofa-SMA expression where shown in the lower stress (5% strain) group. These results suggest that mechanical stress may affect the proliferation and differentiation of stem cells, and subsequently the wound healing process, through attachment interactions between the stem cells and scaffold matrix. Our findings provide an additional consideration for clinical treatment of wound repair using regenerative tissue engineering.  相似文献   

11.
A cell leakproof porous poly(DL ‐lactic‐co‐glycolic acid) (PLGA)‐collagen hybrid scaffold was prepared by wrapping the surfaces of a collagen sponge except the top surface for cell seeding with a bi‐layered PLGA mesh. The PLGA‐collagen hybrid scaffold had a structure consisting of a central collagen sponge formed inside a bi‐layered PLGA mesh cup. The hybrid scaffold showed high mechanical strength. The cell seeding efficiency was 90.0% when human mesenchymal stem cells (MSCs) were seeded in the hybrid scaffold. The central collagen sponge provided enough space for cell loading and supported cell adhesion, while the bi‐layered PLGA mesh cup protected against cell leakage and provided high mechanical strength for the collagen sponge to maintain its shape during cell culture. The MSCs in the hybrid scaffolds showed round cell morphology after 4 weeks culture in chondrogenic induction medium. Immunostaining demonstrated that type II collagen and cartilaginous proteoglycan were detected in the extracellular matrices. Gene expression analyses by real‐time PCR showed that the genes encoding type II collagen, aggrecan, and SOX9 were upregulated. These results indicated that the MSCs differentiated and formed cartilage‐like tissue when being cultured in the cell leakproof PLGA‐collagen hybrid scaffold. The cell leakproof PLGA‐collagen hybrid scaffolds should be useful for applications in cartilage tissue engineering. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
Tendon-bone healing is important for the successful reconstruction of the anterior cruciate ligament by using the hamstring tendon. Mesenchymal stem cells (MSCs) have attracted much interest because of their self-renewing potential and multipotentiality for possible clinical use. We previously reported that MSCs derived from synovium had a higher proliferation and differentiation potential than the other MSCs that we examined. The purpose of this study was to investigate the effect and mechanism of the implantation of the synovial MSCs on tendon-bone healing in rats. Half of the Achilles’ tendon grafts of rats were inserted into a bone tunnel from the tibial plateau to the tibial tuberosity with a suture-post fixation. The bone tunnel was filled with MSCs labeled with fluorescent marker DiI or without MSCs as the control. The tendon-bone interface was analyzed histologically, and collagen fibers were quantified. At 1 week, the tendon-bone interface was filled with abundant DiI-positive cells, and the proportion of collagen fiber area was significantly higher in the MSC group than in the control group. By 2 weeks, the proportion of oblique collagen fibers, which appeared to be Sharpey’s fibers, was significantly higher in the MSC group than in the control group. At 4 weeks, the interface tissue disappeared, and the implanted tendon appeared to attach to the bone directly in both groups. DiI-labeled cells could no longer be observed. Implantation of synovial MSCs into bone tunnel thus accelerated early remodeling of tendon-bone healing, as shown histologically. This study was supported in part by grants from the Japan Society for the Promotion of Science (19591752) and from the Center of Excellence Program for Frontier Research on Molecular Destruction and Reconstruction of Tooth and Bone at Tokyo Medical and Dental University to T.M. and from the Japan Society for the Promotion of Science (18591657) to I.S.  相似文献   

13.
Summary The significantly higher incidence of anterior cruciate ligament (ACL) injuries in collegiate women compared with men may result from relative ligament laxity. Differences in estrogen and relaxin activity, similar to that seen in pregnancy, may account for this. We quantified estrogen receptors by flow cytometry and relaxin receptors by radioligand binding assay in human ACL cells and compared the presence of these receptors in males and females. ACL stumps were harvested from seven males and eight females with acute ACL injuries. The tissue was placed in M199 cell culture medium. Outgrowth cultures were obtained, and passage 2 cells were used for all studies. Estrogen receptor determination was performed using flow cytometry. Relaxin binding was performed in ACL cells derived from five female and male patients using I125-labeled relaxin. Estrogen receptors were identified by flow cytometry in 4 to 10% of ACL cells. Mean fluorescence of cells expressing estrogen receptors was approximately twice that of controls, with no significant differences between males and females. Relaxin studies showed low-level binding of I125-relaxin-labeled ACL cells. Relaxin binding was present in four out of five female ACL cells versus one out of five male ACL cells.  相似文献   

14.
15.
This study evaluated the extent of differentiation and cartilage biosynthetic capacity of human adult adipose‐derived stem cells relative to human fetal chondrocytes. Both types of cell were seeded into nonwoven‐mesh polyglycolic acid (PGA) scaffolds and cultured under dynamic conditions with and without addition of TGF‐β1 and insulin. Gene expression for aggrecan and collagen type II was upregulated in the stem cells in the presence of growth factors, and key components of articular cartilage such as glycosaminoglycan (GAG) and collagen type II were synthesized in cultured tissue constructs. However, on a per cell basis and in the presence of growth factors, accumulation of GAG and collagen type II were, respectively, 3.4‐ and 6.1‐fold lower in the stem cell cultures than in the chondrocyte cultures. Although the stem cells synthesized significantly higher levels of total collagen than the chondrocytes, only about 2.4% of this collagen was collagen type II. Relative to cultures without added growth factors, treatment of the stem cells with TGF‐β1 and insulin resulted in a 59% increase in GAG synthesis, but there was no significant change in collagen production even though collagen type II gene expression was upregulated 530‐fold. In contrast, in the chondrocyte cultures, synthesis of collagen type II and levels of collagen type II as a percentage of total collagen more than doubled after growth factors were applied. Although considerable progress has been achieved to develop differentiation strategies and scaffold‐based culture techniques for adult mesenchymal stem cells, the extent of differentiation of human adipose‐derived stem cells in this study and their capacity for cartilage synthesis fell considerably short of those of fetal chondrocytes. Biotechnol. Bioeng. 2010;107: 393–401. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
The two mesenchymal stem cell (MSC) populations that have gained most attention in relation to bone tissue engineering are adipose tissue (AT) MSCs and bone marrow (BM) MSCs. The purpose of this study was to investigate the ability of human BM-MSCs and AT-MSCs to survive, proliferate and deposit collagen type 1 when cultured on polycaprolactone nanofiber scaffolds and to ascertain the effect of medium composition on collagen type 1 formation and expression of osteogenic genes. The cells were seeded on polycaprolactone nanofiber scaffolds and cultured in three different types of media that differed by the presence of ascorbic acid, β-glycerophosphate and dexamethasone, that are typical components used for osteogenic differentiation of MSCs in vitro.In summary, AT-MSCs were proliferating significantly faster than BM-MSCs. AT-MSCs also showed better ability to deposit collagen type 1 and had a higher expression of early osteogenic markers, whereas BM-MSCs had higher expression of late osteogenic markers. This suggests that MSCs from diverse sources have different attributes and with respect to osteogenic differentiation, AT-MSCs are more immature compared to BM-MSCs. Collagen formation was depending on medium composition and the organization of collagen type 1 appeared to be influenced by the presence of dexamethasone.  相似文献   

17.
Rabbit articular chondrocytes were seeded onto three-dimensional polyglycolic acid (PGA) scaffolds and placed into a closed bioreactor system. After 4 weeks of growth, meshes were examined for cartilage formation. Gross examination revealed solid, glistening material that had the appearance of cartilaginous tissue. Histologic examination revealed cell growth and deposition of extracellular matrix throughout the mesh with a less dense central core. Alcian blue and Safranin 0 staining showed deposition of glycosaminoglycans (GAGs). Immunostaining showed positive reactivity for type II collagen and chondroitin sulfate and no reactivity for type I collagen. Biochemical analysis showed collagen and GAG values to be 15% and 25% dry weight, respectively. Our results indicate that this type of system compares well with those previously described and should be useful for producing cartilage for evaluation in a clinical setting. (c) 1995 John Wiley & Sons, Inc.  相似文献   

18.
Tendon-bone insertion injuries such as rotator cuff and anterior cruciate ligament injuries are currently highly common and severe. The key method of treating this kind of injury is the reconstruction operation. The success of this reconstructive process depends on the ability of the graft to incorporate into the bone. Recently, there has been substantial discussion about how to enhance the integration of tendon and bone through biological methods. Stem cells like bone marrow mesenchymal stem cells (MSCs), tendon stem/progenitor cells, synovium-derived MSCs, adipose-derived stem cells, or periosteum-derived periosteal stem cells can self-regenerate and potentially differentiate into different cell types, which have been widely used in tissue repair and regeneration. Thus, we concentrate in this review on the current circumstances of tendon-bone healing using stem cell therapy.  相似文献   

19.
The development of a tissue‐engineered alternative for current ligament grafts requires the creation of a fibrocartilaginous interface between the engineered ligament midsubstance and bone tissue. Therefore, the focus of this study was to examine the potential for cartilaginous extracellular matrix (ECM) formation by altering culture parameters for bovine anterior cruciate ligament (ACL) fibroblasts and marrow stromal cells (MSCs). Specifically, cells were cultured without chondrogenic media supplements on aggrecan‐coated surfaces, tissue culture‐treated control surfaces, and nonadhesive surfaces that promoted cell aggregation, and examined over 14 days. Aggrecan‐coated surfaces promoted the aggregation of ACL fibroblasts and MSCs within 24 h after seeding. Aggrecan gene expression was significantly upregulated in cell aggregates, regardless of how cell clustering was induced, with as much as 10.9 ± 1.2‐fold upregulation in ACL fibroblasts and 9.7 ± 1.1‐fold in MSCs after 3 days, compared to control surfaces. Dimethylmethylene blue (DMMB) results and immunostaining verified the presence of aggrecan in ACL fibroblast and MSC aggregates throughout the culture period. Results indicate that ACL fibroblasts retained the ability to alter their gene expression and produce aggrecan, though MSCs, in general, had a more consistent response to aggregation. These findings support the use of aggregate‐inducing materials to encourage production of aggrecan and suggest that altering the degree of clustering could produce a range of phenotypes from a single cell source. As such, this represents a first step which may inform future approaches to producing tissue‐engineered ligament grafts. Biotechnol. Bioeng. 2011; 108:151–162. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
Telocytes (TCs) are a novel type of interstitial cells present in a wide variety of organs and tissues ( www.telocytes.com ). Telocytes are identified morphologically by a small cell body and specific long prolongations (telopodes) alternating thin segments (podomers) with dilations (podoms). The presence of TCs in rat meninges has been identified in previous research. We here present further evidence that TCs existed in canine dura mater, closed to capillary and surrounded by a great deal of collagen fibres under transmission electron microscope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号