首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物细胞水势的组成及其加合   总被引:1,自引:1,他引:0  
1984年第3期《植物生理学通讯》“有液泡细胞的水势究竟等于什么?”一文提出了: ?_w=?_m ?_s ?_p这个公式是否正确,即?_m(衬质势)能否和?_s(渗透势)、?_p(压力势)加合?解决这个问题的关键是正确分析细胞水势组成部分之间的关系。一、物物细胞水势的组成上式如果是用来表达细胞水势包括那些组分,而不作为计算水势的公式,是可以成立的。但这一表达还不完全,应该加上细胞的重力势。因为在讨论细胞的水势时,一般都涉及到细胞之间的水分移  相似文献   

2.
我们今年选用薛应龙先生主编的《植物生理学实验》作为我们植物生理学实验的教材。此教材各方面兼顾,有些实验方法较新,概念、操作过程清楚,与我们以往所用的教材相比,实为一本难得的植物生理学实验好教材。但第二章水分生理实验中“质壁分离法测定植物细胞水势”这一命题,我们认为还有可商榷之处。我们都知道,一个成熟的具有液泡的植物细胞的水势由渗透势(ψ_s),压力势(ψ_p)和衬质势(ψ_m)三种组分组成:ψ_w=ψ_s+ψ_p+ψ_m  相似文献   

3.
偏摩尔体积     
在讨论植物与水分的关系时,目前普遍认为水势是客观表示细胞水分状况的一个重要量度。它正本清源,恢复了事物的本来性质。它适用范围广泛,能更准确地解释植物水分与土壤水分及大气内水分的能量状况及相互关系。虽然,从能学的范畴来讨论细胞的水分状态,一开始是用水的化学势(μ_w)来标志的。细胞的吸水或失水也是用细胞与环境之间水的化学势差(μ_w-μ_w~0=△μ_w)来讨论的,并且,所用的单位是尔格·摩尔~(-1)。但是,目前通用的水势是指每偏摩尔体积的水的化学势差(φ_w=△μ_w/V_w)。水势与水的化学势的概念是不  相似文献   

4.
玉米叶片生长部位渗透调节和生长的生物物理参数变化   总被引:6,自引:0,他引:6  
玉米叶片生长部位随着水分胁迫加剧ψ_w降低、LER减慢。LER从最大到零,快速干旱处理的ψw从-0.55降至-0.85 MPa;缓慢干旱处理ψ_w从-0.88降至-1.13 MPa。在任何一种LER下,缓慢干旱处理的ψ_s比快速干旱处理更低,生长停止时,前者为-1.57 MPa,而后者为-1.30MPa。缓慢干旱叶片尽管在更低ψ_w下,仍能维持一定膨压,保持一定的生长速率。经历长时间水分胁迫会改变细胞延伸生长的生物物理参数,增大临界膨压(0.08~0.09 MPa)。这是水分胁迫植株,在一定ψ_p下生长速率减慢的原因。  相似文献   

5.
关于植物细胞的水势,现在我国比较流行的提法是:植物有液泡细胞的水势,通常是由渗透势(φx)或称溶质势(φs)、压力势(φ?)和衬质势(φm)三个势组成。即:  相似文献   

6.
水分胁迫下烟草光合作用的气孔与非气孔限制   总被引:11,自引:0,他引:11  
快速水分胁迫处理时,处于中度水分胁迫(Ψ_w=-1.54MPa)的烟草叶肉活性、叶绿体放氧能力及光合暗反应受到的影响很小;处于严重水分胁迫(Ψ_w=-1.84MPa)的RuBPCase,FBPase及果糖二磷酸醛缩酶活性明显降低,叶肉活性和叶绿体放氧能力受到强烈的抑制。  相似文献   

7.
冬小麦近轴和远轴叶面气孔对土壤水分胁迫反应的敏感性   总被引:3,自引:0,他引:3  
当根层土壤水分含量不足,作物体内出现水分胁迫时,小麦叶片两面气孔的反应有明显差异。远轴叶面气孔对水分胁迫的反应比近轴叶面气孔敏感。当出现水分胁迫时,远轴叶面气孔首先收缩,且收缩的程度比近轴叶面气孔大。远轴与近轴叶面气孔阻力的比值(r_(ab)/r_(ab))与根层平均土壤水势(Ψ_s)有关,当Ψ_s大于-50 kPa时,r_(ab)/r_(ad)基本稳定在1.5左右,而当Ψ_s小于-50 kPa时,r_(ab )/r_(ab)随Ψ_s降低而明显增加。  相似文献   

8.
孕穗期玉米功能叶的气孔导性是叶上部>中部>下部。光合速率,照光后糖分的积累速度,PEPC酶活力和含氮量都是叶上部>下部。叶片含水量,叶ψ_ω,ψ_s和ψ_p则是叶下部>中部>上部,但叶上部也保持较高ψ_p。叶上部蒸腾速率较下部大,角质蒸腾则相反。引起上述差异的主要原因之一是叶片各部位所受光照强度不同。  相似文献   

9.
准噶尔盆地南缘"丰收林"胡杨水势   总被引:1,自引:0,他引:1  
以准噶尔盆地南缘150团丰收林的胡杨为研究对象,通过比较其与梭梭和柽柳水势变化的规律,以及与土壤含水量和大气温、湿度的关系,探讨了干旱环境下胡杨水势的变化特点.结果表明:胡杨叶、茎水势日变化呈"V"型,梭梭和柽柳水势日变化呈"W"型.相关分析表明,胡杨老林叶、茎水势与温度呈极显著负相关(r分别为-0.839和-0.818),胡杨幼林的茎水势与温度呈显著负相关(r=-0.650);胡杨幼林叶水势与空气湿度呈正相关(r=0.786).胡杨老林2 m处叶、茎的清晨水势与5和10 m处均存在显著性差异(P<0.05),而5和10 m处叶、茎的清晨水势无显著差异(P>0.05);2、5和10 m处的叶、茎正午水势均存在显著差异(P<0.05);在20:00,胡杨老林在不同高度叶水势存在显著性差异(P<0.05).  相似文献   

10.
水势与水的化学势之间的关系和区别问题,众说纷纭,意见颇不一致。但归纳起来有两种:1.水势:=⊿μw,即水势就是水的化学势(差);2.水势ψw=⊿μ,否认水势就是水的化学势。这里,谈谈自己的体会,供参考。  相似文献   

11.
荒漠河岸林胡杨群落特征对地下水位梯度的响应   总被引:3,自引:0,他引:3  
韩路  王海珍  牛建龙  王家强  柳维扬 《生态学报》2017,37(20):6836-6846
依据塔里木荒漠河岸林胡杨群落的实地调查资料与地下水位监测数据,应用多元统计法、Hill与β多样性指数测度法,研究优势种胡杨种群数量特征沿地下水位梯度的变化规律及其相互关系,探讨群落物种多样性对地下水位梯度的生态响应。结果表明,运用系统聚类法将荒漠河岸林不同地下水位的胡杨群落划归为3类,优势种群胸径、冠幅、盖度、密度、死亡率与地下水位呈极显著相关(P0.01)。随地下水位降低,优势种长势减弱,枯死率显著增大,种群退化。Hill多样性随地下水位梯度呈现3个明显不同的变化阶段,其中地下水位4—6 m时,多样性指数锐减与曲线渐趋平直,物种多样性开始受损。Cody(β_c)、Whittaker(β_w)指数均随地下水位梯度增大而增大,Sorensen(β_s)指数则呈下降趋势;β_s、β_c、β_w与地下水位高差间均呈极显著相关(P0.01),地下水位4 m,β_c、β_w值显著增大而β_s值显著降低。综合以上分析,地下水位4 m胡杨群落结构相似与共有种较多,优势种长势良好,其是优势种群生存的适宜生态水位;地下水位4 m,群落物种多样性与伴生种减少,物种变化速率增大,生境异质性增强,优势种群数量特征变化明显,群落结构简化;地下水位6 m左右,植被退化,物种多样性锐减,优势种稀疏衰败。因此,塔里木荒漠河岸林植被恢复的合理生态地下水位应维持在4 m左右。  相似文献   

12.
问题 “有一被水充分饱和的细胞 ,将其放入比细胞液浓度低 5 0倍的溶液中 ,则体积不变。”请问这一说法是否正确 ?现有两种回答。一种认为这个说法错误。因为细胞“被水充分饱和”后 ,水势为 0 ,与纯水水势相等 ,而外界溶液浓度尽管比细胞液浓度低 ,但水势低于 0 ,故水应由细胞向外界溶液运动 ,即细胞失水 ,因此细胞体积应变小。同时其水势降低 ,直至与外界溶液水势 (渗透势 )相等。关于这一点 ,教科书上是这样写的 :“知道任何两个部位的水势 ,就可确定水分运转的方向 ,因此水分运动的动力就是供应水分的部位与接受水分部位之间的水势差。…  相似文献   

13.
黄土区4个树种水势特征的研究   总被引:11,自引:0,他引:11  
采用压力室法对晋西北黄土区柠条(Caragana korshinskii)、河北杨(Populus hopeiensis)、北京杨(Populus beijingensis)和小叶杨(Populus simonii)4 个树种的小枝水势、叶含水率及其环境因子的日变化进行了定期测定。分析了4 个树种水势日变化与光照(L)、气温(T)、相对湿度(RH)日变化及叶含水率(LWC)日变化的关系以及其水势的季节变化与土壤水分季节变化的关系。主要结果如下:整个生长期所测4 个树种小枝水势的日变化为呈抛物线型。生长期小枝水势的平均值分别为柠条(-1.569 MPa)、河北杨(-1.030 MPa)、北京杨(-0.993 MPa)和小叶杨(-0.971MPa)。小枝水势与环境单因子的相关性大小依次为:光照、气温、相对湿度。水势与光温复合因子(L*T)、光湿复合因子(L/RH)的相关性大于它与单因子的相关性。小枝水势与叶含水率的相关性较差。生长期清晨水势(Wp)季变化与土壤水分(X)季节变化的最佳关系模型为Wp=Ae-BX型。但生长期午间水势的季节变化与土壤水分季节变化的关系均不显著。土壤水分含量对水势有较大影响。  相似文献   

14.
沙打旺根系提水作用及其机理研究   总被引:2,自引:1,他引:1  
采用上下桶分根法研究了3年生沙打旺的根系提水作用及土壤水势与植物组织水势、植物渗透调节物质之间的关系。结果表明,当上下桶土壤体积含水量和水势分别在14.9%和-1.28MPa、19%和-0.6MPa左右时,下桶土壤水势>下桶根水势>上桶根水势>上桶土壤水势>叶水势,出现沙打旺根系提水现象。上桶土壤含水量和土壤水势的日变化在晴天表现为:7:00~16:00急剧下降,16:00~22:00上升较快并于22:00达到最大值,之后缓慢下降;而其在阴天随时间的推移呈现缓慢下降趋势。沙打旺叶片中K 、可溶性糖和脯氨酸含量等渗透调节物质在16:00和22:00均高于根中,16:00上桶根和叶片中脯氨酸、可溶性糖、K 和Na 的含量显著高于22:00,由此产生了上桶根水势、叶水势的日变化,促进了沙打旺的提水作用。  相似文献   

15.
基于叶片水势的内蒙古典型草原植物水分适应特征研究   总被引:1,自引:0,他引:1  
水分是限制草原生态系统植物生存、繁殖和扩散最重要的生态因子,植物通过多样的水分适应策略适应干旱环境。为了解典型草原植物水势特征及其影响因素,在2017年和2018年的生长季对内蒙古典型草原71种植物的叶片黎明水势、午后水势、叶片和根系功能性状进行了测定与分析。结果表明:测定的71种植物叶片的黎明水势分布于-2.67—-0.63 MPa,午后水势分布于-4.67—-1.01 MPa;一年生植物的叶片具有最高的黎明水势、午后水势和最小的水势日差值(叶片的黎明水势与午后水势的差值),多年生禾草的叶片具有最低的黎明水势、午后水势和最大的水势日差值;71种植物对水分的适应策略可分为高水势保持型、低水势忍耐型和变水势波动型;叶片午后水势与叶片干物质含量和根系深度呈极显著的负相关关系(P<0.01),但与比叶面积呈极显著的正相关关系(P<0.01)。本研究有助于从植物生理学的角度上准确认识典型草原植物的水分适应性及水分生态特征。  相似文献   

16.
植物细胞的吸水活动,决定于细胞和环境间的水势差。任何含水体系的水势,都受到可改变体系内水分自由能的诸因素的影响。植物细胞是一个多组分的复杂的体系,它的水势受那些因素所决定?国内外的植物生理学教科书,以及在《植物生理学通讯》上所开展的关于水势问题的讨论中,对此理解仍有分歧。最近荣文同志就“有液泡细胞的水势究竟应等于什么?”提出了讨论,这很有必要。其  相似文献   

17.
读了《植物生理学通讯》有关植物细胞水势的两篇讨论文章,基本同意作者的观点。笔者就自已的认识谈一点看法,供同行参考。有关植物细胞水势的争论分为“加合说”和“平衡说”两派。争论的焦点是衬质势能否作为细胞水势组成之一。我们不妨分析一下衬质势的提出及其实际意义,看它与植物细胞水势究竟是什么关系。无液泡的细胞,如干燥种子放入水中时,表现出很低的水势,这是因为种子是由蛋白质、淀粉、纤维素等亲水胶体(这里称为衬质)所组成,这些物质对水分有很强的吸附能力,所表现的水势就称为衬  相似文献   

18.
前已报道抗药质粒ER396(Tc~r、Ap~r、Cm~r、Sm~r、Su~r)带有可转座的Ap抗性基因。我们用φ80噬菌体感染带有ER396质粒的大肠杆菌,分离出一株能高频转导Ap抗性的噬菌体φ80 Ap。从:(1)φ80 Ap噬菌体的Ap抗性转导子对φ80噬菌体超感染具有免疫能力;(2)φ80 Ap噬菌体在接种有Ap敏感的大肠杆菌软琼脂平板上形成的噬斑中85%以上的噬斑,其中心的溶原菌都获得了对卸的抗性;(3) φ80噬菌体抗血清能同时中和φ80 Ap噬菌休的幻抗性转导能力与噬斑形成能力等结果,我们推测φ80 AP噬菌体是由于可转座的AP抗性基因从ER396质粒转座到φ80噬菌体的基因组中而形成的。  相似文献   

19.
定量遥感反演作物水势的原理及其应用   总被引:3,自引:0,他引:3  
张杰  张强  赵宏  张平兰 《生态学杂志》2008,27(6):916-923
在利用能量平衡原理估算蒸腾速率的基础上,结合大气水势和叶、气阻抗的估算,建立叶水势的遥感估算模型.应用CI-301光合作用仪观测的作物生理参数和气象参数,验证了叶水势的遥感反演精度,分析了叶水势对干旱-半干旱区气候干旱和作物生理干旱的响应敏感程度.结果表明:叶水势是反映作物干旱情况的较好指标,它不仅能够反映作物生理干旱特征,也能够反映气候干旱特征;叶水势反演结果的相对误差为3.2%~17.3%,说明遥感估算的叶水势可以用于干旱监测中,以评估作物水分胁迫.在甘肃省的干旱年份2005年,5月的叶水势为-2~-3 MPa, 6月的叶水势为-2 MPa左右,其反映的干旱程度与植物种类有关.  相似文献   

20.
梨枣在果实生长期对土壤水势的响应   总被引:1,自引:0,他引:1  
韩立新  汪有科  张琳琳 《生态学报》2012,32(7):2004-2011
以4年生梨枣为试验材料,在果实生长期设置了4个土壤水势水平,研究不同处理梨枣茎秆直径生长、光合速率、蒸腾速率、叶片相对含水量以及果实数量对土壤水势的响应,探讨了梨枣果实生长期适宜的土壤水势范围。结果表明:1)在果实缓慢生长期,茎秆直径生长缓慢;土壤水势高于-84 kPa时能显著地降低落果率。2)果实快速生长期,茎秆直径日最大值和叶片相对含水量能反映梨枣的水分状况;适当的控制土壤水势能显著的提高叶片的水分利用效率;土壤水势高于-84 kPa时果实快速生长期出现坐果现象。3)果实生长期前期的土壤水势低至-461 kPa会影响果实生长期叶片的功能和后期的坐果。因此,梨枣果实生长期的适宜的土壤水势范围为-41—-84 kPa,提高了叶片水分利用效率,提高了单果重,不影响产量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号