首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Light activation of guanylate cyclase at different calcium concentrations was studied in the rod outer segments of the toad retina. The enzyme becomes sensitive to calcium ions after a flash of light, showing an enhancement of its activity when Ca2+ concentration is lowered from 10−4 M to 10−8 M. A possible pathway of guanylate cyclase activation by light was also investigated by means of the antibody 4A to transducin. When added in excess to transducin, the antibody inhibits light activation of phosphodiesterase as well as of cyclase, suggesting a possible coupling of the two enzymes.  相似文献   

2.
The ability of benzodifuroxan (BDF) to activate human platelet guanylate cyclase was investigated. The maximal stimulatory effect (1160 +/- 86%) was observed at 0.01 mM concentration. Sodium nitroprusside produced the same stimulatory effect (1220 +/- 100%) but at a higher concentration (0.1 mM). 1-H-[1,2,4,]-Oxadiazolo[4, 3-alpha]quinoxalin-1-one (ODQ), an inhibitor of NO-dependent guanylate cyclase activation, attenuated the stimulatory effect of BDF (0.01 mM) by 75% and that of sodium nitroprusside (0.1 mM) by 80%. Increasing dithiothreitol concentration in the sample from 2. 10-6 to 2.10-4 M increased the stimulatory effect of BDF 2.7-fold. The possible involvement of sulfhydryl groups of low-molecular-weight thiols and guanylate cyclase in thiol-dependent activation of the enzyme is discussed. We have also found that BDF is a highly effective inhibitor of ADP-induced human platelet aggregation with IC50 of 6.10-8 M. The effect of sodium nitroprusside was much weaker (IC50, 5.10-5 M).  相似文献   

3.
Guanylate cyclase activities were identified in a soluble fraction and a particular fraction obtained from the Arteria coronaria of cattle. The Km-value was 1.0 +/- 0.7 - 10(-4) M for the enzyme substrate complex of the guanylate cyclase of the soluble fraction and 9.2 +/- 1.5 - 10(-4) M for the particular fraction. For the enzyme activity of the soluble fraction Mn++ cannot be replaced by Ca++ or Mg++, whereas for the enzyme activity of the particulate fraction Mn++ can be replaced by Mg++ but not by Ca++. The guanylate cyclase of the particulate fraction can be activated by acetylcholine. This activation can be cancelled by atropine. Acetylcholine exerts no influence on the guanylate cyclase activity of the soluble fraction. ATP inhibits the enzyme activities of both fractions whereas cAMP shows no influence on the guanylate cyclase activity.  相似文献   

4.
The rod outer segments of toad retina contain a guanylate cyclase activity of about 3 +/- 1 nmol of cGMP formed/min per mg protein. In darkness this value is largely independent of the Ca2+ concentration, although it is enhanced by light upon lowering the Ca2+ concentration from 10(-5) to 10(-8) M. The activating effect of light on cyclase at low Ca2+ concentrations is enlarged upon increasing the light intensity. With a flash of light bleaching 7 X 10(-2) percent of rhodopsin, cyclase activity increased by a factor of 30 when Ca2+ levels dropped from 10(-5) to 10(-8) M. In view of recent observations that shortly after a flash of light the calcium activity inside the photoreceptor cell decreases, it seems likely that Ca2+ plays a regulatory role on cGMP metabolism in visual excitation.  相似文献   

5.
1. Escherichia coli heat-stable enterotoxin (ST) induces a secretory diarrhea by binding to receptors on brush borders of intestinal villus cells, activating particulate guanylate cyclase and increasing intracellular concentrations of guanosine 3',5'-cyclic monophosphate (cyclic GMP). 2. However, little is known concerning coupling of receptor-ligand interaction to enzyme activation. 3. This study compares the kinetics of toxin-receptor binding and enzyme activation to better understand this transmembrane signal cascade. 4. Toxin receptor binding was linear and saturable with 50% of maximum displacement of [125I]ST by unlabeled toxin observed at 1.1 x 10(-7) M. ST increased the maximum velocity (Vmax) of guanylate cyclase with magnesium or manganese as the cation substrate without altering the affinity of the enzyme for its substrate or its positive cooperativity. 5. The concentration of toxin yielding half-maximum stimulation of guanylate cyclase was 1.2 x 10(-6) M, 10-fold higher than the affinity of the ligand for its receptor. 6. These data are consistent with the suggestion that ST-receptor interaction is coupled to activation of particulate guanylate cyclase. 7. However, the discrepancy between the affinity of ST for its receptor and its efficacy in activating the enzyme suggests that this coupling is complex. 8. Possible mechanisms underlying this coupling are discussed.  相似文献   

6.
Guanylate cyclase in neuroblastoma N1E 115 cells was readily solubilized upon homogenization of the cells with hypotonic buffer. When the supernatant was passed through cation exchangers such as a Chelex 100 Na+ column, the guanylate cyclase activity in the effluent fraction decreased to 4-6% of the original supernatant. The addition of the acid extract of neuroblastoma cells or rat tissues to the effluent restored guanylate cyclase activity, indicating that the supernatant of neuroblastoma cells contained an acid-soluble endogenous activator for guanylate cyclase which was adsorbed on cation exchangers. The activator was purified from rat brain and identified as L-arginine by 13C- and 1H-NMR spectroscopy and paper partition chromatography. L-Arginine, at a concentration of 1-2 x 10(-5) M, stimulated guanylate cyclase activity in the effluent fraction 15-25-fold, whereas D-arginine and other basic L-amino acids were ineffective. Peptides that contained L-arginine at the NH2- or COOH-terminal also resulted in an activation of guanylate cyclase to the extent similar to that of L-arginine, while peptides that contained L-arginine inside the peptide chain failed to stimulate the activity. The activation of L-arginine seemed to operate by a mechanism similar to that induced by nitroso compounds.  相似文献   

7.
The resynthesis of cGMP in vertebrate photoreceptors by guanylate cyclase is one of the key events leading to the reopening of cGMP-gated channels after photoexcitation. Guanylate cyclase activity in vertebrate rod outer segments is dependent on the free calcium concentration. The basal activity of the enzyme observed at high concentrations of free calcium (greater than 0.5 microM) increases when the free calcium concentration is lowered into the nanomolar range (less than 0.1 microM). This effect of calcium is known to be mediated by a soluble calcium-sensitive protein in a highly cooperative way. We here show that this soluble protein, i.e. the modulator of photoreceptor guanylate cyclase, is a 26 kd protein. Reconstitution of the purified 26 kd protein with washed rod outer segment membranes containing guanylate cyclase revealed a 3- to 4-fold increase of cyclase activity when the free calcium concentration was lowered in the physiological range from 0.5 microM to 4 nM. Guanylate cyclase in whole rod outer segments was stimulated 10-fold in the same calcium range. The activation process in the reconstituted system was similar to the one in the native rod outer segment preparation, it showed a high cooperativity with a Hill coefficient n between 1.4 and 3.5. The half-maximal activation occurred between 110 and 220 nM free calcium. The molar ratio of the modulator to rhodopsin is 1:76 +/- 32. The protein is a calcium binding protein as detected with 45Ca autoradiography. Partial amino acid sequence analysis revealed a 60% homology to visinin from chicken cones.  相似文献   

8.
The intensity of lipid peroxidation in the microsomal membranes of rat liver influences the activity of "soluble" guanylate cyclase preparations. The increased production of lipid peroxidation products after addition of Fe(II) results in a rise the guanylate cyclase activity; alpha-tocopherol causes a decrease of this activity. An addition of fatty acids hydroperoxides at concentrations above 10(-6) M activates both the membrane-bound and "soluble" guanylate cyclase. It was shown that the hydroperoxide degradation products--carbonyl derivatives responsible for the activation, at concentrations above 10(-9) M provide for activation of the enzyme. The blocking of the SH-groups in "soluble" enzyme preparations by N-ethylmaleimide completely prevents the enzyme activation by carbonyl.  相似文献   

9.
The influence of ambroxol (a mucolytic agent) on the activity of human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase and activation of both enzymes by NO-donors (sodium nitroprusside (SNP) and Sin-1) were investigated. Ambroxol in the range of concentrations from 0.1 to 10 ??M had no effect on the basal activity of both enzymes. Ambroxol inhibited in a concentration-dependent manner the SNP-induced human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase with the IC50 values of 3.9 and 2.1 ??M, respectively. Ambroxol did not influence the stimulation of both enzymes by protoporphyrin IX. The influence of artemisinin (an antimalarial agent) on human platelet soluble guanylate cyclase activity and the enzyme activation by NO-donors were investigated. Artemisinin (0.1?100 ??M) had no effect on the basal activity of the enzyme. Artemisinin inhibited in a concentration-dependent manner the SNP-induced activation of human platelet guanylate cyclase with the IC50 value of 5.6 ??M. Artemisinin (10 ??M) also inhibited (by 71 ± 4.0%) the activation of the enzyme by a thiol-dependent NO-donor, the derivative of furoxan, 3,4-dicyano-1,2,5-oxadiazolo-2-oxide (10 ??M), but did not influence the stimulation of soluble guanylate cyclase by protoporphyrin IX. It was concluded that the signaling system NO-soluble guanylate cyclase-cGMP is involved in the molecular mechanism of the therapeutic action of ambroxol and artemisinin.  相似文献   

10.
The membraneous guanylate cyclase of cilia from Paramecium tetraurelia used MgGTP and MnGTP as substrate with Michaelis constants for GTP of 71.5 microM and 36 microM, respectively. A linear Arrhenius plot indicated that a single enzyme entity exists not sensitive to possible phase transitions of membrane lipids. Guanylate cyclase is activated by low concentrations (less than 100 microM) and inhibited by high concentrations (greater than 100 microM) of calcium, half-maximal effects were obtained with 8 microM and 500 microM Ca2+, respectively. Only strontium ions displayed partial activating and inhibiting potency, all other divalent cations tested, Ba2+, Fe2+, Co2+, Mn2+, Sn2+ and Ni2+ had no effect on guanylate cyclase activity. Ca2+ activation increased V; Km remained identical. The Ca2+ stimulated activity was not inhibited by trifluoperazine, tentatively suggesting that the stimulation may not be mediated by calmodulin. Ca2 inhibition was due to a single binding site of Ca2+ at the guanylate cyclase as evidence by a Hill coefficient h = -1 and was noncompetitive. The lanthanides La3+, Ce3+ and Tb3+ were powerful inhibitors of guanylate cyclase, with La3+ the half-maximal effect was obtained with 0.6 microM, it was kinetically a mixed-type inhibition. La3+ and CA2+ competed for the same binding site on the guanylate cyclase as determined by detailed kinetic analysis. Addition of EDTA reversed the activation and inhibition by Ca2+ and the inhibition by La3+. It is discussed that guanylate cyclase may be the initial target enzyme in the cilia for the calcium transient of the calcium-potassium action potential of Paramecium.  相似文献   

11.
The activity of the calcium/calmodulin-regulated guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) from Paramecium was stimulated by several polypeptides. The most potent activator was melittin (6-fold at 30 μM), followed by alamethicin, suzukacillin, trichotoxin and gramicidin S. Marginal effects were seen with herbicolin A and polymyxin B, whereas the following compounds had no effect: ionophore A23187, actinomycin C1, destomycin A, gramicidin A, iturin A, nigericin, nonactin, Tü 1718B, valinomycin and synthetic peptide analogues of alamethicin. Guanylate cyclase activation was not related to ion-transport capacity or to the length of the α-helical segments. Rather, the degree of amphiphilicity seemed to be an important criterion. No difference in activation was seen between native guanylate cyclase and the reconstituted enzyme. Thus, in all likelihood, polypeptide stimulation requires the presence of the guanylate cyclase/calmodulin holo-enzyme. Guanylate cyclase activation was permanent. Enzyme kinetics, such as Michaelis-Menten behavior and non-cooperativity, were retained. Incubation with polypeptides at 37°C prior to substrate addition decreased enzyme stimulation. Activation of cGMP formation as enhanced at elevated incubation temperatures. The activation energy for hemolysis of erythrocytes favorably correlated with the extent of guanylate cyclase activation (r = 0.98), suggesting a similar mechanism of interaction with membrane constituents for both processes.  相似文献   

12.
Structural analogs of atriopeptins (APs) were compared for their ability to activate particulate guanylate cyclase and bind to specific receptors in rat adrenal membranes. All analogs tested increase Vmax without altering the concentration of substrate required for half-maximum activity or the positive coperativity exhibited by the enzyme. Maximum velocities (pmoles of cGMP produced per min per mg protein) achieved in the absence and presence of APs were 128.3 +/- 6.6 and 283.8 +/- 20.6 using Mn2+-GTP, and 53.7 +/- 3.7 and 149.9 +/- 7.6 using Mg2+-GTP as the substrate, respectively. Although all APs were equally efficacious in activating the enzyme, their rank potency was ANF (8-33) = AP III = AP II greater than AP I when either divalent cation was used as the cofactor. The EC50 for activation of guanylate cyclase by AP I was about 10(-7) M, while that for the other peptides was about 10(-8) M, using either divalent cation cofactor. 125I-labeled ANF bound to rat adrenal membranes with a KD of 5.10(-10) M. Although all APs were equally efficacious in competing with labeled ANF for receptor binding, their rank potency was identical to that for enzyme activation. The Ki for AP I was about 10(-8) M, while that for the other peptides was about 10(-10) M. These data suggest that the carboxy terminal Phe-Arg present in the AP analogs except AP I and critical for biological and receptor-binding activity are also important in coupling receptor-ligand interaction with guanylate cyclase activation. The correlation between the rank order potency for receptor binding, enzyme activation, and the reported physiological actions of APs support the suggestion of a functional coupling between these proteins.  相似文献   

13.
The influence of protoporphyrin IX derivatives—2,4-di(1-methoxyethyl)-deuteroporphyrin IX disodium salt (dimegin) and hematoporphyrin IX (HP)—on the activation of human platelet soluble guanylate cyclase by sodium nitroprusside was investigated. Dimegin and HP, like 1-benzyl-3-(hydroxymethyl-2-furyl)indazole (YC-1), produce synergistic effects on the activation of soluble guanylate cyclase by sodium nitroprusside. The synergistic activation of the enzyme by the combination of 10 μM sodium nitroprusside and 5 μM dimegin (or 5 μM HP) was 190 ± 19 and 134 ± 10%, respectively. The synergistic activation of guanylate cyclase by 3 μM YC-1 and 10 μM sodium nitroprusside was 255 ± 19%. Dimegin and HP had no effect on the activation of guanylate cyclase by YC-1; they did not change the synergistic effect of YC-1 (3 μM) and sodium nitroprusside (10 μM) on guanylate cyclase activity. The synergistic activation of NO-stimulated guanylate cyclase activity by dimegin and HP represents a new biochemical effect of these compounds that may have important pharmacotherapeutic and physiological significance. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 3, pp. 426–431.  相似文献   

14.
R Wagner  N Ryba  R Uhl 《FEBS letters》1989,242(2):249-254
The kinetics of the light-induced activation of transducin as well as the subsequent disactivation process can be monitored by means of a specific light scattering transient PA. In this communication it is demonstrated that the rate of transducin disactivation is calcium dependent, increasing when the calcium concentration is decreased. As a consequence of the accelerated recovery in low calcium, the time to the peak of the transducin activation process is shortened and the gain of the primary amplification step, i.e. the number of transducin molecules activated per bleached rhodopsin, is reduced. Experiments using hydroxylamine as an artificial quencher of rhodopsin activity suggest that calcium acts upon rhodopsin kinase and not upon the rate of the GTPase. This would indicate that calcium may control visual adaptation not only by regulating guanine cyclase activity, but also by affecting the primary step in the transduction cascade, the rhodopsin-transducin coupling.  相似文献   

15.
The influence of (1H-1,2,3-triazol-1-yl)-1,2,5-oxadiazole derivatives: 4-amino-3-(5-methyl-4-ethoxycarbonyl-(1H-1,2,3-triazol-1-yl)-1,2,5-oxadiazole (TF4CH3) and 4,4′-bis(5-methyl-4-ethoxycarbo-nyl-1H-1,2,3-triazol-1-yl)-3,3′-azo-1,2,5-oxadiazole (2TF4CH3) on stimulation of human platelet soluble guanylate cyclase by YC-1, NO donors (sodium nitroprusside, SNP, and spermine NONO) and on a synergistic increase of NO-dependent activation of the enzyme in the presence of YC-1 has been investigated. Both compounds increased guanylate cyclase activation by YC-1, potentiated guanylate cyclase stimulation by NO donors and increased the synergistic effect of YC-1 on the NO-dependent activation of soluble guanylate cyclase. The similarity in the properties of the examined 1,2,3-triazol-1-yl-1,2,5-oxadiazole derivatives with that of YC-1 and a possible mechanism underlying the recognized properties of compounds used are discussed.  相似文献   

16.
Conditions necessary for the activation by ascorbic acid of soluble guanylate cyclase purified from bovine lung have been examined. Ascorbic acid (0.1-10 mM) did not directly activate the enzyme, nonetheless, pronounced activation by ascorbate (3-10 mM) was observed in incubation mixtures containing 1 microM bovine liver catalase. Superoxide dismutase (SOD) and mannitol did not affect the catalase-dependent activation of guanylate cyclase elicited by ascorbate, suggesting that superoxide anion and hydroxyl radical were not mediating the activation of the enzyme. However, SOD enhanced the relatively low level activation of the enzyme elicited by catalase in the absence of added ascorbate. Pronounced inhibition (both with and without added ascorbate) was observed of catalase-dependent activation of guanylate cyclase by either ethanol (100 mM) or a fungal catalase preparation. Neither ethanol nor fungal catalase inhibited activation of guanylate cyclase by S-nitrosyl-N-acetyl-penicillamine (SNAP), a source of the nitric oxide free radical. These observations indicate that autoxidation of ascorbic acid or thiols present with the guanylate cyclase preparation leads to generation of H2O2, and its metabolism by bovine liver catalase mediates the concomitant activation of guanylate cyclase. The mechanism of activation appears to be associated with the presence of Compound I of catalase and to be inhibited by superoxide anion.  相似文献   

17.
The effect of N-(omega-aminoalkyl) derivatives of naphthalene-1-sulfamide on the activity of soluble guanylate cyclase and on human platelet aggregation at the first (reversible) step of the guanylate cyclase reaction was studied. Low (approximately 10(-7)-10(-6) M) concentrations of the above compounds were shown to stimulate the guanylate cyclase activity; some derivatives caused simultaneous inhibition of platelet aggregation induced by ADP. Some fragments of the chemical structure of the molecules responsible for the enzyme activity regulation in the tested systems were identified. The naphthalene-1-sulfamide derivatives carrying 6-aminohexyl or 8-amino-octyl groups of the sulfamide substituent as well as chlorine atom at positions 4 or 5 of the naphthalene ring appeared to be the most potent activators of platelet guanylate cyclase and inhibitors of platelet aggregation at the reversible step of the enzymatic reaction.  相似文献   

18.
We have recently found the calcium dependent glycogenolytic effect of pancreastatin on rat hepatocytes and the mobilization of intracellular calcium. To further investigate the mechanism of action of pancreastatin on liver we have studied its effect on guanylate cyclase, adenylate cyclase, and phospholipase C, and we have explored the possible involvement of GTP binding proteins by measuring GTPase activity as well as the effect of pertussis toxin treatment of plasma liver membranes on the pancreastatin stimulated GTPase activity and the production of cyclic GMP and myo-inositol 1,4,5-triphosphate. Pancreastatin stimulated GTPase activity of rat liver membranes about 25% over basal. The concentration dependency curve showed that maximal stimulation was achieved at 10?7 M pancreastatin (EC50 = 3 nM). This stimulation was partially inhibited by treatment of the membranes with pertussis toxin. The effect of pancreastatin on guanylate cyclase and phospholipase C were examined by measuring the production of cyclic GMP and myo-inositol 1,4,5-triphosphate respectively. Pancreastatin increased the basal activity of guanylate cyclase to a maximum of 2.5-fold the unstimulated activity at 30°C, in a time- and dose-dependent manner, reaching the maximal stimulation above control with 10?7 M pancreastatin at 10 min (EC50 = 0.6 nM). This effect was completely abolished when rat liver membranes had been ADP-ribosylated with pertussis toxin. On the other hand, adenylate cyclase activity was not affected by pancreastatin. Phospholipase C activity of rat liver membranes was rapidly stimulated (within 2–5 min) at 30°C by 10?7 M pancreastatin, reaching a maximum at 15 min. The dose response curve showed that with 10?7 M pancreastatin, maximal stimulation was obtained (EC50 = 3 nM). GTP (10?5 M) stimulated the membrane-bound phospholipase C as expected. However, the incubation of rat liver membranes with GTP partially inhibited the stimulation of phospholipase C activity produced by pancreastatin, whereas GTP enhanced the activation of phospholipase C by vasopressin. This inhibition by GTP was dose dependent and 10?5 M GTP obtained the maximal inhibition (about 40%). the inhibitory effect of GTP on the stimulatory effect of pancreastatin on phospholipase C activity was completely abolished when rat liver membranes had previously been ADP-ribosylated with pertussis toxin. The presence of 8-Br-cGMP mimics the effect of GTP, whereas GMP-PNP increased both basal and pancreastatin-stimulated phospholipase C, suggesting a role of the cyclic GMP as a feed-back regulator of the synthesis of myo-inositol 1,4,5-triphosphate. However, the pretreatment of membranes with pertussis toxin did not modify the production of myo-Inositol 1,4,5-triphosphate stimulated by pancreastatin. In conclusion, pancreastatin activates guanylate cyclase activity and phospholipase C involving different pathways, pertussis toxin-sensitive, and -insensitive, respectively. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Observations on the properties of the guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) of the social amoeba Dictyostelium discoideum are reported. On the basis of similarities in kinetic and fractionation properties, it is shown that the activity from vegetative cells and the sixfold higher activity from starved cells appear to be due to the same enzyme. Most of the activity is found to be soluble, and by gel exclusion chromatography a molecular weight of 250,000 has been estimated for this form. As the enzyme shows considerably more activity with Mn+2 than Mg+2, the Km for Mn+2 activation was determined (700 microM), and compared to the levels of total cell Mn+2 (10 microM) and Mg+2 (3mM). These data suggest that Mg+2 is probably the physiological cofactor. A previous report [J. M. Mato, (1979) Biochem. Biophys. Res. Commun. 88, 569-574] that the enzyme is activated about twofold by ATP was confirmed; but contrary to that report, activation by the ATP analog 5'-adenylyl-imidodiphosphate was also obtained. Since this analog does not donate its phosphate in kinase reactions, it is likely that ATP activates the guanylate cyclase by direct binding rather than by phosphorylation. The known in vivo agonist of the guanylate cyclase, cAMP, did not activate the enzyme in vitro, either alone or in various combinations with calcium, calmodulin, ATP, and phospholipids.  相似文献   

20.
Guanylate cyclase (GTP pyrophosphate-lyse (cyclizing), EC 4.6.1.2.) of bovine retinal rod outer segments is almost completely particulate, i.e. associated with rod outer segment membranes. In contrast to particulate guanylate cyclase in other tissues, treatment of rod outer segments with Triton X-100 does not solublize the enzyme but inhibits it. Enzyme activity is dependent on the presence of divalent cation, especially Mn2+ with only poor activation by Mg2+ (10-fold lower) and no activation seen with other cation. Ezpression of maximal activity required Nm2+ and GTP in equimolar concentrations with an apparent Km of 8 . 10(-4) M and V of 10 nmol/min per mg protein. Excess of Mn2+ over that required for the formation of the Mn . GTP complex was inhibitory. Ca2+, Ba2+ and Co2+ inhibited enzyme activity when assayed with the Mn . GTP substrate complex. In the presence of a fixed concentration of 1mM Mn2+, the enzyme exhibited strong negative cooperative interactions with GTP, characterized by an intermediary plateau region in the substrate vs. enzyme activity curve, a curve of downward concavity in the double reciprocal plot and a Hill coefficient of 0.5. Nucleotides such as ITP, ATP and UTP at higher concentrations (1 mM) stimulates activity by 40%. NaN3 has no effect on the guanylate cyclase. It is thus possible that the guanylate cyclase may be regulated in vivo by both the metal : GTP substrate ratio and the free divalent cation concentration as well as by the ATP concentration and thus play an important but yet undefined role in the visual process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号