首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The loops which transcribe 5S ribosomal RNA in lampbrush chromosomes of the newt, Notophthalmus (Triturus) viridescens, were identified by hybridizing purified 5S DNA to nascent 5S RNA in situ. The genes which code for 5S RNA were found near the centromeres of chromosomes 1, 2, 6, and 7 by hybridizing iodinated 5S RNA to denatured lampbrush and mitotic chromosomes in situ. These genes and their intervening spacer DNA were isolated from Xenopus laevis using sequential silver-cesium sulfate equilibrium centrifugations. This purified 5S DNA was iodinated and hybridized to non-denatured lampbrush chromosomes in situ, where it bound to nascent 5S RNA on loops at the base of the centromeres of chromosomes 1, 2, 6, and 7. The number of 5S genes present in the haploid chromosome complement of N. viridescens was determined. — The 5S loops were chosen for study, since (1) the synthesis of 5S RNA has been demonstrated during the lampbrush stage, (2) both 5S RNA and 5S DNA could be isolated in pure form, and (3) the localization of the repetitive 5S genes could be verified by conventional in situ hybridization procedures. These methods may be applicable to the identification of other loops, leading to a better understanding of lampbrush chromosome function.  相似文献   

2.
5S ribosomal RNA genes of the newt Notophthalmus viridescens.   总被引:5,自引:5,他引:0       下载免费PDF全文
The genes which code for the 5S ribosomal RNA in the newt, Notophthalmus viridescens have been cloned and analyzed. Two types of repeating unit were detected: a major type consisting of a 120 bp coding region with a 111 bp spacer, and a minor type composed of a coding region, a pseudogene, and a 113 bp spacer. The pseudogene is a 36 bp segment which corresponds to the 3' terminal third of the 5S RNA gene, and is situated immediately 3' to the gene, being separated from it by 2 bp. Two recombinant plasmids were obtained in which the major and minor units were arranged in an interspersed pattern.  相似文献   

3.
The localization of the 28S, 18S and 5S rRNA genes in the mitotic chromosomes, and of the 5S rRNA genes in the lampbrush chromosomes of Triturus marmoratus has been studied by RNA/DNA in situ hybridization. The 28S and 18S genes are located in a subterminal position, and the 5S genes in an intermediate position, on the long arm of mitotic chromosome X. In situ hybridization on lampbrush chromosomes has shown that the 5S genes are located at or near a dense matrix loop landmark. The cytogenetic implications of these findings are briefly discussed.  相似文献   

4.
4S, 5S, AND 18S + 28S RNA from the newt Taricha granulosa granulosa were iodinated in vitro with carrier-free 125I and hybridized to the denatured chromosomes of Taricha granulosa and Batrachoseps weighti. Iodinated 18S + 28S RNA hybridizes to the telomeric region on the shorter arm of chromosome 2 and close to the centromere on the shorter arm of chromosome 9 from T. granulosa. On this same salamander the label produced by the 5S RNA is located close to or on the centromere of chromosome 7 and the iodinated 4S RNA labels the distal end of the longer arm of chromosome 5. On the chromosomes of B. wrighti, 18S + 28S RNA hybridizes close to the centromeric region on the longer arm of the largest chromosome. Two centromeric sites are hybridized by the iodinated 5S RNA. After hybridization with iodinated 4S RNA, label is found near the end of the shorter arm of chromosome 3. It is concluded that both ribosomal and transfer RNA genes are clustered in the genome of these two salamanders.  相似文献   

5.
6.
Conditions for the production of a complementary DNA sequence for use in studies of ribosomal RNA are described. E. coli DNA polymerase I is used to transcribe highly purified 28S ribosomal RNA from rat liver. The reaction is sensitive to the tertiary structure of the rRNA template-primer. The complementary DNA hybridizes to its rRNA template with a Rot12 of 0.02. The hybrid formed between 28S ribosomal RNA and complementary DNA has a Tm of 73°C. The probe reacts with total rat nuclear RNA with a Rot12 of 1.0.  相似文献   

7.
8.
9.
The nucleolus organizer locus of Xenopus laevis lampbrush chromosomes was identified by in situ hybridization of a 3H-labelled probe complementary to 18S + 28S rDNA. The nucleolus organizer is an axial granule on chromosome III that lies four-fifths the way down this chromosome reading from its larger (left) telomere, just within an exploded region that extends to its right end, where the lateral loops are exceptionally long. By in situ hybridization of 3H-labelled oocyte and somatic 5S spacer cRNA probes to similarly RNase-treated and denatured lampbrush chromosomes, the multiple sites of oocyte and somatic 5S gene families were identified. Oocyte 5S genes lie at the larger telomeres of the 15 chromosomes that possess these structures; that is, all but chromosomes X, XVII and XVIII. There are a further four sites, all peripheral, and in three of these, on chromosomes VII, X and XI, the sequences lie on lateral loops that are resolvable with the light microscope. By contrast all of the somatic 5S gene clusters occupy peripheral sites. There are two sites on chromosome III, one of which may be shared with oocyte 5S sequences; one on chromosome VII, which is very likely shared with oocyte 5S sequences; one terminal site on chromosome X; one site on chromosome XI that lies on a single pair of long loops which are inserted in a conspicuous and recognizable axial granule, loops which certainly carry oocyte 5S sequences too; two nearly terminal sites alongside the larger telomeres on chromosomes XII and XIV; and single interstitial sites on all three of the sphere-bearing chromosomes, VIII, IX and XVI. We suggest that 5S sequences on resolvable loops are transcribed by readthrough from upstream promoters, probably by polymerase II.  相似文献   

10.
The terminal sequences of Bombyx mori 18S ribosomal RNA.   总被引:1,自引:4,他引:1       下载免费PDF全文
The 5' and 3' terminal T1 oligonucleotides of 32p-labelled B. mori 18S ribosomal RNA were isolated by a two dimensional electrophoretic (diagonal) technique. Nucleotide sequence analysis showed that the 3' terminal fragment, (G)AUCAUUAOH, is identical to that previously obtained from the 18S rRNA of several other eukaryotic species. The sequence of the B. mori 5' terminal fragment is pUCCUCG.  相似文献   

11.
Summary There are sequences homologous to 5S ribosomal RNA in the ribosomal DNA (rDNA) repeats of the plant-parasitic nematodeMeloidogyne arenaria. This is surprising, because in all other higher eukaryotes studied to date, the genes for 5S RNA are unlinked to and distinct from a tandem rDNA repeat containing the genes for 18S, 5.8S, and 28S ribosomal RNA. Previously, only prokaryotes and certain lower eukaryotes (protozoa and fungi) had been found to have both the larger rRNAs and 5S rRNA represented within a single DNA repeat. This has raised questions on the organization of these repeats in the earliest cell (progenote), and on subsequent evolutionary relationships between pro- and eukaryotes.Evidence is presented for rearrangements and deletions withinMeloidogyne rDNA. The unusual life cycles (different levels of ploidy, reproduction by meiotic and mitotic parthenogenesis) of members of this genus might allow rapid fixation of any variants with introduced 5S RNA sequences. The 5S RNA sequences inMeloidogyne rDNA may not be expressed, but their presence raises important questions as to the evolutionary origins and stability of repeat gene families.  相似文献   

12.
Closely linked genes for 18S and 5S rRNAs have been located on four different cloned SalI restriction fragments of wheat (Triticum aestivum L.) mitochondrial DNA. Restriction analysis has revealed that in each of the cloned fragments, the 18S and 5S rRNA genes are contained within the same basic structural unit, R, which is at least 4 kbp long. This unit is flanked by sequences designated u (0.8 kbp), v (13.7 kbp), w (0.7 kbp), and y (1.4 kbp), in the orientations v-R-w, v-R-y, u-R-w, and u-R-y in the four different SalI fragments. We conclude that 18S + 5S rRNA genes are located at several distinct sites in the wheat mitochondrial genome, and suggest that reciprocal intra- and/or intermolecular recombination between such repeated sequences could promote extensive genomic rearrangement and thus contribute to the physical heterogeneity that is a hallmark of most plant mitochondrial DNAs.  相似文献   

13.
Species of Allocreadiidae are an important component of the parasite fauna of freshwater vertebrates, particularly fishes, and yet their systematic relationships with other trematodes have not been clarified. Partial sequences of the 18S and 28S ribosomal RNA genes from 3 representative species of Allocreadiidae, i.e., Crepidostomum cooperi, Bunodera mediovitellata, and Polylekithum ictaluri, and from 79 other taxa representing 78 families of trematodes obtained from GenBank, were used in a phylogenetic analysis to address the relationships of Allocreadiidae with other plagiorchiiforms/plagiorchiidans. Maximum parsimony and Bayesian analyses of combined 18S and 28S rRNA gene sequence data place 2 of the allocreadiids, Crepidostomum cooperi and Bunodera mediovitellata, in a clade with species of Callodistomidae and Gorgoderidae, which, in turn is sister to a clade containing Polylekithum ictaluri and representatives of Encyclometridae, Dicrocoelidae, and Orchipedidae, a grouping supported by high bootstrap values. These results suggest that Polylekithum ictaluri is not an allocreadiid, a conclusion that is supported by reported differences between its cercaria and that of other allocreadiids. Although details of the life cycle of callodistomids, the sister taxon to Allocreadiidae, remain unknown, the relationship of Allocreadiidae and Gorgoderidae is consistent with their larval development in bivalve, rather than gastropod, molluscs, and with their host relationships (predominantly freshwater vertebrates). The results also indicate that, whereas Allocreadiidae is not a basal taxon, it is not included within the suborder Plagiorchiata. No support was found for a direct relationship between allocreadiids and opecoelids either.  相似文献   

14.
In the yeast Saccharomyces cerevisiae, there are approximately 150 cistrons coding for 5 S RNA. These cistrons are interspersed with the cistrons coding for the high molecular weight ribosomal RNAs.  相似文献   

15.
16.
17.
18.
The chromosomal locations of the 18S + 28S and 5S ribosomal RNA genes have been analyzed by in situ hybridization in ten anuran species of different taxonomic positions. The chosen species belong to both primitive and evolved families of the present day Anura. Each examined species has 18S + 28S rRNA genes clustered in one locus per haploid chromosome set: this locus is placed either in an intercalary position or proximal to the centromere, or close to the telomere. The 5S rRNA genes are arranged in clusters which vary in number from one to six per haploid set. The 5S rDNA sites are found in intercalary positions, at the telomeres, and at, or close to, the centromeres. Microchromosomes and small chromosomes in primitive karyotypes have been found to carry 5S rDNA sequences. The results are discussed in relation to ideas on the karyological evolution of Amphibia.  相似文献   

19.
Phylogenetic relationships among the holometabolous insect orders were inferred from cladistic analysis of nucleotide sequences of 18S ribosomal DNA (rDNA) (85 exemplars) and 28S rDNA (52 exemplars) and morphological characters. Exemplar outgroup taxa were Collembola (1 sequence), Archaeognatha (1), Ephemerida (1), Odonata (2), Plecoptera (2), Blattodea (1), Mantodea (1), Dermaptera (1), Orthoptera (1), Phasmatodea (1), Embioptera (1), Psocoptera (1), Phthiraptera (1), Hemiptera (4), and Thysanoptera (1). Exemplar ingroup taxa were Coleoptera: Archostemata (1), Adephaga (2), and Polyphaga (7); Megaloptera (1); Raphidioptera (1); Neuroptera (sensu stricto = Planipennia): Mantispoidea (2), Hemerobioidea (2), and Myrmeleontoidea (2); Hymenoptera: Symphyta (4) and Apocrita (19); Trichoptera: Hydropsychoidea (1) and Limnephiloidea (2); Lepidoptera: Ditrysia (3); Siphonaptera: Pulicoidea (1) and Ceratophylloidea (2); Mecoptera: Meropeidae (1), Boreidae (1), Panorpidae (1), and Bittacidae (2); Diptera: Nematocera (1), Brachycera (2), and Cyclorrhapha (1); and Strepsiptera: Corioxenidae (1), Myrmecolacidae (1), Elenchidae (1), and Stylopidae (3). We analyzed approximately 1 kilobase of 18S rDNA, starting 398 nucleotides downstream of the 5' end, and approximately 400 bp of 28S rDNA in expansion segment D3. Multiple alignment of the 18S and 28S sequences resulted in 1,116 nucleotide positions with 24 insert regions and 398 positions with 14 insert regions, respectively. All Strepsiptera and Neuroptera have large insert regions in 18S and 28S. The secondary structure of 18S insert 23 is composed of long stems that are GC rich in the basal Strepsiptera and AT rich in the more derived Strepsiptera. A matrix of 176 morphological characters was analyzed for holometabolous orders. Incongruence length difference tests indicate that the 28S + morphological data sets are incongruent but that 28S + 18S, 18S + morphology, and 28S + 18S + morphology fail to reject the hypothesis of congruence. Phylogenetic trees were generated by parsimony analysis, and clade robustness was evaluated by branch length, Bremer support, percentage of extra steps required to force paraphyly, and sensitivity analysis using the following parameters: gap weights, morphological character weights, methods of data set combination, removal of key taxa, and alignment region. The following are monophyletic under most or all combinations of parameter values: Holometabola, Polyphaga, Megaloptera + Raphidioptera, Neuroptera, Hymenoptera, Trichoptera, Lepidoptera, Amphiesmenoptera (Trichoptera + Lepidoptera), Siphonaptera, Siphonaptera + Mecoptera, Strepsiptera, Diptera, and Strepsiptera + Diptera (Halteria). Antliophora (Mecoptera + Diptera + Siphonaptera + Strepsiptera), Mecopterida (Antliophora + Amphiesmenoptera), and Hymenoptera + Mecopterida are supported in the majority of total evidence analyses. Mecoptera may be paraphyletic because Boreus is often placed as sister group to the fleas; hence, Siphonaptera may be subordinate within Mecoptera. The 18S sequences for Priacma (Coleoptera: Archostemata), Colpocaccus (Coleoptera: Adephaga), Agulla (Raphidioptera), and Corydalus (Megaloptera) are nearly identical, and Neuropterida are monophyletic only when those two beetle sequences are removed from the analysis. Coleoptera are therefore paraphyletic under almost all combinations of parameter values. Halteria and Amphiesmenoptera have high Bremer support values and long branch lengths. The data do not support placement of Strepsiptera outside of Holometabola nor as sister group to Coleoptera. We reject the notion that the monophyly of Halteria is due to long branch attraction because Strepsiptera and Diptera do not have the longest branches and there is phylogenetic congruence between molecules, across the entire parameter space, and between morphological and molecular data.  相似文献   

20.
The locations of genes coding for 18S and 28S ribosomal RNA have been mapped on metaphase chromosomes of the Indian muntjac M. muntjak by in situ hybridization with (3H)rRNA from the toad X. laevis. The results show that, in the muntjac, rDNA clusters are associated with the prominent secondary constrictions on the X and the Y1 chromos. In addition a cluster of rDNA is found near the tip of one arm on the longest pair of autosomes. The autosomal cluster of rDNAs usually does not express as a secondary constriction at metaphase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号