共查询到20条相似文献,搜索用时 0 毫秒
1.
N B Shoemaker K L Anderson S L Smithson G R Wang A A Salyers 《Applied and environmental microbiology》1991,57(8):2114-2120
Prevotella ruminicola (formerly Bacteroides ruminicola) is an anaerobic, gram-negative, polysaccharide-degrading bacterium which is found in the rumina of cattle. Since P. ruminicola is thought to make an important contribution to digestion of plant material in rumina, the ability to alter this strain genetically might help improve the efficiency of rumen fermentation. However, previously there has been no way to introduce foreign DNA into P. ruminicola strains. In this study we transferred a shuttle vector, pRDB5, from the colonic species Bacteroides uniformis to P. ruminicola B(1)4. The transfer frequency was 10(-6) to 10(-7) per recipient. pRDB5 contains sequences from pBR328, a cryptic colonic Bacteroides plasmid pB8-51, and a colonic Bacteroides tetracycline resistance (Tcr) gene. pRDB5 was mobilized out of B. uniformis by a self-transmissible Bacteroides chromosomal element designated Tcr Emr 12256. pRDB5 replicated in Escherichia coli as well as in Bacteroides spp. and was also mobilized from E. coli to B. uniformis by using IncP plasmid R751. However, direct transfer from E. coli to P. ruminicola B(1)4 was not detected. Thus, to introduce cloned DNA into P. ruminicola B(1)4, it was necessary first to mobilize the plasmid from E. coli to B. uniformis and then to mobilize the plasmid from B. uniformis to P. ruminicola B(1)4. 相似文献
2.
Use of a modified Bacteroides-Prevotella shuttle vector to transfer a reconstructed beta-1,4-D-endoglucanase gene into Bacteroides uniformis and Prevotella ruminicola B(1)4. 下载免费PDF全文
A carboxymethyl cellulase (CMCase) gene from Prevotella ruminicola B(1)4 was reconstructed by adding a cellulose binding domain from a Thermomonospora fusca cellulase and was conjugally transferred from Escherichia coli to Bacteroides uniformis 0061 by using a chloramphenicol and tetracycline resistance shuttle vector (pTC-COW). pTC-COW was specifically constructed to facilitate conjugal transfer of vectors from B. uniformis donors to P. ruminicola recipients. B. uniformis transconjugants containing CMCase constructs cloned into pTC-COW expressed Cmr, but they did not produce the reconstructed CMCase until a xylanase promoter from P. ruminicola 23 was added upstream of the CMCase (pTC-XRCMC). The xylanase promoter allowed the B. uniformis transconjugants to produce large amounts of the reconstructed CMCase, which was present on the outside surface of the cells. Although the reconstructed CMCase alone did not allow B. uniformis to grow on acid-swollen cellulose, rapid growth was observed when two exocellulases were added to the culture supernatant. Under these conditions, the reconstructed CMCase permitted faster growth than the wild-type CMCase. The frequency of transfer of pTC-XRCMC from B. uniformis to P. ruminicola B(1)4 was increased 100-fold when strictly anaerobic conditions, nitrocelluose filters (cell immobilization), and more stringent selections were employed. Although the P. ruminicola B(1)4 (pTC-XRCMC) transconjugates expressed Tcr and had DNA that hybridized with a probe to the shuttle vector, these transconjugants did not produce detectable levels of the reconstructed CMCase even when xylan was the carbon source. On the basis of these results, it appears that not all of the promoters recognized by B. uniformis and P. ruminicola 23 are functional in P. ruminicola B(1)4. However, the results with B. uniformis suggest that the introduction of a P. ruminicola B(1)4 promoter should allow expression of the reconstructed CMCase in P. ruminicola B(1)4. 相似文献
3.
4.
Freshly harvested whole cells from cultures of P. bryantii B(1)4 grown with oat spelt xylan (OSX) as an energy source showed less than 25% of the enzyme activity against OSX, and less than 15% of the activity against birchwood xylan (BWX) and carboxymethylcellulose, that was detectable in sonicated cell preparations. This indicates that much of this hydrolytic activity is either periplasmic, membrane-associated or intracellular and may be concerned with the processing of transported oligosaccharides.P. bryantii B(1)4 cultures were able to utilise up to 45% and 51% of the total pentose present in OSX and BWX, respectively, after 24 h, but could utilize 84% of a water-soluble fraction of BWX. Analysis of the xylan left undegraded after incubation with P. bryantii showed that while xylose and arabinose were removed to a similar extent, uronic acids were utilized to a greater extent than xylose. Predigestion of xylans with two cloned xylanases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens gave little increase in overall pentose utilization suggesting that external P. bryantii xylanases are as effective as the cloned R. flavefaciens enzymes in releasing products that can be utilised by P. bryantii cells. The xylanase system of P. bryantiiis able to efficiently utilise not only xylo-oligosaccharides but also larger water-soluble xylan fragments. 相似文献
5.
Fermentation of Peptides by Bacteroides ruminicola B(1)4 总被引:2,自引:0,他引:2
Russell JB 《Applied and environmental microbiology》1983,45(5):1566-1574
The maximum growth rate of Bacteroides ruminicola B(1)4 was significantly improved when either Trypticase or acetate and C(4)-C(5) fatty acids were added to defined medium containing macrominerals, microminerals, vitamins, hemin, cysteine hydrochloride, and glucose. The organism was unable to grow with peptides as the sole energy source, but growth yields from glucose were significantly improved when Trypticase was added to batch cultures containing basal medium, acetate, and C(4)-C(5) volatile fatty acids. During periods of rapid growth, very little peptide was deaminated to ammonia, but after growth ceased there was a linear increase in ammonia. Fifteen grams of Trypticase per liter resulted in maximum ammonia production. In glucose-limited chemostats, ammonia production from peptides was inversely proportional to the dilution rate, and 87% of the variation in ammonia production could be explained by retention time in the culture vessel. Chemostats receiving Trypticase had higher theoretical maximum growth yields and lower maintenance energy expenditures than similar cultures not receiving peptide. Cells from the Trypticase cultures contained more carbohydrate, and this difference was most evident at rapid dilution rates. When corrections were made for cell composition and the amount of peptides that were fermented, it appeared that peptide carbon skeletons could be used for maintenance energy. B. ruminicola B(1)4 was unable to grow on peptides alone because it was unable to utilize peptides at a fast enough rate to meet its maintenance requirement. 相似文献
6.
7.
Cloning and sequencing of a Bacteroides ruminicola B(1)4 endoglucanase gene. 总被引:6,自引:4,他引:6 下载免费PDF全文
Bacteroides ruminicola B(1)4, a noncellulolytic rumen bacterium, produces an endoglucanase (carboxymethylcellulase [CMCase]) that is excreted into the culture supernatant. Cultures grown on glucose, fructose, maltose, mannose, and cellobiose had high specific activities of CMCase (greater than 3 mmol of reducing sugar per mg of protein per min), but its synthesis was repressed by sucrose. B. rumincola did not grow on either ball-milled or acid-swollen cellulose even though the CMCase could hydrolyze swollen cellulose. The CMCase gene was cloned into Escherichia coli, and its nucleotide sequence contained a single open reading frame coding for a protein of 40,481 daltons. The enzyme was overproduced in E. coli under the control of the tac promoter and purified to homogeneity. The N-terminal sequence, amino acid composition, and molecular weight of the purified enzyme were similar to the values predicted from the open reading frame of the DNA sequence. However, the CMCase present in B. ruminicola was found to have a monomer molecular weight of 88,000 by Western immunoblotting. This discrepancy appeared to have resulted from our having cloned only part of the CMCase gene into E. coli. The amino acid sequence of the CMCase showed homology to sequences of beta-glucanases from Ruminococcus albus and Clostridium thermocellum. 相似文献
8.
Biochemical and mutational analysis of a gingipain-like peptidase activity from Prevotella ruminicola B(1)4 and its role in ammonia production by ruminal bacteria. 总被引:1,自引:1,他引:1 下载免费PDF全文
A chemical mutagenesis protocol was used with the ruminal bacterium Prevotella ruminicola strain B(1)4 to generate mutant strains defective in peptidase activity. Compared with the wild-type parent strain, the isolated mutants possessed 1/10 of the enzyme activity responsible for cleavage of glycine-arginine-4-methoxy-beta-naphthylamide (Gly-Arg-MNA). A concomitant loss in activity against arginine-arginine-4-methoxy-beta-naphthylamide (Arg-Arg-MNA) was also observed. Both activities were similarly affected by various proteinase inhibitors, suggesting that the same enzyme is responsible for the Arg-Arg-MNA peptidase and Gly-Arg-MNA peptidase activities. Growth rates of wild-type and mutant strains grown in batch culture with various nitrogen sources did not differ. However, a role for the Gly-Arg-MNA peptidase activity was demonstrated in coculture experiments with gram-positive, ammonia-producing ruminal bacteria. The rate and extent of ammonia production were reduced by approximately 25% in cocultures containing the mutants when compared with that of wild-type-containing cultures. These reductions could not be accounted for simply by the decrease in ammonia production by the mutant strain alone. To our knowledge, this paper reports the first successful use of chemical mutagenesis with ruminal microorganisms. 相似文献
9.
Vitamin B12-dependent propionate production by the ruminal bacterium Prevotella ruminicola 23. 总被引:1,自引:0,他引:1
H J Strobel 《Applied and environmental microbiology》1992,58(7):2331-2333
When Prevotella ruminicola 23 was grown in a defined medium containing a vitamin mixture, significant amounts of propionate were formed. Succinate and acetate were the major fermentation acids produced when vitamins were omitted, and further experiments demonstrated that propionate formation was dependent on vitamin B12. When the organism was grown in continuous culture at dilution rates of less than 0.20 h-1, propionate and acetate were the predominant fermentation products and little succinate was formed when vitamin B12 was present. However, at higher dilution rates, propionate formation declined and succinate accumulated. Since cell protein yields were reduced 15 to 25% in the absence of vitamin B12, the pathway for propionate formation may contain an energy-conserving step. 相似文献
10.
Vitamin B12-dependent propionate production by the ruminal bacterium Prevotella ruminicola 23. 总被引:1,自引:1,他引:1 下载免费PDF全文
H J Strobel 《Applied microbiology》1992,58(7):2331-2333
When Prevotella ruminicola 23 was grown in a defined medium containing a vitamin mixture, significant amounts of propionate were formed. Succinate and acetate were the major fermentation acids produced when vitamins were omitted, and further experiments demonstrated that propionate formation was dependent on vitamin B12. When the organism was grown in continuous culture at dilution rates of less than 0.20 h-1, propionate and acetate were the predominant fermentation products and little succinate was formed when vitamin B12 was present. However, at higher dilution rates, propionate formation declined and succinate accumulated. Since cell protein yields were reduced 15 to 25% in the absence of vitamin B12, the pathway for propionate formation may contain an energy-conserving step. 相似文献
11.
The distribution of two xylanase genes was examined by Southern hybridization among 26 strains of the rumen anaerobic bacterium Prevotella (Bacteroides) ruminicola. Hybridization with a xylanase/endoglucanase gene from the type strain 23 was found in six strains while hybridization with a xylanase gene from strain D31d was found in 14 strains. Sequences related to both genes were present, on different restriction fragments, in six strains, whereas no hybridization to either gene was detected in five other strains capable of hydrolysing xylan, or in seven strains that showed little or no xylanase activity. Zymogram analyses of seven xylanolytic strains of P. ruminicola demonstrated interstrain variation in the apparent molecular masses of the major xylanases and carboxymethylcellulases that could be renatured following SDS polyacrylamide gel electrophoresis. 相似文献
12.
Cellobiose uptake by the cellulolytic ruminal anaerobe Fibrobacter (Bacteroides) succinogenes 总被引:7,自引:0,他引:7
Cellobiose transport by the cellulolytic ruminal anaerobe Fibrobacter (Bacteroides) succinogenes was measured using randomly tritiated cellobiose. When assayed at the same concentration (1 mM), total cellobiose uptake was one-fourth to one-third that of total glucose uptake. The abilities of F. succinogenes to transport cellobiose or glucose were not affected by the sugar on which the cells were grown. Aspects of the simultaneous transport of [14C(U)]glucose and [3H(G)]cellobiose, the failure of high concentrations of cold glucose to compete with hypothetical [3H(G)]glucose (derived externally from [3H(G)]cellobiose), and differential metal-ion stimulation of cellobiose transport indicate a cellobiose permease, rather than cellobiase plus glucose permease, was responsible for cellobiose transport. Glucose (10-fold molar excess) partially inhibited cellobiose transport. This was enhanced by prior incubation of the cells with glucose, suggesting subsequent metabolism of the glucose was responsible for the inhibition. Compounds interfering with electron transport or maintenance of transmembrane ion gradients inhibited cellobiose uptake, indicating that active transport rather than a phosphoenolpyruvate:phosphotransferase system catalyzed cellobiose transport. Na+, but not Li+, stimulated cellobiose transport. 相似文献
13.
14.
Some growth and metabolic characteristics of monensin-sensitive and monensin-resistant strains of Prevotella (Bacteroides) ruminicola. 下载免费PDF全文
New strains with enhanced resistance to monensin were developed from Prevotella (Bacteroides) ruminicola subsp. ruminicola 23 and P. ruminicola subsp. brevis GA33 by stepwise exposure to increasing concentrations of monensin. The resulting resistant strains (23MR2 and GA33MR) could initiate growth in concentrations of monensin which were 4 to 40 times greater than those which inhibited the parental strains. Resistant strains also showed enhanced resistance to nigericin and combinations of monensin and nigericin but retained sensitivity to lasalocid. Glucose utilization in cultures of the monensin-sensitive strains (23 and GA33) and one monensin-resistant strain (23MR2) was retarded but not completely inhibited when logarithmic cultures were challenged with monensin (10 mg/liter). Monensin challenge of cultures of the two monensin-sensitive strains (23 and GA33) was characterized by 78 and 51% decreases in protein yield (milligrams of protein per mole of glucose utilized), respectively. Protein yields in cultures of resistant strain 23MR2 were decreased by only 21% following monensin challenge. Cell yields and rates of glucose utilization by resistant strains GA33MR were not decreased by challenge with 10 mg of monensin per liter. Resistant strains produced greater relative proportions of propionate and less acetate than the corresponding sensitive strains. The relative amounts of succinate produced were greater in cultures of strains 23, GA33, and 23MR2 following monensin challenge. However, only minor changes in end product formation were associate with monensin challenge of resistant strain GA33MR. These results suggest that monensin has significant effects on both the growth characteristics and metabolic activities of these predominant, gram-negative ruminal bacteria. 相似文献
15.
New strains with enhanced resistance to monensin were developed from Prevotella (Bacteroides) ruminicola subsp. ruminicola 23 and P. ruminicola subsp. brevis GA33 by stepwise exposure to increasing concentrations of monensin. The resulting resistant strains (23MR2 and GA33MR) could initiate growth in concentrations of monensin which were 4 to 40 times greater than those which inhibited the parental strains. Resistant strains also showed enhanced resistance to nigericin and combinations of monensin and nigericin but retained sensitivity to lasalocid. Glucose utilization in cultures of the monensin-sensitive strains (23 and GA33) and one monensin-resistant strain (23MR2) was retarded but not completely inhibited when logarithmic cultures were challenged with monensin (10 mg/liter). Monensin challenge of cultures of the two monensin-sensitive strains (23 and GA33) was characterized by 78 and 51% decreases in protein yield (milligrams of protein per mole of glucose utilized), respectively. Protein yields in cultures of resistant strain 23MR2 were decreased by only 21% following monensin challenge. Cell yields and rates of glucose utilization by resistant strains GA33MR were not decreased by challenge with 10 mg of monensin per liter. Resistant strains produced greater relative proportions of propionate and less acetate than the corresponding sensitive strains. The relative amounts of succinate produced were greater in cultures of strains 23, GA33, and 23MR2 following monensin challenge. However, only minor changes in end product formation were associate with monensin challenge of resistant strain GA33MR. These results suggest that monensin has significant effects on both the growth characteristics and metabolic activities of these predominant, gram-negative ruminal bacteria. 相似文献
16.
Cloning, sequencing, and characterization of a membrane-associated Prevotella ruminicola B(1)4 beta-glucosidase with cellodextrinase and cyanoglycosidase activities. 总被引:1,自引:0,他引:1 下载免费PDF全文
Prevotella ruminicola B(1)4 is a gram-negative, anaerobic gastrointestinal bacterium. A 2.4-kbp chromosomal fragment from P. ruminicola encoding an 87-kDa aryl-glucosidase (CdxA) with cellodextrinase activity was cloned into Escherichia coli DH5 alpha and sequenced. CdxA activity was found predominantly in the membrane fraction of both P. ruminicola and E. coli, but P. ruminicola localized the protein extracellularly while E. coli did not. The hydrolase had the highest activity on cellodextrins (3.43 to 4.13 mumol of glucose released min-1 mg of protein-1) and p-nitrophenyl-beta-D-glucoside (3.54 mumol min-1 mg of protein-1). Significant activity (70% of p-nitrophenyl-beta-D-glucoside activity) was also detected on arbutin and prunasin. Less activity was obtained with cellobiose, amygdalin, or gentiobiose. CdxA attacks cellodextrins from the nonreducing end, releasing glucose units, and appears to be an exo-1,4-beta-glucosidase (EC 3.2.1.74) which also is able to attack beta-1,6 linkages. Comparison of the deduced amino acid sequence with other glycosyl-hydrolases suggests that this enzyme belongs to family 3 (B. Henrissat, Biochem. J. 280:309-316, 1991). On the basis of this sequence alignment, the catalytic residues are believed to be Asp-275 and Glu-265. This is the first report of a cloned ruminal bacterial enzyme which can cleave cyanogenic plant compounds and which may therefore contribute to cyanide toxicity in ruminants. 相似文献
17.
Prevotella bryantii is an important amylolytic bacterium in the rumen that produces considerable amounts of glycogen when it is grown on maltose. Radiolabel studies indicated that glucose-1-phosphate was converted to UDP-glucose, and this latter intermediate served as the immediate precursor for glycogen synthesis. High levels of UDP-glucose pyrophosphorylase activities (> 1,492 nmol/min/mg of protein) were detected in cells grown on maltose, cellobiose, glucose, or sucrose, and activity was greatly stimulated (by approximately 60-fold) by the addition of fructose-1,6-bis phosphate (half-maximal activation concentration was 240 microM). However, ADP-glucose pyrophosphorylase activity was not detected in any of the cultures. Glycogen synthase activity in maltose-grown cultures (48 nmol/min/mg of protein) was higher than that in cellobiose-, sucrose-, and glucose-grown cultures (< 26 nmol/min/mg of protein). This is the first report of a bacterium that exclusively uses UDP-glucose to synthesize glycogen. The elucidation of this unique glycogen biosynthesis pathway provides information necessary to further investigate the role of bacterial glycogen accumulation in rumen metabolism. 相似文献
18.
Role of phosphorolytic cleavage in cellobiose and cellodextrin metabolism by the ruminal bacterium Prevotella ruminicola. 下载免费PDF全文
In bacteria, cellobiose and cellodextrins are usually degraded by either hydrolytic or phosphorolytic cleavage. Prevotella ruminicola B(1)4 is a noncellulolytic ruminal bacterium which has the ability to utilize the products of cellulose degradation. In this organism, cellobiose hydrolytic cleavage activity was threefold greater than phosphorolytic cleavage activity (113 versus 34 nmol/min/mg of protein), as measured by an enzymatic assay. Cellobiose phosphorylase activity (measured as the release of P(i)) was found in cellobiose-, mannose-, xylose-, lactose-, and cellodextrin-grown cells (> 92 nmol of P(i)/min/mg of protein), but the activity was reduced by more than 74% for cells grown on fructose, L-arabinose, sucrose, maltose, or glucose. A small amount of cellodextrin phosphorylase activity (19 nmol/min/mg of protein) was also detected, and both phosphorylase activities were located in the cytoplasm. Degradation involving phosphorolytic cleavage conserves more metabolic energy than simple hydrolysis, and such degradation is consistent with substrate-limiting conditions such as those often found in the rumen. 相似文献
19.
Conjugal transfer of group B streptococcal plasmids and comobilization of Escherichia coli-Streptococcus shuttle plasmids to Lactobacillus plantarum. 总被引:2,自引:1,他引:1 下载免费PDF全文
The antibiotic resistance group B streptococcal plasmids, pIP501 and pVA797, were conjugally transferred from Streptococcus faecalis to Lactobacillus plantarum. The Escherichia coli-Streptococcus shuttle plasmids, pVA838 and pSA3, were mobilized from S. sanguis to L. plantarum by pVA797 via cointegrate formation. pVA838 readily resolved from pVA797 and was present in L. plantarum as deletion derivatives. The pVA797::pSA3 cointegrate failed to resolve in L. plantarum. 相似文献
20.
Facilitated transfer of IncP beta R751 derivatives from the chromosome of Bacteroides uniformis to Escherichia coli recipients by a conjugative Bacteroides tetracycline resistance element. 总被引:1,自引:5,他引:1 下载免费PDF全文
The broad-host-range IncP beta plasmid R751 can mobilize itself from Escherichia coli to Bacteroides spp, but it is not maintained in Bacteroides spp. If R751 carries the Bacteroides transposon Tn4351, it can be integrated into the Bacteroides chromosome. Previously we showed that R751, integrated in the chromosome of Bacteroides uniformis, cannot mobilize itself out of B. uniformis into E. coli or isogenic B. uniformis strains. In this report, we showed that if the Bacteroides conjugative tetracycline resistance element Tcr ERL was coresident with the R751 insertion in B. uniformis, derivatives of R751 were transferred to E. coli, where they were recovered as plasmids. The most common derivatives were R751::Tn4351 and R751::IS4351, but some strains transferred R751 derivatives, containing additional DNA segments ranging in size from 10 to 23 kilobases. These DNA inserts cross-hybridized with chromosomal DNA from B. uniformis which did not carry the Tcr ERL element. Therefore, the inserts appeared to be segments of the wild-type B. uniformis chromosome and were not associated with the Tcr ERL element. The transfer of integrated R751 from B. uniformis was independent of the RecA phenotype of the E. coli recipients and did not appear to be due to transfer of B. uniformis chromosomal DNA, followed by RecA-dependent recombination between homologous IS4351 sequences to form the resultant R751 plasmid derivatives. Consistent with this, no transfer of Tn4351 (associated with the cointegrated R751) from B. uniformis donors to isogenic B. uniformis recipients was detected (< 10(-8)). Our data support the hypothesis that R751 excises from the B. uniformis chromosome by recombination involving flanking Tn4351 or IS4351 sequences and forms nonreplicating circles. The mobilization of these circular forms out of B. uniformis to E.coli is then facilitated by the Tcr ERL element. 相似文献