首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Chromatin remodeling at promoters of activated genes spans from mild histone modifications to outright displacement of nucleosomes in trans. Factors affecting these events are not always clear. Our results indicate that histone H3 acetylation associated with histone displacement differs drastically even between promoters of such closely related heat shock genes as HSP12, SSA4, and HSP82. The HSP12 promoter, with the highest level of histone displacement, showed the highest level of H3 acetylation, while the SSA4 promoter, with a lower histone displacement, showed only modest H3 acetylation. Moreover, for the HSP12 promoter, the level of acetylated H3 is temporarily increased prior to nucleosome departure. Individual promoters in strains expressing truncated versions of heat shock factor (HSF) showed that deletion of either one of two activating regions in HSF led to the diminished histone displacement and correspondingly lower H3 acetylation. The deletion of both regions simultaneously severely decreased histone displacement for all promoters tested, showing the dependence of these processes on HSF. The level of histone H3 acetylation at individual promoters in strains expressing truncated HSF also correlated with the extent of histone displacement. The beginning of chromatin remodeling coincides with the polymerase II loading on heat shock gene promoters and is regulated either by HSF binding or activation of preloaded HSF.  相似文献   

2.
3.
4.
5.
HCMV IE2-mediated inhibition of HAT activity downregulates p53 function   总被引:8,自引:0,他引:8  
Hsu CH  Chang MD  Tai KY  Yang YT  Wang PS  Chen CJ  Wang YH  Lee SC  Wu CW  Juan LJ 《The EMBO journal》2004,23(11):2269-2280
Targeting of cellular histone acetyltransferases (HATs) by viral proteins is important in the development of virus-associated diseases. The immediate-early 2 protein (IE2) of human cytomegalovirus (HCMV) binds to the tumor suppressor, p53, and inactivates its functions by unknown mechanisms. Here, we show that IE2 binds to the HAT domain of the p53 coactivators, p300 and CREB-binding protein (CBP), and blocks their acetyltransferase activity on both histones and p53. The minimal HAT inactivation region on IE2 involves the N-terminal 98 amino acids. The in vivo DNA binding of p53 and local histone acetylation on p53-dependent promoters are all reduced by IE2, but not by mutant IE2 proteins that lack the HAT inhibition region. Furthermore, the p53 acetylation site mutant, K320/373/382R, retains both DNA binding and promoter transactivation activity in vivo and these effects are repressed by IE2 as well. Together with the finding that only wild-type IE2 exerts an antiapoptotic effect, our results suggest that HCMV IE2 downregulates p53-dependent gene activation by inhibiting p300/CBP-mediated local histone acetylation and that IE2 may have oncogenic activity.  相似文献   

6.
7.
8.
The state of acetylation in H3 and H4 histones and dimethylation in the H3 histone Lys4 residue were examined by chromatin immunoprecipitation (ChIP) at 11 targets in the rat Ig-beta/growth hormone locus. Marked enhancement of the acetylation of histones H3 and H4 and the dimethylation of H3 Lys4 was observed in the chromatin situated close to the promoter of an actively transcribed gene. Chromatin positioned near a cell-type-specific DNase I-hypersensitive site with enhancer activity had the same histone modifications as the active promoter. In one transcribed intron, chromatin with fewer histone modifications was found, and in another transcribed intron, chromatin with markedly enhanced modifications was found. In most cases, no appreciable difference in the acetylation of histones H3 and H4 was found at prominently enhanced targets. However, different acetylation levels of H3 and H4 were found at one target. The targets with enhanced dimethylation of the H3 Lys4 residue coincided with those with prominently enhanced acetylation of histones H3 and H4.  相似文献   

9.
Glucose-regulated protein 78 (GRP78), a key regulator of endoplasmic reticulum (ER) stress, facilitates cancer cell growth and viral replication. The mechanism leading to grp78 gene activation during viral infection is largely unknown. In this study, we show that the immediate-early 1 (IE1-72) protein of the human cytomegalovirus (HCMV) is essential for HCMV-mediated GRP78 activation. IE1-72 upregulated grp78 gene expression depending on the ATP-binding site, the zinc-finger domain and the putative leucine-zipper motif of IE1-72, as well as the ER stress response elements (ERSEs) on the grp78 promoter. The purified IE1-72 protein bound to the CCAAT box within ERSE in vitro, whereas deletion mutants of IE1-72 deficient in grp78 promoter stimulation failed to do so. Moreover, IE1-72 binding to the grp78 promoter in infected cells accompanied the recruitment of TATA box-binding protein-associated factor 1 (TAF1), a histone acetyltransferase, and the increased level of acetylated histone H4, an indicator of active-state chromatin. These results provide evidence that HCMV IE1-72 activates grp78 gene expression through direct promoter binding and modulation of the local chromatin structure, indicating an active viral mechanism of cellular chaperone induction for viral growth.  相似文献   

10.
11.
12.
DNA damage detection and repair take place in the context of chromatin, and histone proteins play important roles in these events. Post-translational modifications of histone proteins are involved in repair and DNA damage signalling processes in response to genotoxic stresses. In particular, acetylation of histones H3 and H4 plays an important role in the mammalian and yeast DNA damage response and survival under genotoxic stress. However, the role of post-translational modifications to histones during the plant DNA damage response is currently poorly understood. Several different acetylated H3 and H4 N-terminal peptides following X-ray treatment were identified using MS analysis of purified histones, revealing previously unseen patterns of histone acetylation in Arabidopsis. Immunoblot analysis revealed an increase in the relative abundance of the H3 acetylated N-terminus, and a global decrease in hyperacetylation of H4 in response to DNA damage induced by X-rays. Conversely, mutants in the key DNA damage signalling factor ATM (ATAXIA TELANGIECTASIA MUTATED) display increased histone acetylation upon irradiation, linking the DNA damage response with dynamic changes in histone modification in plants.  相似文献   

13.
14.
15.
16.
17.
The induction of immediate-early (IE) genes, including proto-oncogenes c-fos and c-jun, correlates well with a nucleosomal response, the phosphorylation of histone H3 and HMG-14 mediated via extracellular signal regulated kinase or p38 MAP kinase cascades. Phosphorylation is targeted to a minute fraction of histone H3, which is also especially susceptible to hyperacetylation. Here, we provide direct evidence that phosphorylation and acetylation of histone H3 occur on the same histone H3 tail on nucleosomes associated with active IE gene chromatin. Chromatin immunoprecipitation (ChIP) assays were performed using antibodies that specifically recognize the doubly-modified phosphoacetylated form of histone H3. Analysis of the associated DNA shows that histone H3 on c-fos- and c-jun-associated nucleosomes becomes doubly-modified, the same H3 tails becoming both phosphorylated and acetylated, only upon gene activation. This study reveals potential complications of occlusion when using site-specific antibodies against modified histones, and shows also that phosphorylated H3 is more sensitive to trichostatin A (TSA)-induced hyperacetylation than non-phosphorylated H3. Because MAP kinase-mediated gene induction is implicated in controlling diverse biological processes, histone H3 phosphoacetylation is likely to be of widespread significance.  相似文献   

18.
19.
20.
The steady state distribution of histone variant proteins and their modifications by acetylation were characterized in wild type and salinity stress adapted alfalfa (Medicago sativa). Isotopic labeling detected dynamic acetylation at four sites in the histone H3 variants and five sites in histones H4 and H2B. Histone variant H3.2 was the most highly acetylated histone with 25% higher steady state acetylation and a two- to threefold higher acetylation labeling than histone H3.1. Histone phosphorylation was limited to histone variants H1.A, H1.B, and H1.C and to histone H2A.3, which was also acetylated. Histone variant composition was unaffected by cellular exposure to NaCl. Histone acetylation was qualitatively similar in salt-tolerant and salt-sensitive cells under normal growth conditions. However, short term salt stress in salt sensitive cells or continued growth at 1% NaCl in salt tolerant cells led to major increases in the multiacetylated forms of histone H4 and the two variants of histone H3. These changes were more pronounced in the diploid than in the tetraploid alfalfa strains. The increase in multiacetylation of core histones serves as an in vivo reporter suggesting an altered intranuclear ionic environment in the presence of salt. It may also represent an adaptive response in chromatin structure to permit chromatin function in a more saline intranuclear environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号