首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Vitamin D3 can be hydroxylated sequentially by cytochrome P450scc (CYP11A1) producing 20-hydroxyvitamin D3, 20,23-dihydroxyvitamin D3 and 17,20,23-trihydroxyvitamin D3. The aim of this study was to characterize the ability of vitamin D3 to associate with phospholipid vesicles and to determine the kinetics of metabolism of vitamin D3 by P450scc in vesicles and in 2-hydroxypropyl-beta-cyclodextrin (cyclodextrin). Gel filtration of phospholipid vesicles showed that the vitamin D3 remained quantitatively associated with the phospholipid membrane. Vitamin D3 exchanged between vesicles at a rate 3.8-fold higher than for cholesterol exchange and was stimulated by N-62 StAR protein. The Km of P450scc for vitamin D3 in vesicles was 3.3 mol vitamin D3/mol phospholipid and the rate of conversion of vitamin D3 to 20-hydroxyvitamin D3 was first order with respect to the vitamin D3 concentration for the range of concentrations of vitamin D3 that could be incorporated into the vesicle membrane. 20-Hydroxyvitamin D3 was further hydroxylated by P450scc in vesicles, producing primarily 20,23-dihydroxyvitamin D3, with Km and kcat values 22- and 6-fold lower than those for vitamin D3, respectively. 20,23-dihydroxyvitamin D3 was converted to 17,20,23-trihydroxyvitamin D3 with even lower Km and kcat values. Vitamin D3 and cholesterol were metabolized with comparable efficiencies in cyclodextrin, but the Km for both showed a strong dependence on the cyclodextrin concentration, decreasing with decreasing cyclodextrin. This study shows that vitamin D3 quantitatively associates with phospholipid vesicles, can exchange between membranes, and can be hydroxylated by membrane-associated P450scc but with lower efficiency than for cholesterol hydroxylation. The kcat values for metabolism of vitamin D3 in vesicles and 0.45% cyclodextrin are similar, but the ability to solubilize vitamin D3 at a concentration higher than its Km makes the cyclodextrin system more efficient for producing the hydroxyvitamin D3 metabolites for further characterization.  相似文献   

2.
Cytochrome P450scc (CYP11A1) metabolizes vitamin D3 to 20-hydroxyvitamin D3 as the major product, with subsequent production of dihydroxy and trihydroxy derivatives. The aim of this study was to determine whether cytochrome P450scc could metabolize 1α-hydroxyvitamin D3 and whether products were biologically active. The major product of 1α-hydroxyvitamin D3 metabolism by P450scc was identified by mass spectrometry and NMR as 1α,20-dihydroxyvitamin D3. Mass spectrometry of minor metabolites revealed the production of another dihydroxyvitamin D3 derivative, two trihydroxy-metabolites made via 1α,20-dihydroxyvitamin D3 and a tetrahydroxyvitamin D3 derivative. The Km for 1α-hydroxyvitamin D3 determined for P450scc incorporated into phospholipid vesicles was 1.4 mol substrate/mol phospholipid, half that observed for vitamin D3. The kcat was 3.0 mol/min/mol P450scc, 6-fold lower than that for vitamin D3. 1α,20-Dihydroxyvitamin D3 inhibited DNA synthesis by human epidermal HaCaT keratinocytes propagated in culture, in a time- and dose-dependent fashion, with a potency similar to that of 1α,25-dihydroxyvitamin D3. 1α,20-Dihydroxyvitamin D3 (10 μM) enhanced CYP24 mRNA levels in HaCaT keratinocytes but the potency was much lower than that reported for 1α,25-dihydroxyvitamin D3. We conclude that the presence of the 1-hydroxyl group in vitamin D3 does not alter the major site of hydroxylation by P450scc which, as for vitamin D3, is at C20. The major product, 1α,20-dihydroxyvitamin D3, displays biological activity on keratinocytes and therefore might be useful pharmacologically.  相似文献   

3.
We show that cytochrome P450scc (CYP11A1) in either a reconstituted system or in isolated adrenal mitochondria can metabolize vitamin D3. The major products of the reaction with reconstituted enzyme were 20-hydroxycholecalciferol and 20,22-dihydroxycholecalciferol, with yields of 16 and 4%, respectively, of the original vitamin D3 substrate. Trihydroxycholecalciferol was a minor product, likely arising from further metabolism of dihydroxycholecalciferol. Based on NMR analysis and known properties of P450scc we propose that hydroxylation of vitamin D3 by P450scc occurs sequentially and stereospecifically with initial formation of 20(S)-hydroxyvitamin D3. P450scc did not metabolize 25-hydroxyvitamin D3, indicating that modification of C25 protected it against P450scc action. Adrenal mitochondria also metabolized vitamin D3 yielding 10 hydroxyderivatives, with UV spectra typical of vitamin D triene chromophores. Aminogluthimide inhibition showed that the three major metabolites, but not the others, resulted from P450scc action. It therefore appears that non-P450scc enzymes present in the adrenal cortex to some extent contribute to metabolism of vitamin D3. We conclude that purified P450scc in a reconstituted system or P450scc in adrenal mitochondria can add one hydroxyl group to vitamin D3 with subsequent hydroxylation being observed for reconstituted enzyme but not for adrenal mitochondria. Additional vitamin D3 metabolites arise from the action of other enzymes in adrenal mitochondria. These findings appear to define novel metabolic pathways involving vitamin D3 that remain to be characterized.  相似文献   

4.
5.
20S-hydroxyvitamin D3 (20S-(OH)D3), an in vitro product of vitamin D3 metabolism by the cytochrome P450scc, was recently isolated, identified and shown to possess antiproliferative activity without inducing hypercalcemia. The enzymatic production of 20S-(OH)D3 is tedious, expensive, and cannot meet the requirements for extensive chemical and biological studies. Here we report for the first time the chemical synthesis of 20S-(OH)D3 which exhibited biological properties characteristic of the P450scc-generated compound. Specifically, it was hydroxylated to 20,23-dihydroxyvitamin D3 and 17,20-dihydroxyvitamin D3 by P450scc and was converted to 1α,20-dihydroxyvitamin D3 by CYP27B1. It inhibited proliferation of human epidermal keratinocytes with lower potency than 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) in normal epidermal human keratinocytes, but with equal potency in immortalized HaCaT keratinocytes. It also stimulated VDR gene expression with similar potency to 1,25(OH)2D3, and stimulated involucrin (a marker of differentiation) and CYP24 gene expression, showing a lower potency for the latter gene than 1,25(OH)2D3. Testing performed with hamster melanoma cells demonstrated a dose-dependent inhibition of cell proliferation and colony forming capabilities similar or more pronounced than those of 1,25(OH)2D3. Thus, we have developed a chemical method for the synthesis of 20S-(OH)D3, which will allow the preparation of a series of 20S-(OH)D3 analogs to study structure-activity relationships to further optimize this class of compound for therapeutic use.  相似文献   

6.
The metabolism of 25-hydroxyvitamin D(3) was studied with a crude mitochondrial cytochrome P450 extract from pig kidney and with recombinant human CYP27A1 (mitochondrial vitamin D(3) 25-hydroxylase) and porcine CYP2D25 (microsomal vitamin D(3) 25-hydroxylase). The kidney mitochondrial cytochrome P450 catalyzed the formation of 1alpha,25-dihydroxyvitamin D(3), 24,25-dihydroxyvitamin D(3) and 25,27-dihydroxyvitamin D(3). An additional metabolite that was separated from the other hydroxylated products on HPLC was also formed. The formation of this 25-hydroxyvitamin D(3) metabolite was dependent on NADPH and the mitochondrial electron transferring protein components. A monoclonal antibody directed against purified pig liver CYP27A1 immunoprecipitated the 1alpha- and 27-hydroxylase activities towards 25-hydroxyvitamin D(3) as well as the formation of the unknown metabolite. These results together with substrate inhibition experiments indicate that CYP27A1 is responsible for the formation of the unknown 25-hydroxyvitamin D(3) metabolite in kidney. Recombinant human CYP27A1 was found to convert 25-hydroxyvitamin D(3) into 1alpha,25-dihydroxyvitamin D(3), 25,27-dihydroxyvitamin D(3) and a major metabolite with the same retention time on HPLC as that formed by kidney mitochondrial cytochrome P450. Gas chromatography-mass spectrometry (GC-MS) analysis of the unknown enzymatic product revealed it to be a triol different from other known hydroxylated 25-hydroxyvitamin D(3) metabolites such as 1alpha,25-, 23,25-, 24,25-, 25,26- or 25,27-dihydroxyvitamin D(3). The product had the mass spectrometic properties expected for 4beta,25-dihydroxyvitamin D(3). Recombinant porcine CYP2D25 converted 25-hydroxyvitamin D(3) into 1alpha,25-dihydroxyvitamin D(3) and 25,26-dihydroxyvitamin D(3). It can be concluded that both CYP27A1 and CYP2D25 are able to carry out multiple hydroxylations of 25-hydroxyvitamin D(3).  相似文献   

7.
It has been shown that Solanum malacoxylon contains 1 alpha,25-dihydroxyvitamin D3-glycoside. The presence of vitamin D3 and 25-hydroxyvitamin D3 has also been suggested. In the present study vitamin D3 and three of its metabolites, including 1 alpha,25-dihydroxyvitamin D3, were detected in plant leaf extracts preincubated with ruminal fluid (SMRF). Extraction of SMRF with non-polar organic solvents and purification of the lipid extract by TLC followed by HPLC yielded nine ultraviolet-absorbing (264 nm) peaks. Four of them comigrated on a Zorbax-Sil HPLC column with synthetic standards of vitamin D3, 25-hydroxyvitamin D3, 1 alpha,25-dihydroxyvitamin D3 and 1,24R,25-trihydroxyvitamin D3, respectively. These compounds were unequivocally identified by means of mass spectrometry. The results confirm that Solanum malacoxylon contains, in addition to 1 alpha,25-dihydroxyvitamin D3, vitamin D3, 25-hydroxyvitamin D3 and possibly other as yet unidentified derivatives. As 1,24,25-trihydroxyvitamin D3 is absent in plant extracts not incubated with ruminal fluid, the data also indicate that rumen microbes may convert 1 alpha,25-dihydroxyvitamin D3 into 1,24,25-trihydroxyvitamin D3.  相似文献   

8.
CYP27A1 is a mitochondrial cytochrome P450 which can hydroxylate vitamin D3 and cholesterol at carbons 25 and 26, respectively. The product of vitamin D3 metabolism, 25-hydroxyvitamin D3, is the precursor to the biologically active hormone, 1α,25-dihydroxyvitamin D3. CYP27A1 is attached to the inner mitochondrial membrane and substrates appear to reach the active site through the membrane phase. We have therefore examined the ability of bacterially expressed and purified CYP27A1 to metabolize substrates incorporated into phospholipid vesicles which resemble the inner mitochondrial membrane. We also examined the ability of CYP27A1 to metabolize 20-hydroxyvitamin D3 (20(OH)D3), a novel non-calcemic form of vitamin D derived from CYP11A1 action on vitamin D3 which has anti-proliferative activity on keratinocytes, leukemic and myeloid cells. CYP27A1 displayed high catalytic activity towards cholesterol with a turnover number (k(cat)) of 9.8 min(-1) and K(m) of 0.49 mol/mol phospholipid (510 μM phospholipid). The K(m) value of vitamin D3 was similar for that of cholesterol, but the k(cat) was 4.5-fold lower. 20(OH)D3 was metabolized by CYP27A1 to two major products with a k(cat)/K(m) that was 2.5-fold higher than that for vitamin D3, suggesting that 20(OH)D3 could effectively compete with vitamin D3 for catalysis. NMR and mass spectrometric analyses revealed that the two major products were 20,25-dihydroxyvitamin D3 and 20,26-dihydroxyvitamin D3, in almost equal proportions. Thus, the presence of the 20-hydroxyl group on the vitamin D3 side chain enables it to be metabolized more efficiently than vitamin D3, with carbon 26 in addition to carbon 25 becoming a major site of hydroxylation. Our study reports the highest k(cat) for the 25-hydroxylation of vitamin D3 by any human cytochrome P450 suggesting that CYP27A1 might be an important contributor to the synthesis of 25-hydroxyvitamin D3, particularly in tissues where it is highly expressed.  相似文献   

9.

Background

Cytochrome P450scc metabolizes vitamin D3 to 20-hydroxyvitamin D3 (20(OH)D3) and 20,23(OH)2D3, as well as 1-hydroxyvitamin D3 to 1α,20-dihydroxyvitamin D3 (1,20(OH)2D3). It also cleaves the side chain of 7-dehydrocholesterol producing 7-dehydropregnenolone (7DHP), which can be transformed to 20(OH)7DHP. UVB induces transformation of the steroidal 5,7-dienes to pregnacalciferol (pD) and a lumisterol-like compounds (pL).

Methods and Findings

To define the biological significance of these P450scc-initiated pathways, we tested the effects of their 5,7-diene precursors and secosteroidal products on leukemia cell differentiation and proliferation in comparison to 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). These secosteroids inhibited proliferation and induced erythroid differentiation of K562 human chronic myeloid and MEL mouse leukemia cells with 20(OH)D3 and 20,23(OH)2D3 being either equipotent or slightly less potent than 1,25(OH)2D3, while 1,20(OH)2D3, pD and pL compounds were slightly or moderately less potent. The compounds also inhibited proliferation and induced monocytic differentiation of HL-60 promyelocytic and U937 promonocytic human leukemia cells. Among them 1,25(OH)2D3 was the most potent, 20(OH)D3, 20,23(OH)2D3 and 1,20(OH)2D3 were less active, and pD and pL compounds were the least potent. Since it had been previously proven that secosteroids without the side chain (pD) have no effect on systemic calcium levels we performed additional testing in rats and found that 20(OH)D3 had no calcemic activity at concentration as high as 1 µg/kg, whereas, 1,20(OH)2D3 was slightly to moderately calcemic and 1,25(OH)2D3 had strong calcemic activity.

Conclusions

We identified novel secosteroids that are excellent candidates for anti-leukemia therapy with 20(OH)D3 deserving special attention because of its relatively high potency and lack of calcemic activity.  相似文献   

10.
R P Link  H F DeLuca 《Steroids》1988,51(5-6):583-598
The binding activity of four vitamin D metabolites and/or analogs for the intestinal 1,25-dihydroxyvitamin D3 receptor was evaluated after incubation at 25 degrees C for 1 h or at 0-4 degrees C for 18 h. The incubation conditions, which had no effect on the binding of 1,25-dihydroxyvitamin D3, had a dramatic effect on the binding of 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3 and a small but reproducible effect on 24,25-dihydroxyvitamin D3 binding to receptor. Affinities 10- to 20-fold higher were obtained for 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, and affinities 3-fold higher were obtained for 24,25-dihydroxyvitamin D3 at the 0-4 degrees C/18-h incubation. A comparison of intestinal receptor from chick and pig with nine vitamin D compounds showed no major differences between the two species. The relative affinity of the vitamin D analogs to compete with tritiated 1,25-dihydroxyvitamin D3 for the receptor in pig nuclear extract, expressed as ratios of the molar concentration required for 50% binding of the tritiated 1,25-dihydroxyvitamin D3 compared to nonradioactive 1,25-dihydroxyvitamin D3, are as follows: 1,25-dihydroxyvitamin D3 (1) = 1,25-dihydroxyvitamin D2 = 24-homo-1,25-dihydroxyvitamin D3 greater than 1,24,25-trihydroxyvitamin D3 (4) greater than 25-hydroxyvitamin D3 (21) = 10-oxo-19-nor-25-hydroxyvitamin D3 = 1 alpha-hydroxyvitamin D3 (37) greater than 24,25-dihydroxyvitamin D2 (257) much much greater than vitamin D3 (greater than 10(6)).  相似文献   

11.
G S Reddy  K Y Tserng 《Biochemistry》1990,29(4):943-949
Understanding of the inactivation pathways of 25-hydroxyvitamin D2 and 24-hydroxyvitamin D2, the two physiologically significant monohydroxylated metabolites of vitamin D2, is of importance, especially during hypervitaminosis D2. In a recent study, it has been demonstrated that the inactivation of 24-hydroxyvitamin D2 occurs through its conversion into 24,26-dihydroxyvitamin D2 [Koszewski, N.J., Reinhardt, T.A., Napoli, J.L., Beitz, C.D., & Horst, R.L. (1988) Biochemistry 27, 5785]. At present, little information is available regarding the inactivation pathway of 25-hydroxyvitamin D2 except its further metabolism into 24,25-dihydroxyvitamin D2 [Jones, G., Rosenthal, A., Segev, D., Mazur, Y., Frolow, F., Halfon, Y., Rabinovich, D., & Shakked, Z. (1979) Biochemistry 18, 1094]. In our present study, we investigated the metabolic fate of 25-hydroxyvitamin D2 in the isolated perfused rat kidney and demonstrated its conversion not only into 24,25-dihydroxyvitamin D2 but also into two other new metabolites, namely, 24,25,28-trihydroxyvitamin D2 and 24,25,26-trihydroxyvitamin D2. The structure identification of the new metabolites was established by the techniques of ultraviolet absorption spectrophotometry and mass spectrometry and by the characteristic nature of each new metabolite's susceptibility to sodium metaperiodate oxidation. In order to demonstrate the physiological significance of the two new trihydroxy metabolites of vitamin D2, we induced hypervitaminosis D2 in a rat using [3 alpha-3H]vitamin D2 and analyzed its plasma for the various [3 alpha-3H]vitamin D2 metabolites on two different high-pressure liquid chromatography systems.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A metabolite of vitamin D has been isolated in pure form from incubation of 25-hydroxyvitamin D3 with embryonic chick calvarial cells that had been grown on Cytodex 1 microcarrier beads. The isolation involved dichloromethane extraction of the cells and incubation medium, followed by Sephadex LH-20 column chromatography and high-performance liquid chromatography of the extract. The metabolite was identified as 1 alpha,25-dihydroxyvitamin D3 by means of ultraviolet absorption spectroscopy, mass spectrometry, and sensitivity to oxidation by periodate. This metabolite was not produced by cell-free medium or by cells from embryonic chick liver, skin, or heart. In conclusion, (1) kidney cells are not unique in having 25-hydroxyvitamin D3:1 alpha-hydroxylase activity as previously believed and (2) vitamin D target tissues such as the skeleton may play a direct role in mediating the metabolism of 25-hydroxyvitamin D3 to 1 alpha,25-dihydroxyvitamin D3, a vitamin D metabolite active at those sites.  相似文献   

13.
To enzymatically synthesize vitamin D derivatives, we screened about 300 Streptomyces sp. strains. Streptomyces sclerotialus FERM BP-1370 and Streptomyces roseoporus FERM BP-1574 were found to have the ability to convert 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, respectively, to 1 alpha, 25-dihydroxyvitamin D3. The average rates of 1 alpha hydroxylation of 25-hydroxyvitamin D3 were 6.9 micrograms liter-1 min-1 with FERM BP-1370 and 7.0 micrograms liter-1 min-1 with FERM BP-1574. The specific cytochrome P-450 inhibitors carbon monoxide, SKF-525-A, and metyrapone inhibited the hydroxylation of 1 alpha- and 25-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3 by FERM BP-1370 and FERM BP-1574. The cytochromes P-450 of these strains were detected by reduced CO difference spectra in the whole-cell suspensions. The appearance of cytochrome P-450 suggests that the cytochromes P-450 of FERM BP-1370 and FERM BP-1574 carry out the hydroxylation of 25- and 1 alpha-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3.  相似文献   

14.
J Sasaki  A Mikami  K Mizoue    S Omura 《Applied microbiology》1991,57(10):2841-2846
To enzymatically synthesize vitamin D derivatives, we screened about 300 Streptomyces sp. strains. Streptomyces sclerotialus FERM BP-1370 and Streptomyces roseoporus FERM BP-1574 were found to have the ability to convert 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, respectively, to 1 alpha, 25-dihydroxyvitamin D3. The average rates of 1 alpha hydroxylation of 25-hydroxyvitamin D3 were 6.9 micrograms liter-1 min-1 with FERM BP-1370 and 7.0 micrograms liter-1 min-1 with FERM BP-1574. The specific cytochrome P-450 inhibitors carbon monoxide, SKF-525-A, and metyrapone inhibited the hydroxylation of 1 alpha- and 25-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3 by FERM BP-1370 and FERM BP-1574. The cytochromes P-450 of these strains were detected by reduced CO difference spectra in the whole-cell suspensions. The appearance of cytochrome P-450 suggests that the cytochromes P-450 of FERM BP-1370 and FERM BP-1574 carry out the hydroxylation of 25- and 1 alpha-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3.  相似文献   

15.
The active vitamin D analog, 19-nor-1alpha,25-dihydroxyvitamin D2 (19-nor-1alpha,25-(OH)2D2), has a similar structure to the natural vitamin D hormone, 1a,25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3), but lacks the C10-19 methylene group and possesses an ergosterol/ vitamin D2 rather than a cholesterol/vitamin D3 side chain. We have used this analog to investigate whether any of these structural features has any effect upon the type and rate of in vitro metabolism observed. Using a vitamin D-target cell, the human keratinocyte, HPK1A-ras, we observed formation of a number of metabolites, three of which were purified by extensive HPLC and conclusively identified by a combination of GC-MS and chemical derivatization as 19-nor-1alpha,24,25-(OH) 3D2, 19-nor-1alpha,24,25,26-(OH) 4D2, and 19-nor-1alpha,24,25,28-(OH)4,D2. The first metabolite is probably a product of the vitamin D-inducible cytochrome P450, P450cc24 (CYP24), while the latter two metabolites are likely to be further metabolic products of 19-nor-1alpha,24,25-(OH)3D2. These hydroxylated metabolites resemble those identified by other workers as products of the metabolism of 1alpha,25-(OH)2D2 in the perfused rat kidney. It therefore appears from the similar metabolic fate of 19-nor-1alpha,25-(OH)2D2 and 1alpha,25-(OH)2D2 that the lack of the C10-19 methylene group has little effect upon the nature of the lipid-soluble metabolic products and the rate of formation of these products seems to be comparable to that of products of 1alpha,25-(OH)2D3 in vitamin D-target cells. We also found extensive metabolism of 19-nor-1alpha,25(OH)2D2 to water-soluble metabolites in HPK1A-ras, metabolites which remain unidentified at this time. When we incubated 19-nor-1alpha,25-(OH)2D2 with the liver cell line HepG2, we obtained only 19-nor-1alpha,24,25-(OH)3D2. We conclude that 19-nor-1alpha,25-(OH)2D2 is efficiently metabolized by both vitamin D-target cells and liver cells.  相似文献   

16.
Recently, epimerization of the hydroxyl group at C-3 has been identified as a unique metabolic pathway of vitamin D compounds. We measured C-3 epimerization activity in subcellular fractions prepared from cultured cells and investigated the basic properties of the enzyme responsible for the epimerization. C-3 epimerization activity was detected using a NADPH-generating system containing glucose-6-phosphate, NADP, glucose-6-phosphate dehydrogenase, and Mg(2+). The highest level of activity was observed in a microsomal fraction prepared from rat osteoblastic UMR-106 cells but activity was also observed in microsomal fractions prepared from MG-63, Caco-2, Hep G2, and HUH-7 cells. In terms of maximum velocity (V(max)) and the Michaelis constant (K(m)), 25-hydroxyvitamin D(3) [25(OH)D(3)] exhibited the highest specificity for the epimerization at C-3 among 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], 25(OH)D(3), 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)], and 22-oxacalcitriol (OCT). The epimerization activity was not inhibited by various cytochrome P450 inhibitors and antiserum against NADPH cytochrome P450 reductase. Neither CYP24, CYP27A1, CYP27B1 nor 3(alpha-->beta)hydroxysteroid epimerase (HSE) catalyzed the epimerization in vitro. Based on these results, the enzyme(s) responsible for the epimerization of vitamin D(3) at C-3 are thought to be located in microsomes and different from cytochrome P450 and HSE.  相似文献   

17.
A new metabolite of vitamin D3 has been isolated from the plasma of vitamin D3 treated cows and has been generated from 25(S),26-dihydroxyvitamin D3 with homogenates of vitamin D deficient chick kidney. This metabolite has been identified as 1,25,26-trihydroxyvitamin D3 by comigration with synthetic 1,25(S),26-trihydroxyvitamin D3 in four chromatographic systems, ultraviolet spectroscopy, mass spectrometry, and high-pressure liquid chromatography and mass spectrometry of derivatives. 1,25(S),26-Trihydroxyvitamin D3 is one-tenth as effective as 1,25-dihydroxyvitamin D3 in binding to the chick intestinal cytosol 1,25-dihydroxyvitamin D receptor. Either 25(S),26-dihydroxyvitamin D3 or 1,25-dihydroxyvitamin D3 can serve as precursor for in vitro production of 1,25,26-trihydroxyvitamin D3 by chick kidney tissue.  相似文献   

18.
Side-chain oxidation of vitamin D is an important degradative pathway. In the present study we compared the enzymes involved in side-chain oxidation in normal and Hyp mouse kidney. Homogenates of normal mouse kidney catalyze the conversion of 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3, 24-oxo-25-hydroxyvitamin D3 and 24-oxo-23,25-dihydroxyvitamin D3. After subcellular fractionation, total side-chain oxidative activity, estimated by the sum of the three products synthesized per milligram protein under initial rate conditions, coincided with the mitochondrial enzyme marker succinate-cytochrome-c reductase. Treatment of normal mice with 1,25-dihydroxyvitamin D3 (1.5 ng/g) resulted in an eightfold increase in mitochondrial enzyme activity, with no change in apparent Km but a significant rise in Vmax. With 24,25-dihydroxyvitamin D3 as the substrate, normal renal mitochondria produced 24-oxo-25-hydroxyvitamin D3 and 24-oxo-23,25-dihydroxyvitamin D3, and the synthesis of these metabolites could be increased sixfold by pretreatment with 1,25-dihydroxyvitamin D3. In the Hyp mouse, the side-chain oxidation pathway showed similar subcellular distribution of enzyme activity. However, product formation from 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 was twofold greater in mutant than in normal mitochondria. Furthermore, 1,25-dihydroxyvitamin D3 pretreatment of Hyp mice resulted in a 3.4-fold increase over basal metabolism of both 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. These results demonstrate that (i) kidneys from normal and Hyp mice possess basal and 1,25-dihydroxyvitamin D3 inducible enzyme system(s) in the mitochondrial fraction, which catalyze the side-chain oxidation of 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3, and (ii) the Hyp mutation appears to perturb the renal metabolism of both substrates only in the basal state.  相似文献   

19.
To evaluate possible functional roles for 24,25-dihydroxyvitamin D3, 24,24-difluoro-25-hydroxyvitamin D3 has been synthesized and shown to be equally as active as 25-hydroxyvitamin D3 in all known functions of vitamin D. The use of the difluoro compound for this purpose is based on the assumption that the C-F bonds are stable in vivo and that the fluorine atom does not act as hydroxyl in biological systems. No 24,25-dihydroxyvitamin D3 was detected in the serum obtained from vitamin D-deficient rats that had been given 24,24-difluoro-25-hydroxyvitamin D3, while large amounts were found when 25-hydroxyvitamin D3 was given. Incubation of the 24,24-difluoro compound with kidney homogenate prepared from vitamin D-replete chickens failed to produce 24,25-dihydroxyvitamin D3, while the same preparations produced large amounts of 24,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. Kidney homogenate prepared from vitamin D-deficient chickens produced 24,24-difluoro-1,25-dihydroxyvitamin D3 from 24,24-difluoro-25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. In binding to the plasma transport protein for vitamin D compounds, 24,24-difluoro-25-hydroxyvitamin D3 is less active than 25-hydroxyvitamin D3 and 24R,25-dihydroxyvitamin D3. In binding to the chick intestinal cytosol receptor, 24,24-difluoro-25-hydroxyvitamin D3 is more active than 25-hydroxyvitamin D3 which is itself more active than 24R,25-dihydroxyvitamin D3. The 24,24-difluoro-1,25-dihydroxyvitamin D3 is equal to 1,25-dihydroxyvitamin D3, and both are 10 times more active than 1,24R,25-trihydroxyvitamin D3 in this system. These results provide strong evidence that the C-24 carbon of 24,24-difluoro-25-hydroxyvitamin D3 cannot be hydroxylated in vivo, and, further, the 24-F substitution acts similar to H and not to OH in discriminating binding systems for vitamin D compounds.  相似文献   

20.
Three new in vivo metabolites of 1 alpha,25-dihydroxyvitamin D3 were isolated from the serum of dogs given large doses (two doses of 1.5 mg/dog) of 1 alpha,25-dihydroxyvitamin D3. The metabolites were isolated and purified by methanol-chloroform extraction and a series of chromatographic procedures. By cochromatography on a high-performance liquid chromatograph, ultraviolet absorption spectrophotometry, mass spectrometry, Fourier-transform infrared spectrophotometry, and specific chemical reactions, the metabolites were identified as 1 alpha,25-dihydroxy-24- oxovitamin D3, 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, and 1 alpha,24(S),25-trihydroxyvitamin D3. According to these procedures, the total amounts of the isolated metabolites were as follows: 1 alpha,25-dihydroxyvitamin D3, 23.6 micrograms; 1 alpha,25-dihydroxy-24- oxovitamin D3, 1.8 micrograms; 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, 9.2 micrograms; 1 alpha,24(R),25-trihydroxyvitamin D3, 15.4 micrograms; 1 alpha,24(S),25-trihydroxyvitamin D3, 1.0 microgram. With recovery corrections, the serum levels of each metabolite were approximately 49 ng/mL for 1 alpha,25-dihydroxyvitamin D3, 3.7 ng/mL for 1 alpha,25-dihydroxy-24- oxovitamin D3, 19 ng/mL for 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, 32 ng/mL for 1 alpha,24(R),25-trihydroxyvitamin D3, and 2.1 ng/mL for 1 alpha,24(S),25-trihydroxyvitamin D3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号