共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene silencing by RNAi in mouse Sertoli cells 总被引:1,自引:0,他引:1
Emilio González-González Pedro P López-Casas Jesús del Mazo 《Reproductive biology and endocrinology : RB&E》2008,6(1):29
Background
RNA interference (RNAi) is a valuable tool in the investigation of gene function. The purpose of this study was to examine the availability, target cell types and efficiency of RNAi in the mouse seminiferous epithelium. 相似文献2.
Kameda T Ikegami K Liu Y Terada K Sugiyama T 《Biochemical and biophysical research communications》2004,315(3):599-602
RNA interference (RNAi) has been attracting a great deal of attention. This pathway is highly conserved among most eukaryotes and believed to be important for antiviral reactions and epigenetic gene regulation. Because a temperature-sensitive RNAi was reported in both plant and insect systems, suggesting its evolutional conservation, we analyzed the effect of different temperatures on mammalian RNAi, targeting the ectopic gene expression, and detected suppression at hypothermic temperatures. This phenomenon could be critical and useful to control ectopic and internal gene expressions by RNAi. 相似文献
3.
4.
5.
目的 探讨慢病毒载体介导人肿瘤细胞RNA干扰的影响因素。方法 以乏氧诱导因子-1α(Hypoxia-inducible factor-1α, HIF-1α)和乏氧诱导因子-1β(Hypoxia-inducible factor-1β, HIF-1β)基因为靶基因,采用Invitrogen公司的BLOCK-iT Lentiviral RNAi Expression System生产表达靶基因shRNA的慢病毒载体,转导Hela、SPCA1和A549,采用定量RT-PCR技术检测靶基因mRNA表达水平。结果 用此系统生产慢病毒,每一10cm培养皿可收获6.3×1010个病毒颗粒。浓度为2×1010copies/ml的Lenti6-HIF1α和Lenti6-HIF1β转导SPCA1、A549和Hela细胞的功能滴度分别为:1.8×106TU/ml、1.2×106TU/ml、1.75×106TU/ml和1.76×106TU/ml、1.21×106TU/ml和1.79×106TU/ml。延长病毒的吸附时间可以提高转导效率, 8小时以内转导效率与吸附时间呈正比,12小时开始进入平台期。1/4、1/2、1、2、4、8倍MOI的Lenti6-HIF1α病毒转导SPCA1和Hela细胞48小时后,RNAi效果与病毒量呈正相比。用筛选的转导细胞证实,RNAi长期效果与细胞类型无关,但与shRNA表达结构整合到靶细胞基因组的拷贝数呈正相关。结论 慢病毒载体介导人肿瘤细胞RNA干扰,短期基因抑制效果取决于细胞类型、病毒量和病毒的吸附时间,稳定基因沉默效果与病毒整合到靶细胞基因组的拷贝数密切相关。 相似文献
6.
RNA interference (RNAi) is widely used for functional studies and has been proposed as a potential therapeutic agent. Current RNAi systems are largely efficient, but have limitations including transient effect, the need for viral handling and potential insertional mutations. Here, we describe a simple L1 retrotransposon-based system for the delivery of small interfering RNA (siRNA) and stable silencing in human cells. This system demonstrated long-term siRNA expression and significant reduction in both exogenous and endogenous gene expression by up to 90%. Further characterization indicated that retrotransposition occurred in a controlled manner such that essentially only one RNAi-cassette was integrated into the host genome and was sufficient for strong interference. Our system provides a novel strategy for stable gene silencing that is easy and efficient, and it may have potential applications for ex vivo and in vivo molecular therapy. 相似文献
7.
The recent establishment of gene silencing through RNA interference upon feeding opens avenues to decipher the genetic control of regeneration in hydra. Following that approach, we identified three main stages for head regeneration. Immediately post-amputation, the serine protease inhibitor Kazal1 gene produced by the gland cells prevents from an excessive autophagy in regenerating tips. This cytoprotective function, or self-preservation, is similar to that played by Kazal-type proteins in the mammalian exocrine pancreas, in homeostatic or post-injury conditions, likely reflecting an evolutionarily conserved mechanism linking cell survival to tissue repair. Indeed, in wild-type hydra, within the first hours following mid-gastric section, an extensive cellular remodelling is taking place, including phenotypic cellular transitions and cell proliferation. The activation of the MAPK pathway, which leads to the RSK-dependent CREB phosphorylation, is required for these early cellular events. Later, at the early-late stage, the expression of the Gsx/cnox-2 ParaHox gene in proliferating apical neuronal progenitors is required for the de novo neurogenesis that precedes the emergence of the tentacle rudiments. Hence, head regeneration in wild-type hydra relies on spatially restricted and timely orchestrated cellular modifications, which display similarities with those reported during vertebrate epimorphic regeneration. These results suggest some conservation across evolution of the mechanisms driving the post-amputation reactivation of developmental programs. 相似文献
8.
Simon Dornseifer Sarah Willkomm Rosel Kretschmer-Kazemi Far Janine Liebschwager Foteini Beltsiou Kirsten Frank Sandra D. Laufer Thomas Martinetz Georg Sczakiel Jens Christian Claussen Tobias Restle 《Nucleic acids research》2015,43(22):10623-10632
The discovery of RNA interference (RNAi) gave rise to the development of new nucleic acid-based technologies as powerful investigational tools and potential therapeutics. Mechanistic key details of RNAi in humans need to be deciphered yet, before such approaches take root in biomedicine and molecular therapy.We developed and validated an in silico-based model of siRNA-mediated RNAi in human cells in order to link in vitro-derived pre-steady state kinetic data with a quantitative and time-resolved understanding of RNAi on the cellular level. The observation that product release by Argonaute 2 is accelerated in the presence of an excess of target RNA in vitro inspired us to suggest an associative mechanism for the RNA slicer reaction where incoming target mRNAs actively promote dissociation of cleaved mRNA fragments. This novel associative model is compatible with high multiple turnover rates of RNAi-based gene silencing in living cells and accounts for target mRNA concentration-dependent enhancement of the RNAi machinery. 相似文献
9.
Boisson B Jacques JC Choumet V Martin E Xu J Vernick K Bourgouin C 《FEBS letters》2006,580(8):1988-1992
Salivary glands are the ultimate site of development in the insect of mosquito born pathogens such as Plasmodium. Mosquito salivary glands also secrete components involved in anti-haemostatic activities and allergic reactions. We investigated the feasibility of RNAi as a tool for functional analysis of genes expressed in Anopheles gambiae salivary glands. We show that specific gene silencing in salivary glands requires the use of large amounts of dsRNA, condition that differs from those for efficient RNAi in other mosquito tissues. Using this protocol, we demonstrated the role of AgApy, which encodes an apyrase, in the probing behaviour of An. gambiae. 相似文献
10.
Retrovirus vector-mediated stable gene silencing in human cell 总被引:17,自引:0,他引:17
Liu CM Liu DP Dong WJ Liang CC 《Biochemical and biophysical research communications》2004,313(3):716-720
11.
12.
Quantum dots to monitor RNAi delivery and improve gene silencing 总被引:3,自引:0,他引:3
A critical issue in using RNA interference for identifying genotype/phenotype correlations is the uniformity of gene silencing within a cell population. Variations in transfection efficiency, delivery-induced cytotoxicity and ‘off target’ effects at high siRNA concentrations can confound the interpretation of functional studies. To address this problem, we have developed a novel method of monitoring siRNA delivery that combines unmodified siRNA with seminconductor quantum dots (QDs) as multi color biological probes. We co-transfected siRNA with QDs using standard transfection techniques, thereby leveraging the photostable fluorescent nanoparticles to track delivery of nucleic acid, sort cells by degree of transfection and purify homogenously-silenced subpopulations. Compared to alternative RNAi tracking methods (co-delivery of reporter plasmids and end-labeling the siRNA), QDs exhibit superior photostability and tunable optical properties for an extensive selection of non-overlapping colors. Thus this simple, modular system can be extended toward multiplexed gene knockdown studies, as demonstrated in a two color proof-of-principle study with two biological targets. When the method was applied to investigate the functional role of T-cadherin (T-cad) in cell–cell communication, a subpopulation of highly silenced cells obtained by QD labeling was required to observe significant downstream effects of gene knockdown. 相似文献
13.
Allele-specific gene silencing by RNA interference (RNAi) is therapeutically useful for specifically inhibiting the expression of disease-associated alleles without suppressing the expression of corresponding wild-type alleles. To realize such allele-specific RNAi (ASP-RNAi), the design and assessment of small interfering RNA (siRNA) duplexes conferring ASP-RNAi is vital; however, it is also difficult. In a previous study, we developed an assay system to assess ASP-RNAi with mutant and wild-type reporter alleles encoding the Photinus and Renilla luciferase genes. In line with experiments using the system, we realized that it is necessary and important to enhance allele discrimination between mutant and corresponding wild-type alleles. Here, we describe the improvement of ASP-RNAi against mutant alleles carrying single nucleotide variations by introducing base substitutions into siRNA sequences, where original variations are present in the central position. Artificially mismatched siRNAs or short-hairpin RNAs (shRNAs) against mutant alleles of the human Prion Protein (PRNP) gene, which appear to be associated with susceptibility to prion diseases, were examined using this assessment system. The data indicates that introduction of a one-base mismatch into the siRNAs and shRNAs was able to enhance discrimination between the mutant and wild-type alleles. Interestingly, the introduced mismatches that conferred marked improvement in ASP-RNAi, appeared to be largely present in the guide siRNA elements, corresponding to the 'seed region' of microRNAs. Due to the essential role of the 'seed region' of microRNAs in their association with target RNAs, it is conceivable that disruption of the base-pairing interactions in the corresponding seed region, as well as the central position (involved in cleavage of target RNAs), of guide siRNA elements could influence allele discrimination. In addition, we also suggest that nucleotide mismatches at the 3'-ends of sense-strand siRNA elements, which possibly increase the assembly of antisense-strand (guide) siRNAs into RNA-induced silencing complexes (RISCs), may enhance ASP-RNAi in the case of inert siRNA duplexes. Therefore, the data presented here suggest that structural modification of functional portions of an siRNA duplex by base substitution could greatly influence allele discrimination and gene silencing, thereby contributing to enhancement of ASP-RNAi. 相似文献
14.
15.
Min Zhang Kerry Koskie James S. Ross Kevin J. Kayser Matthew V. Caple 《Biotechnology and bioengineering》2010,105(6):1094-1105
Recombinant glycoproteins produced by mammalian cells represent an important category of therapeutic pharmaceuticals used in human health care. Of the numerous sugars moieties found in glycoproteins, the terminal sialic acid is considered particularly important. Sialic acid has been found to influence the solubility, thermal stability, resistance to protease attack, antigenicity, and specific activity of various glycoproteins. In mammalian cells, it is often desirable to maximize the final sialic acid content of a glycoprotein to ensure its quality and consistency as an effective pharmaceutical. In this study, CHO cells overexpressing recombinant human interferon gamma (hIFNγ) were treated using short interfering RNA (siRNA) and short‐hairpin RNA (shRNA) to reduce expression of two newly identified sialidase genes, Neu1 and Neu3. By knocking down expression of Neu3 we achieved a 98% reduction in sialidase function in CHO cells. The recombinant hIFNγ was examined for sialic acid content that was found to be increased 33% and 26% respectively with samples from cell stationary phase and death phase as compared to control. Here, we demonstrate an effective targeted gene silencing strategy to enhance protein sialylation using RNA interference (RNAi) technology. Biotechnol. Bioeng. 2010;105: 1094–1105. © 2009 Wiley Periodicals, Inc. 相似文献
16.
17.
18.
RNA interference (RNAi) is an effective approach for gene function analysis, which is well developed in mammal cell lines. However, RNAi has rarely been reported in marine bivalve species. To provide support on functional analysis of bivalve genes, for the first time to our knowledge, we conducted RNAi assay on primary cell of clam Meretrix meretrix in this study. Firstly we explored the method of culturing primary cells of M. meretrix to ensure the cells to live at high activity for at least 2 weeks. Ferritin gene was chosen as the target gene and RNAi assay was conducted through soaking the primary cells of M. meretrix digestive gland in medium containing dsRNA of ferritin gene. Realtime PCR, western blot and immunocytochemistry analysis were used to analyze the inhibition of gene expression after RNAi. Results showed the ferritin mRNA was significantly down-regulated by 66.11% after RNAi. Western blot result showed that the expression level of ferritin protein was also depressed post RNAi. The method developed in this study proved to be reliable and effective for RNAi assay on marine bivalve cells. It would be an efficient tool for gene function analysis in marine bivalves and more studies based on primary cells of marine bivalves can be expected. 相似文献
19.
Marcia Saraiva Irene de Bruijn Laura Grenville-Briggs Debbie McLaggan Ariane Willems Vincent Bulone Pieter van West 《Fungal biology》2014,118(7):621-629
Here we describe the first application of transient gene silencing in Saprolegnia parasitica, a pathogenic oomycete that infects a wide range of fish, amphibians, and crustaceans. A gene encoding a putative tyrosinase from S. parasitica, SpTyr, was selected to investigate the suitability of RNA-interference (RNAi) to functionally characterize genes of this economically important pathogen. Tyrosinase is a mono-oxygenase enzyme that catalyses the O-hydroxylation of monophenols and subsequent oxidation of O-diphenols to quinines. These enzymes are widely distributed in nature, and are involved in the melanin biosynthesis. Gene silencing was obtained by delivering in vitro synthesized SpTyr dsRNA into protoplasts. Expression analysis, tyrosinase activity measurements, and melanin content analysis confirmed silencing in individual lines. Silencing of SpTyr resulted in a decrease of tyrosinase activity between 38 % and 60 %, dependent on the level of SpTyr-expression achieved. The SpTyr-silenced lines displayed less pigmentation in developing sporangia and occasionally an altered morphology. Moreover, developing sporangia from individual silenced lines possessed a less electron dense cell wall when compared to control lines, treated with GFP-dsRNA. In conclusion, the tyrosinase gene of S. parasitica is required for melanin formation and transient gene silencing can be used to functionally characterize genes in S. parasitica. 相似文献
20.
Post-transcriptional gene silencing in cultured rice cells 总被引:5,自引:0,他引:5