首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal progenitor cells derived from cord blood (unrestringated somatic stem cells, USSC) and bone marrow (mesenchymal stem cells, MSC) are able to differentiate under defined culture conditions into at least bone, cartilage, adipose and muscle cells in vitro. The culture media and other in vitro conditions influence the osteogenic differentiation potency of both cell types. To increase and expand the number of osteoblasts in vitro an optimization of culture conditions is required. The aim of this study was to evaluate different culture media toward their osteogenic promoting capacity on human USSCs and MSCs in vitro. Immunohistochemical stainings against osteonectin (ON), osteopontin (OP) served as markers for an osteoblastic differentiation. Cellular morphology was analysed by light microscopy technique. We found significant differences between bone marrow and cord blood derived stem cells towards an osteoblastic differentiation. Considering the number of osteoblasts MesenCult seems to have advantages in bone marrow progenitor cells, whereas low glucose DMEM and HAMS-F12 promoted an osteoblastic differentiation in cord blood derived cells more than other tested media.  相似文献   

2.
Arterial smooth muscle cells (SMCs) are present in the elastic lamina-containing media, suggesting that the elastic laminae may regulate the development of SMCs. Here, we investigated the role of elastic laminae in regulating the formation of SM alpha actin filaments in mouse CD34+ bone marrow cells and the role of a protein tyrosine phosphatase, SH2 domain-containing protein tyrosine phosphatase (SHP)-1, in the mediation of this process. Mouse CD34+ bone marrow cells were isolated by magnetic separation and used for assessing the influence of elastic laminae and collagen matrix on the formation of SM alpha actin filaments. CD34+ cells with transgenic SHP-1 knockout or siRNA-mediated SHP-1 knockdown were used to assess the role of SHP-1 in mediating the formation of SM alpha actin filaments. In cell culture tests, elastic laminae, but not collagen matrix, stimulated the formation of SM alpha actin filaments in CD34+ cells. The phosphatase SHP-1 mediated the stimulatory effect of elastic laminae. The interaction of CD34+ cells with elastic laminae, but not with collagen matrix, induced activation of SHP-1. The suppression of SHP-1 by transgenic SHP-1 knockout or siRNA-mediated SHP-1 knockdown significantly reduced the formation of SM alpha actin filaments in CD34+ cells cultured on elastic laminae. The in vitro observations were confirmed by using an in vivo model of implantation of elastic lamina and collagen matrix scaffolds into the aorta. These observations suggest that elastic laminae stimulate the formation of SM alpha actin filaments in CD34+ bone marrow cells and SHP-1 mediates the stimulatory effect of elastic laminae.  相似文献   

3.
Multipotential bone marrow stromal cells have the ability to differentiate along multiple connective tissue lineages including cartilage. In this study, we developed an efficient and reproducible procedure for the isolation of stromal cells from bone marrow aspirates of normal human donors based on the expression of endoglin, a type III receptor of the transforming growth factor-beta (TGF-beta) receptor family. We demonstrate that these cells have the ability of multiple lineage differentiation. Stromal cells represented 2-3% of the total mononuclear cells of the marrow. The cells displayed a fibroblastic colony formation in monolayer culture and maintained similar morphology with passage. Expression of cell surface molecules by flow cytometry displayed a stable phenotype with culture expansion. When cocultured with hematopoietic CD34(+) progenitor cells, stromal cells were able to maintain their ability to support hematopoiesis in vitro. Culture expanded stromal cells were placed in a 3-dimensional matrix of alginate beads and cultured in serum-free media in the presence of TGFbeta-3 for chondrogenic lineage progression. Increased expression of type II collagen messenger RNA was observed in the TGFbeta3 treated cultures. Immunohistochemistry performed on sections of alginate beads detected the presence of type II collagen protein. This isolation procedure for stromal cells and the establishment of the alginate culture system for chondrogenic progression will contribute to the understanding of chondrogenesis and cartilage repair.  相似文献   

4.
Recent investigations revealed that basophil-mast cells were related to the hemopoietic system. Strikingly, murine bone marrow showed a singular paucity in cells with basophil-mast features; moreover in clonogenic assays (methylcellulose, agarose) bone marrow was found to be manifestly poor in basophil-mast progenitor cells. Our work brought to light several new facts concerning the culture and differentiation of this cell type: 1° pure and mixed mast clones can be derived in large numbers from bone marrow, provided progenitors are cultured in collagen matrix. Up to 1,382 hemopoietic clones were analysed in situ after staining: 30% contained mast cells (34 per 105 cells), thus the basophil-mast lineage was one of the most frequent. We concluded that other cloning media were noticeably nonoptimal for the growth and/or maturation of mast cells. We suggested that collagen and the molecular edifices derived from it, both found in variable amounts in the natural mast environments, should play essential roles in mast phenotype expression. 2° Cholera toxin (CT) selectively eradicated nonmast progenies: mast progenitors and mast progenies were resistant. In this way, pure and rapidly expanding mast cell clones were obtained at a frequency never reported before. CT possibly acts both directly, as a stimulator of mast cell proliferation, or indirectly on marrow subpopulations which repress basophil-mast cell growth and maturation. In vitro culture conditions, specifically designed for basophil-mast lineage, should prove of interest in the search for an unifying hypothesis concerning the multiple forms of mast cells found in various tissues.  相似文献   

5.
Since bone resorption and formation by continuous and intermittent parathyroid hormone (PTH) treatments involve various types of cells in bone, this study examined the underlying mechanism by combining culture systems using mouse primary calvarial osteoblasts and bone marrow cells. The PTH/PTHrP receptor (PTH1R) expression and the cAMP accumulation in response to PTH were increased in accordance with the differentiation of osteoblasts. Osteoclast formation was strongly induced by continuous PTH treatment in the monolayer co‐culture of osteoblasts and bone marrow cells, which was associated with RANKL expression in differentiated osteoblasts. Bone formation determined by ALP activity and the type I collagen mRNA expression was stimulated by intermittent PTH treatment in the monolayer co‐culture and in the bone marrow cell layer of the separated co‐culture in a double chamber dish, but not in the culture of bone marrow cells alone. The stimulation in the separated co‐culture, accompanied by IGF‐I production by osteoblasts, was abolished when bone marrow cells were derived from knockout mice of insulin‐receptor substrate‐1 (IRS‐1?/?) or when osteoblasts were from PTH1R?/? mice. We conclude that differentiated osteoblasts are most likely the direct target of both continuous and intermittent PTH, while bone marrow cells are likely the effector cells. The osteoblasts stimulated by continuous PTH express RANKL which causes osteoclastogenesis from the precursors in bone marrow via cell‐to‐cell contact, leading to bone resorption; while the osteoblasts stimulated by intermittent PTH secrete IGF‐I which activates IRS‐1 in osteoblast precursors in bone marrow via a paracrine mechanism, leading to bone formation. J. Cell. Biochem. 109: 755–763, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Immunofluorescent staining of frozen sections of rat bone marrow for collagen types I and III revealed the presence of a distinctive, collagen-producing cell type. Morphologically, these cells closely resembled reticular cells. They were large, with branching cytoplasm and were closely related to an extensive intercellular matrix of collagenous material that surrounded the hematopoietic cells of the marrow. Biochemical studies demonstrated synthesis of collagen types I and III, in a ratio of 4:1, by fresh rat bone marrow cells.  相似文献   

7.
We investigated the biocompatibility and osteogenetic potency of a porcine collagen I/III carrier in a human bone marrow and cord blood cell culture system. METHODS: Human mesenchymal mononuclear cells were isolated from cord blood and iliac crest bone marrow and cultivated in various cell densities on a semipermeable porcine collagen I/III carrier. After 14 days of in vitro cultivation both cultures were subjected to osteogenic stimulation by dexamethasone, ascorbic acid and beta-glycerol phosphate (DAG) until day 40. Semiquantitative immunochemical evaluation based on osteoblastic and progenitor cell markers was then done. RESULTS: With regard to the minimal local cell density required for growth and osteogenic differentiation, cord blood derived progenitor cells showed lower tolerance in comparison with bone marrow derived cells. For both cell culture systems three-dimensional growth and calcification within the collagen fibres were seen after osteogenic stimulation. CONCLUSION: Human cord blood and bone marrow derived mesenchymal stem cell are capable of differentiating into osteoblasts after incubation with a collagen I/III biomaterial.  相似文献   

8.
Tissue engineering using living cells is emerging as an alternative to tissue or organ transplantation. The adult mesenchymal stem cells can be differentiated into multilineage cells, such as adipocytes, chondrocytes, or osteoblasts when cultured with specific growth factors. In the present investigation, we have studied the effect of honeycomb collagen scaffolds for the adhesion, differentiation and proliferation of bone marrow-derived mesenchymal stem cells into osteoblasts. Mesenchymal stem cells were isolated from 6-week old albino rat femur bone marrow, and cultured in alpha-MEM medium without beta-glycerophosphate and dexamethasone. Honeycomb collagen discs were prepared from bovine dermal atelocollagen, cross-linked by UV-irradiation and sterilized by heat. The honeycomb discs were placed on the culture dishes before seeding the stem cells. The cells attached quickly to the honeycomb collagen scaffold, differentiated and proliferated into osteoblasts. The differentiated osteoblasts were characterized by morphological examination and alkaline phosphatase activity. The osteoblasts also synthesized calcium-deficient hydroxyapatite (pseudo-hydroxyapatite) crystals in the culture. The mineralization was confirmed by Von Kossa staining and the crystals were analyzed by X-ray diffraction. Light microscopy and DNA measurements showed that the differentiated osteoblasts multiplied into several layers on the honeycomb collagen scaffold. The results demonstrated that the honeycomb collagen sponge is an excellent scaffold for the differentiation and proliferation of mesenchymal stem cells into osteoblasts. The data further proved that honeycomb collagen is an effective substrate for tissue engineering applications, and is very useful in the advancing field of stem cell technology and cell-based therapy.  相似文献   

9.
The aim of this study was to determine the feasibility of adenoviral gene transfer into primary human bone marrow osteoprogenitor cells in combination with biodegradeable scaffolds to tissue-engineer bone. Osteoprogenitors were infected with AxCAOBMP-2, a vector carrying the human BMP-2 gene. Alkaline phosphatase activity was induced in C2C12 cells following culture with conditioned media from BMP-2 expressing cells, confirming successful secretion of active BMP-2. Expression of alkaline phosphatase activity, type I collagen and mineralisation confirmed bone cell differentiation and maintenance of the osteoblast phenotype in extended culture for up to 6 weeks on PLGA porous scaffolds. In vivo implantation of adenoviral osteoprogenitor constructs on PLGA biodegradeable scaffolds, using diffusion chambers, also demonstrated bone cell differentiation and production of bone tissue. The maintenance of the osteoblast phenotype in extended culture and generation of mineralised 3-D scaffolds containing such constructs indicate the potential of such bone tissue engineering approaches in bone repair.  相似文献   

10.
Xyloside supplementation of long-term bone marrow cultures (LTBMCs) has been reported to result in greatly enhanced proliferation of hematopoietic stem cells. This was presumed to be the result of xyloside-mediated perturbation of proteoglycan synthesis by marrow-derived stromal cells. To investigate this phenomenon, we first studied the effects of xyloside supplementation on proteoglycan synthesis by D2XRadII bone marrow stromal cells, which support hematopoietic stem cell proliferation in vitro. D2XRadII cells were precursor labelled with 35S-sulfate, and proteoglycans separated by ion exchange chromatography, isopyknic CsCl gradient centrifugation, and gel filtration HPLC. Xyloside-supplemented cultures showed an approximately fourfold increase in total 35S incorporation, mainly as free chondroitin-dermatan sulfate (CS/DS) glycosaminoglycan chains in the culture media. Both xyloside supplemented and nonsupplemented cultures synthesized DS1, DS2, and DS3 CS/DS proteoglycans as previously described. In contrast to previous reports, xyloside was found to inhibit hematopoietic cell growth in LTBMC. Inhibitory effects were observed both in cocultures of IL-3-dependent hematopoietic cell lines with supportive stromal cell lines and in primary murine LTBMCs. Xyloside was found to have a marked inhibitory effect on the growth of murine hematopoietic stem cells and IL-3-dependent hematopoietic cell lines in clonal assay systems and in suspension cultures. In contrast, dialyzed concentrated conditioned media from LTBMCs had no such inhibitory effects. These findings suggest that xyloside-mediated inhibition of hematopoietic cell growth in LTBMC resulted from a direct effect of xyloside on proteoglycan synthesis by hematopoietic cells.  相似文献   

11.
Lead is a poisonous heavy metal that occurs in all parts of environment and causes serious health problems in humans. The aim of the present study was to investigate the possible protective effect of lithium against lead nitrate induced toxicity in non-adherent bone marrow stem cells. Trypan blue and MTT assays represented that exposure of the cells to different concentrations of lead nitrate decreased viability in a dose dependent manner, whereas, pretreatment of the cells with lithium protected the cells against lead toxicity. Lead reduced the number and differentiation status of bone marrow-derived precursors when cultured in the presence of colony stimulating factor (CSF), while the effect was attenuated by lithium. The cells treated with lead nitrate exhibited cell shrinkage, DNA fragmentation, anion superoxide production, but lithium prevented lead action. Moreover, apoptotic indexes such as PARP cleavage and release of HMGB1 induced by lead, were protected by lithium, suggesting anti-apoptotic effect of lithium. Immunoblot analysis of histone H3K9 acetylation indicated that lithium overcame lead effect on acetylation. In conclusion, lithium efficiently reduces lead toxicity suggesting new insight into lithium action which may contribute to increased cell survival. It also provides a potentially new therapeutic strategy for lithium and a cost-effective approach to minimize destructive effects of lead on bone marrow stem cells.  相似文献   

12.
Bone marrow cells are multipotent cells. When bone marrow cells were cultured with type I collagen matrix gels, they showed high alkaline phosphatase activity, collagen synthesis, and formed mineralized tissues. Furthermore, cells expressed osteocalcin and bone sialoprotein genes, which are osteoblast-specific genes. These findings indicate that type I collagen matrix gels induce osteoblastic differentiation of bone marrow cells. Type I collagen interacts with the alpha 2 beta 1 integrin receptor on the cell membrane and mediates extracellular signals into cells. DGEA peptide is a cell-binding domain of type I collagen molecule. When collagen-integrin interaction was interrupted by the addition of Asp-Gly-Glu-Ala (DGEA) peptide to the culture, the expression of osteoblastic phenotypes of bone marrow cells was inhibited. Furthermore, anti-alpha 2 integrin antibody, which interacts with alpha subunit of integrin and blocks the binding of integrin with collagen, suppressed the expression of osteoblastic phenotypes. These findings imply that collagen-alpha 2 beta 1 integrin interaction is an important signal for the osteoblastic differentiation of bone marrow cells.  相似文献   

13.
Bone marrow contains multipotent cells that differentiate into fibroblasts, adipocytes, and osteoblasts. Recently we found that type I collagen matrix induced the osteoblastic differentiation of bone marrow cells. Three weeks after cells were cultured with type I collagen, they formed mineralized tissues. In this study, we investigated the expression of osteoblast-related genes (alkaline phosphatase, osteocalcin, bone sialoprotein, osteopontin, and cbfa-1) during the osteoblastic differentiation. The expression of alkaline phosphatase and osteopontin genes increased time-dependently during the osteoblastic differentiation. Osteocalcin and bone sialoprotein genes were expressed in cells that formed mineralized tissues, and both were expressed only after cells reached the mineralized tissue-formation stage. On the other hand, the cbfa-1 gene was expressed from the early differentiation stage. The Asp-Gly-Glu-Ala (DGEA) amino acid domain of type I collagen interacts with the alpha2beta1 integrin receptor on the cell membrane and mediates extracellular signals into cells. When the collagen-integrin interaction was interrupted by the addition of DGEA peptide to the culture, the expression of osteoblastic phenotypes of bone marrow cells was inhibited. These findings imply that the collagen-alpha2beta1 integrin interaction is an important signal for the osteoblastic differentiation of bone marrow cells.  相似文献   

14.
C Biswas  J M Dayer 《Cell》1979,18(4):1035-1041
In this study, we investigated the possible regulatory role of collagen in collagenase production by cultured human skin fibroblasts and human and rabbit synovial cells. Addition of types I, II or III collagen in solution to the culture media markedly stimulated trypsin-activable collagenase activity in these cultures. In the human cell cultures the stimulatory effect of collagen was further enhanced by a soluble factor isolated from human monocyte culture media (Dayer, Russell and Krane, 1977). Both native and denatured forms of collagen stimulated enzyme production; their relative efficacy varied among the different types. The native form of both types I and II collagen showed a greater effect on collagenase production than the corresponding denatured form, whereas with type III collagen the denatured form was more effective.  相似文献   

15.
The maintenance of hemopoietic precursors in long-term liquid bone marrow cultures (LTBMC) is associated with the presence of an adherent stromal layer composed of heterogeneous cell populations. We have used a culture assay to promote the growth of one of its cellular components and characterize its properties. Freshly obtained bone marrow cells and cells derived from the adherent layer of LTBMC were grown in methylcellulose-clotted plasma in the presence of phytohemagglutinin-stimulated leukocyte-conditioned medium (PHA-LCM), hydrocortisone (HC), and citrated normal human plasma. Both sources contained cells (CFU-RF) that gave rise to colonies of cells with a reticulofibroblastoid appearance. In the presence of HC, most colonies contained lipid-laden cells. Colonies could be further propagated as adherent layers when transferred into liquid cultures. These cells produced laminin, fibronectin, and collagen types I, III, IV, and V. They were negative for Von Willebrand factor VIII. The ability to synthesize laminin and collagen type IV distinguished these cells from a population of previously described bone marrow fibroblasts (CFU-F). The relationship of CFU-RF to hemopoietic precursors was investigated using patients with chronic myeloid leukemia and bone marrow transplant recipients. Cells within CFU-RF-derived colonies were uniformly negative for the Philadelphia chromosome, thus making it unlikely that they belonged to the malignant hemopoietic clone. CFU-RF-derived colonies in bone marrow transplant recipients were found to be exclusively of host origin. Both observations support the view that CFU-RF is not part of the repertoire of hemopoietic stem cells.  相似文献   

16.
Rat bone marrow stromal cells were cultured in vitro. At days 14-15 of culture, dense clusters of polygonal cells were formed, and they mineralized 2-3 days later. The cells resembling osteoblasts or young osteocytes were histologically observed to be embedded in mineralized or unmineralized extracellular matrices of the nodules. Next, these mineralized nodules were electron-microscopically examined. The osteoblastic cells associated with the nodules had a well-developed rough endoplasmic reticulum, an evident Golgi apparatus and some mitochondria as their intracellular organellae. Some lysosomes and microfilaments were also visible in the cytoplasms. Moreover, some cells protruded cell processes toward the neighboring cells through the extracellular matrix. The extracellular matrix consisted of numerous collagen fibrils which were striated with 60-70 nm axial periodicity and which was similar to bone tissue collagen. A large number of matrix vesicles were scattered among the collagen fibrils in the unmineralized area of the nodules. In contrast, in the mineralized area, numerous matrix vesicles at different stages of maturation and many calcified spherules were observed. That is the mineralization in this culture system was considered to be initiated in association with the matrix vesicles and to progress along the collagen fibrils. From these findings, it was confirmed by the present study that the mineralized nodules formed in this bone marrow stromal cell culture were ultrastructurally similar to bone and that the mineralization also proceeded by going through the normal calcification process. This culture system is considered to be available to study osteogenic differentiation and calcification mechanisms.  相似文献   

17.
The goal of the present study was to devise an in vitro model suitable for investigations of the homing of mesenchymal stem cells to sites of injury. Such a model was designed on the basis of a “transwell” assay, with an insert seeded with human bone marrow stromal cells and a well with a desired cell type. To mimic physiological environment and to simulate “injury”, cells in a well were maintained not only on tissue culture plastic but also on collagens I and IV, major matrix components in musculoskeletal and adipose tissues respectively, and subjected to a severe thermal stress. The results obtained showed a massive translocation of bone marrow stromal cells through the inserts' membrane toward the “injury” site. Unexpectedly, it emerged that collagen matrix is essential in producing such a migration. The results obtained suggest that upon injury cells secrete a substance which interacts with collagen matrix to produce a homing agent. The substance in question appears to be a protease and its interaction with the collagen matrix appears to be a digestion of the latter into fragments shown to be chemotactic. Both AEBSF, an inhibitor of serine proteases, and leupeptin, an inhibitor of cysteine proteases as well as of trypsin-like serine proteases, but not the broad spectrum MMP inhibitor marimastat, significantly inhibit the observed homing effect and this inhibition is not due to cytotoxicity. Moreover, immunoprecipitation of HTRA1, a trypsin-like serine protease known to be secreted by cells differentiating into all three major mesenchymal lineages and by stressed cells in general and shown to degrade a number of matrix proteins including collagen, significantly diminished the homing effect. The data suggest that this protease is a major contributor to the observed chemotaxis of bone marrow stromal cells. The present study indicates that collagen fragments can mediate the migration of bone marrow stromal cells. The results also suggest that, at least in musculoskeletal and in adipose tissues, matrix remodeling occurrences, usually closely associated with tissue remodeling, should also be regarded as potential stem cells recruitment events.  相似文献   

18.
Mice with the recessive "motheaten" (me) or "viable motheaten" (mev) mutations have severe immunologic disturbances and die at an early age. The function of hemopoietic progenitor cells and microenvironmental elements that regulate their growth and differentiation were studied in mev mice with two types of long term bone marrow cultures. Cells from bone marrow of homozygous defective mev/mev mice were non-productive under conditions that normally support replication of stem cells and production of neutrophil granulocytes. Similarly, in a different culture system, lymphocytes were produced from normal littermate, but not mev/mev bone marrow. Initial overgrowth of cells having macrophage-like characteristics occurred in both culture systems with marrow from defective mice. Co-cultures of normal and defective bone marrow cells were always non-productive. In contrast, supernatants of mev/mev bone marrow cultures did not have a detrimental effect on cultures of normal cells, implying that the suppression was cell-associated. Furthermore, there was no evidence for abnormal release of granulocyte or macrophage growth factors in mev bone marrow cultures. A small population of cells in mev/mev bone marrow cultures were morphologically similar to "stromal" cells that support lymphohemopoiesis. Certain culture strategies could be used to enrich for these. mev/mev stromal cells had affinity for normal lymphocytes; however, they did not support lymphocyte growth. The long term bone marrow cultures thus reveal an apparent imbalance in the regulatory mechanisms affected by these single gene mutations. This is manifested by preferential or aberrant growth of one type of adherent cell and a possible functional abnormality of stromal cells. mev mice could provide an ideal model for investigating cell-associated molecules that normally limit progenitor cell replication.  相似文献   

19.
Dermal cells isolated from the back skin of 7-day chick embryos were cultured on homogeneous two-dimensional substrates consisting of one or two extracellular matrix components (type I, III, or IV collagen, fibronectin and several glycosaminoglycans (GAGs): hyaluronate, chondroitin-4, chondroitin-6, dermatan and heparan sulfates). The effect of these substrates on the production of fibronectin, of types I, III and IV collagen by cells was compared with that of culture dish polystyrene. Using immunofluorescent labeling of cultured cells, it was observed that, on all substrates, in 1-day and 7-day cultures, 85 to 95% of cells contain type I collagen in the perinuclear cytoplasm; label was absent from cell processes. Type I collagen was also detected in extracellular fibers extending between neighboring cells. By contrast, on all substrates, only 5 to 20% of cells produced type III collagen. Otherwise distribution of type III collagen was similar to that of type I collagen. With anti-type IV collagen antibody no staining of either cell content or extracellular spaces was detected. Staining with anti-fibronectin antibody revealed two types of distribution patterns. On polystyrene and on all but type I collagen substrates, labeling revealed clusters of short thick strands and patches of fibronectin-rich material in extracellular spaces. On type I collagen substrate, however, immunostaining revealed a delicate network of regularly spaced parallel fibrils of fibronectin extending between and along cells. Using quantitative radioimmunoassay of the culture media, it was shown that, after 7 days of culture, cells secreted more type I than type III collagen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We studied the effects of 1,25-dihydroxyvitamin D3 and other metabolites of vitamin D3 on the maturation in liquid culture and on colony formation in semisolid media of marrow and buffy coat cells from patients with myeloid leukemias and from normal individuals. After incubation with 1,25-dihydroxy-vitamin D3, a proportion of both normal and leukemic myeloid cells resembled cells of the monocyte-macrophage lineage; these cells expressed alpha-naphthylacetate esterase and were able to phagocytize and kill candida organisms. When granulocyte-macrophage progenitor cells (CFU-GM) were incubated with 1,25-dihydroxyvitamin D3, the number of monocyte-macrophage colonies was increased and the number of granulocyte colonies was reduced; megakaryocyte colony formation (CFU-Mk) was inhibited substantially; and there was no effect on erythroid (BFU-E) or multilineage (CFU-GEMM) progenitor cell colony formation. We propose that 1,25-dihydroxyvitamin D3 may induce cells that are normally committed to differentiate along the granulocytic pathways to differentiate instead along the monocyte-macrophage pathway. If these in vitro observations reflect the in vivo activity of 1,25-dihydroxyvitamin D3, it may be involved in the modulation of collagen deposits in the bone marrow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号