首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
Human hypoxanthine guanine phosphoribosyltransferase (HGPRT) lacks the ability to phosphoribosylate xanthine, a property exhibited by HGPRTs from many parasitic protozoa. Using random mutagenesis we have obtained a mutant, F36L, of human HGPRT that phosphoribosylates xanthine. Examination of the structure indicates that F36 does not make direct contact with the purine, but long-range modulation via loop IV, a segment contacting purine at C2 position, could influence substrate specificity. Expanded substrate specificity to include xanthine probably arises from increased flexibility of loop IV as a consequence of mutation at F36. Mutation of the corresponding residue, L44 in Plasmodium falciparum HGPRT, also results in alteration of K(m) and k(cat) for xanthine, substantiating its role in affecting purine base affinity. Our studies show that mutation of this residue in the core of the protein also affects the stability of both enzymes.  相似文献   

3.
A Héroux  E L White  L J Ross  D W Borhani 《Biochemistry》1999,38(44):14485-14494
The crystal structures of the guanosine 5'-monophosphate (GMP) and inosine 5'-monophosphate (IMP) complexes of Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase (HGPRT) have been determined at 1.65 and 1.90 A resolution. These complexes, which crystallize in space groups P2(1) (a = 65.45 A, b = 90.84 A, c = 80. 26 A, and beta = 92.53 degrees ) and P2(1)2(1)2(1) (a = 84.54 A, b = 102.44 A, and c = 108.83 A), each comprise a tetramer in the crystallographic asymmetric unit. All active sites in the tetramers are fully occupied by the nucleotide. Comparison of these structures with that of the xanthosine 5'-monophosphate (XMP)-pyrophosphate-Mg(2+) ternary complex reported in the following article [Héroux, A., et al. (1999) Biochemistry 38, 14495-14506] shows how T. gondii HGPRT is able to recognize guanine, hypoxanthine, and xanthine as substrates, and suggests why the human enzyme cannot use xanthine efficiently. Comparison with the apoenzyme reveals the structural changes that occur upon binding of purines and ribose 5'-phosphate to HGPRT. Two structural features important to the HGPRT mechanism, a previously unrecognized active site loop (loop III', residues 180-184) and an active site peptide bond (Leu78-Lys79) that adopts both the cis and the trans configurations, are presented.  相似文献   

4.
Guanine uptake and metabolism in Neurospora crassa   总被引:1,自引:0,他引:1       下载免费PDF全文
Guanine is transported into germinated conidia of Neurospora crassa by the general purine base transport system. Guanine uptake is inhibited by adenine and hypoxanthine but not xanthine. Guanine phosphoribosyltransferase (GPRTase) activity was demonstrated in cell extracts of wild-type germinated conidia. The Km for guanine ranged from 29 to 69 micro M in GPRTase assays; the Ki for hypoxanthine was between 50 and 75 micro M. The kinetics of guanine transport differ considerably from the kinetics of GPRTase, strongly suggesting that the rate-limiting step in guanine accumulation in conidia is not that catalyzed by GPRTase. Efflux of guanine or its metabolites appears to have little importance in the regulation of pools of guanine or guanine nucleotides since very small amounts of 14C label were excreted from wild-type conidia preloaded with [8-14C]guanine. In contrast, excretion of purine bases, hypoxanthine, xanthine, and uric acid appears to be a mechanism for regulation of adenine nucleotide pools (Sabina et al., Mol. Gen. Genet. 173:31-38, 1979). No label from exogenous [8-14C]guanine was ever found in any adenine nucleotides, nucleosides, or the base, adenine, upon high-performance liquid chromatography analysis of acid extracts from germinated conidia of wild-type of xdh-l strains. The 14C label from exogenous [8-14C]guanine was found in GMP, GDP, GTP, and the GDP sugars as well as in XMP. Xanthine and uric acid were also labeled in wild-type extracts. Similar results were obtained with xdh-l extracts except that uric acid was not present. The labeled xanthine and XMP strongly suggest the presence of guanase and xanthine phosphoribosyltransferase in germinated conidia.  相似文献   

5.
Leishmania donovani cannot synthesize purines de novo and express a multiplicity of enzymes that enable them to salvage purines from their hosts. Previous efforts to generate an L. donovani strain deficient in both hypoxanthine-guanine phosphoribosyl-transferase (HGPRT) and xanthine phosphoribosyltransferase (XPRT) using gene replacement approaches were not successful, lending indirect support to the hypothesis that either HGPRT or XPRT is crucial for purine salvage by the parasite. We now report the genetic confirmation of this hypothesis through the construction of a conditional delta hgprt/delta xprt mutant strain that exhibits an absolute requirement for 2'-deoxycoformycin, an inhibitor of the leishmanial adenine aminohydrolase enzyme, and either adenine or adenosine as a source of purine. Unlike wild type parasites, the delta hgprt/delta xprt strain cannot proliferate indefinitely without 2'-deoxycoformycin or with hypoxanthine, guanine, xanthine, guanosine, inosine, or xanthosine as the sole purine nutrient. The delta hgprt/delta xprt mutant infects murine bone marrow-derived macrophages <5% as effectively as wild type parasites and cannot sustain an infection. These data establish genetically that either HGPRT or XPRT is absolutely essential for purine acquisition, parasite viability, and parasite infectivity of mouse macrophages, that all exogenous purines are funneled to hypoxanthine and/or xanthine by L. donovani, and that the purine sources within the macrophage to which the parasites have access are HGPRT or XPRT substrates.  相似文献   

6.
Purine metabolism in Toxoplasma gondii   总被引:11,自引:0,他引:11  
We have studied the incorporation and interconversion of purines into nucleotides by freshly isolated Toxoplasma gondii. They did not synthesize nucleotides from formate, glycine, or serine. The purine bases hypoxanthine, xanthine, guanine, and adenine were incorporated at 9.2, 6.2, 5.1, and 4.3 pmol/10(7) cells/h, respectively. The purine nucleosides adenosine, inosine, guanosine, and xanthosine were incorporated at 110, 9.0, 2.7, and 0.3 pmol/10(7) cells/h, respectively. Guanine, xanthine, and their respective nucleosides labeled only guanine nucleotides. Inosine, hypoxanthine, and adenine labeled both adenine and guanine nucleotide pools at nearly equal ratios. Adenosine kinase was greater than 10-fold more active than the next most active enzyme in vitro. This is consistent with the metabolic data in vivo. No other nucleoside kinase or phosphotransferase activities were found. Phosphorylase activities were detected for guanosine and inosine; no other cleavage activities were detected. Deaminases were found for adenine and guanine. Phosphoribosyltransferase activities were detected for all four purine nucleobases. Interconversion occurs only in the direction of adenine to guanine nucleotides.  相似文献   

7.
Purine nucleotide synthesis and interconversion were examined over a range of purine base and nucleoside concentrations in intact N4 and N4TG (hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficient) neuroblastoma cells. Adenosine was a better nucleotide precursor than adenine, hypoxanthine or guanine at concentrations greater than 100 μM. With hypoxanthine or guanine, N4TG cells had less than 2% the rate of nucleotide synthesis of N4 cells. At substrate concentrations greater than 100 μM the rates for deamination of adenosine and phosphorolysis of guanosine exceeded those for any reaction of nucleotide synthesis. Labelled inosine and guanosine accumulated from hypoxanthine and guanine, respectively, in HGPRT-deficient cells and the nucleosides accumulated to a greater extent in N4 cells indicating dephosphorylation of newly synthesized IMP and GMP to be quantitatively significant. A deficiency of xanthine oxidase, guanine deaminase and guanosine kinase activities was found in neuroblastoma cells. Hypoxanthine was a source for both adenine and guanine nucleotides, whereas adenine or guanine were principally sources for adenine (>85%) or guanine (>90%) nucleotides, respectively. The rate of [14C]formate incorporation into ATP, GTP and nucleic acid purines was essentially equivalent for both N4 and N4TG cells. Purine nucleotide pools were also comparable in both cell lines, but the concentration of UDP-sugars was 1.5 times greater in N4TG than N4 cells.  相似文献   

8.
Lesch-Nyhan syndrome is a pediatric metabolic-neurological syndrome caused by the X-linked deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). The cause of the metabolic consequences of HGPRT deficiency has been clarified, but the connection between the enzyme deficiency and the neurological manifestations is still unknown. In search for this connection, in the present study, we characterized purine nucleotide metabolism in primary astroglia cultures from HGPRT-deficient transgenic mice. The HGPRT-deficient astroglia exhibited the basic abnormalities in purine metabolism reported before in neurons and various other HGPRT-deficient cells. The following abnormalities were found: absence of detectable uptake of guanine and of hypoxanthine into intact cell nucleotides; 27.8% increase in the availability of 5-phosphoribosyl-1-pyrophosphate; 9.4-fold acceleration of the rate of de novo nucleotide synthesis; manyfold increase in the excretion into the culture media of hypoxanthine (but normal excretion of xanthine); enhanced loss of label from prelabeled adenine nucleotides (loss of 71% in 24 h, in comparison with 52.7% in the normal cells), due to 4.2-fold greater excretion into the media of labeled hypoxanthine. In addition, the HGPRT-deficient astroglia were shown to contain lower cellular levels of ADP, ATP, and GTP, indicating that the accelerated de novo purine synthesis does not compensate adequately for the deficiency of salvage nucleotide synthesis, and higher level of UTP, probably due to enhanced de novo synthesis of pyrimidine nucleotides. Altered nucleotide content in the brain may have a role in the pathogenesis of the neurological deficit in Lesch-Nyhan syndrome.  相似文献   

9.
Cape buffalo serum contains xanthine oxidase which generates trypanocidal H2O2 during the catabolism of hypoxanthine and xanthine. The present studies show that xanthine oxidase-dependent trypanocidal activity in Cape buffalo serum was also elicited by purine nucleotides, nucleosides, and bases even though xanthine oxidase did not catabolize those purines. The paradox was explained in part, by the presence in serum of purine nucleoside phosphorylase and adenosine deaminase, that, together with xanthine oxidase, catabolized adenosine, inosine, hypoxanthine, and xanthine to uric acid yielding trypanocidal H2O2. In addition, purine catabolism by trypanosomes provided substrates for serum xanthine oxidase and was implicated in the triggering of xanthine oxidase-dependent trypanocidal activity by purines that were not directly catabolized to uric acid in Cape buffalo serum, namely guanosine, guanine, adenine monophosphate, guanosine diphosphate, adenosine 3′:5-cyclic monophosphate, and 1-methylinosine. The concentrations of guanosine and guanine that elicited xanthine oxidase-dependent trypanocidal activity were 30–270-fold lower than those of other purines requiring trypanosome-processing which suggests differential processing by the parasites.  相似文献   

10.
Leishmania possess distinct xanthine phosphoribosyltransferase and hypoxanthine-guanine phosphoribosyltransferase enzymes that mediate purine salvage, an obligatory nutritional function for these pathogenic parasites. The xanthine phosphoribosyltransferase preferentially uses xanthine as a substrate, while the hypoxanthine-guanine phosphoribosyltransferase phosphoribosylates only hypoxanthine and guanine. These related phosphoribosyltransferases were used as model system to investigate the molecular determinants regulating the 6-oxopurine specificity of these enzymes. Analysis of the purine binding domains showed two conserved acidic amino acids; glutamate residues in the xanthine phosphoribosyltransferase (E198 and E215) and aspartate residues in the hypoxanthine-guanine phosphoribosyltransferase (D168 and D185). Genetic and biochemical analysis established that the single E198D and E215D mutations increased the turnover rates of the xanthine phosphoribosyltransferase without altering purine nucleobase specificity. However, the E215Q and E198,215D mutations converted the Leishmania xanthine phosphoribosyltransferase into a broad-specificity enzyme capable of utilizing guanine, hypoxanthine, and xanthine as substrates. Similarly, the D168,185E double mutation transformed the Leishmania hypoxanthine-guanine phosphoribosyltransferase into a mutant enzyme capable phosphoribosylating only xanthine, albeit with a much lower catalytic efficiency. These studies established that these conserved acidic residues play an important role in governing the nucleobase selectivity of the Leishmania 6-oxopurine phosphoribosyltransferases.  相似文献   

11.
The uptake of purine nucleosides (guanosine and hypoxanthine) and bases (guanine, hypoxanthine and adenine) and their incorporation into nucleotides were studied in enterocytes isolated from fed and 3-day fasted guinea pig jejunum. Both total uptake and synthesis of nucleotides were greater for these purines in the fasted, as compared to the fed state for the first 5 min, when the initial substrate concentration in the medium was 10 microM. Increased uptake did not result from a change in the relative distribution of synthesized nucleotides between the fed and fasted states. Reduced catabolism was observed in the medium by enterocytes from fasted as compared to fed animals after 1 min of incubation with both inosine and guanosine. Preincubation of enterocytes with allopurinol (a xanthine oxidase inhibitor) decreased total uptake but increased the formation of IMP from hypoxanthine. Xanthine oxidase activity measured in mucosa from fasted guinea pigs was lower than that from fed animals (6.29 vs. 9.30 nmol/min per mg protein, respectively). However, activities of the salvage enzymes adenine phosphoribosyltransferase and hypoxanthine-guanine phosphoribosyltransferase were not significantly different between the fed and fasted states. These data show that allopurinol treatment, and mucosal atrophy resulting from fasting, decrease xanthine oxidase activity and increase nucleotide synthesis from exogenous substrates in enterocytes from the guinea-pig small intestine, suggesting a regulatory function of mucosal xanthine oxidase in purine salvage by the small intestine.  相似文献   

12.
The synthesis, interconversion, and catabolism of purine bases, ribonucleosides, and ribonucleotides in wild-type Saccharomyces cerevisiae were studied by measuring the conversion of radioactive adenine, hypoxanthine, guanine, and glycine into acid-soluble purine bases, ribonucleosides, and ribonucleotides, and into nucleic acid adenine and guanine. The pathway(s) by which adenine is converted to inosinate is (are) uncertain. Guanine is extensively deaminated to xanthine. In addition, some guanine is converted to inosinate and adenine nucleotides. Inosinate formed either from hypoxanthine or de novo is readily converted to adenine and guanine nucleotides.  相似文献   

13.
A major problem involved in the direct fermentation of nucleotides is their breakdown by phosphohydrolases. Thus, adenine auxotrophs of most microorganisms produce hypoxanthine and/or inosine rather than inosine 5′-monophosphate (IMP) while guanine auxotrophs excrete xanthosine rather than xanthosine 5′-monophosphate (XMP). Examination of a Bacillus subtilis mutant producing hypoxanthine plus inosine revealed at least four phosphohydrolases, three of which could attack nucleotides. Even when the extracellular nucleotide phosphohydrolase was inhibited by Cu+2 and its surface-bound alkaline phosphohydrolase was repressed and inhibited by inorganic phosphate, or removed by mutation, the breakdown products were still the only products of fermentation. Under these conditions, the third enzyme, a surface-bound non-repressible nucleotide phosphohydrolase was still active. It appears, at least in B. subtilis, that excretion is dependent upon breakdown by this enzyme and if hydrolysis does not occur, excretion of purine nucleotides is feedback inhibited by the resultant high intracellular IMP concentration. Corynebacterium glutamicum mutants, on the other hand, can excrete intact nucleotides, and direct fermentations for IMP, XMP, and GMP have been described. An examination of phosphohydrolases in a GMP-producing culture revealed no extracellular or surface enzymes. Disruption of the cells resulted in liberation of cellular phosphohydrolase activity with a substrate specificity remarkably similar to the flavorenhancing properties of the 5′-nucleotides. The order of decreasing susceptibility was GMP, IMP, XMP; AMP was not attacked.  相似文献   

14.
Katahira R  Ashihara H 《Planta》2006,225(1):115-126
To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various 14C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [14C]formate, [2-14C]glycine and [2-14C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP → IMP → inosine → hypoxanthine → xanthine and GMP → guanosine → xanthosine → xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.  相似文献   

15.
Abstract: A rat neuroma cell line (B103 4C), deficient of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), was utilized as a model tissue in search for the biochemical basis of the Lesch-Nyhan syndrome (LNS). The HGPRT-deficient neurons exhibited the following properties: an almost complete absence of uptake of guanine and of hypoxanthine into intact cell nucleotides (0.92% and 0.69% of normal, respectively); a significant increase in the availability of 5'-phosphoribosyl-1-pyrophosphate; a three- to fourfold acceleration of the rate of de novo nucleotide synthesis; a normal excretion of xanthine, but 15-fold increase in the excretion of hypoxanthine into the culture media; a normal cellular purine nucleotide content, including the absence of 5-amino-4-imidazole carboxamide nucleotides (Z-nucleotides), but enhanced turnover of adenine nucleotides (loss of 86% of the radioactivity of the prelabeled pool in 24 h, in comparison to 73% in the normal line), and an elevated UTP content. The results suggest that, under physiological conditions, guanine salvage does not occur in the normal neurons, but that hypoxanthine salvage is of great importance in the homeostasis of the adenine nucleotide pool. The finding of the normal profile of purine nucleotides in the HGPRT-deficient neurons indicates that the lack of hypoxanthine salvage is adequately compensated by the enhanced de novo nucleotide synthesis. These results did not furnish evidence in support of the possibility that GTP or ATP depletion, or Z-nucleotide accumulation, occurs in HGPRT-deficient neurons and that these are etiological factors causing the neurological abnormalities in LNS. On the other hand, the results point to the possibility that elevated hypoxanthine concentration in the brain may have an etiological role in the pathogenesis of LNS.  相似文献   

16.
The enzyme xanthine-guanine phosphoribosyltransferase from Escherichia coli cells harboring the plasmid pSV2gpt has been purified 30-fold to near homogeneity by single-step GMP-agarose affinity chromatography. It has a Km value of 2.5, 42 and 182 microM for the substrates guanine, xanthine and hypoxanthine, respectively, with guanine being the most preferred substrate. The enzyme exhibits a Km value of 38.5 microM for PRib-PP with guanine as second substrate and of 100 microM when xanthine is used as the second substrate. It is markedly inhibited by 6-thioguanine, GMP and to a lesser extent by some other purine analogues. Thioguanine has been found to be the most potent inhibitor. The subunit molecular weight of xanthine-guanine phosphoribosyltransferase was determined to be 19 000. The in situ activity assay on a nondenaturing polyacrylamide gel electrophoresis gel has indicated that a second E. coli phosphoribosyltransferase preferentially uses hypoxanthine as opposed to guanine as a substrate, and it does not use xanthine.  相似文献   

17.
Xanthine phosphoribosyltransferase (XPRTase) from Bacillus subtilis is a representative of the highly xanthine specific XPRTases found in Gram-positive bacteria. These XPRTases constitute a distinct subclass of 6-oxopurine PRTases, which deviate strongly from the major class of H(X)GPRTases with respect to sequence, PRPP binding motif, and oligomeric structure. They are more related with the PurR repressor of Gram-positive bacteria, the adenine PRTase, and orotate PRTase. The catalytic function and high specificity for xanthine of B. subtilis XPRTase were investigated by ligand binding studies and reaction kinetics as a function of pH with xanthine, hypoxanthine, and guanine as substrates. The crystal structure of the dimeric XPRTase-GMP complex was determined to 2.05 A resolution. In a sequential reaction mechanism XPRTase binds first PRPP, stabilizing its active dimeric form, and subsequently xanthine. The XPRTase is able also to react with guanine and hypoxanthine albeit at much lower (10(-)(4)-fold) catalytic efficiency. Different pK(a) values for the bases and variations in their electrostatic potential can account for these catalytic differences. The unique base specificity of XPRTase has been related to a few key residues in the active site. Asn27 can in different orientations form hydrogen bonds to an amino group or an oxo group at the 2-position of the purine base, and Lys156 is positioned to make a hydrogen bond with N7. This and the absence of a catalytic carboxylate group near the N7-position require the purine base to dissociate a proton spontaneously in order to undergo catalysis.  相似文献   

18.
Human tuberculosis (TB) is a major cause of morbidity and mortality worldwide, especially in poor and developing countries. Moreover, the emergence of Mycobacterium tuberculosis strains resistant to first- and second-line anti-TB drugs raises the prospect of virtually incurable TB. Enzymes of the purine phosphoribosyltransferase (PRTase) family are components of purine salvage pathway and have been proposed as drug targets for the development of chemotherapeutic agents against infective and parasitic diseases. The PRTase-catalyzed chemical reaction involves the ribophosphorylation in one step of purine bases (adenine, guanine, hypoxanthine, or xanthine) and their analogues to the respective nucleoside 5′-monophosphate and pyrophosphate. Hypoxanthine–guanine phosphoribosyltransferase (HGPRT; EC 2.4.2.8) is a purine salvage pathway enzyme that specifically recycles hypoxanthine and guanine from the medium, which are in turn converted to, respectively, IMP and GMP. Here we report cloning, DNA sequencing, expression in Escherichia coli BL21 (DE3) cells, purification to homogeneity, N-terminal amino acid sequencing, mass spectrometry analysis, and determination of apparent steady-state kinetic parameters for an in silico predicted M. tuberculosis HGPRT enzyme. These data represent an initial step towards future functional and structural studies, and provide a solid foundation on which to base M. tuberculosis HGPRT-encoding gene manipulation experiments to demonstrate its role in the biology of the bacillus.  相似文献   

19.
Conversion of purines to xanthine by Methanococcus vannielii   总被引:3,自引:0,他引:3  
Based on the finding that Methanococcus vannielii can employ any of several purines as the sole nitrogen source, an investigation was undertaken to elucidate the pathways of purine metabolism in this organism. Cell-free extracts of M. vannielii converted guanine, uric acid, and hypoxanthine to xanthine and also formed guanine from guanine nucleotides or guanosine. The conversions of guanine and uric acid to xanthine appear to occur by pathways similar to those described in clostridia. The conversion of hypoxanthine to xanthine, however, is different than that described for Clostridium cylindrosporum and C. acidiurici, but is similar to that of C. purinolyticum, and apparently involves the direct oxidation of hypoxanthine to xanthine.  相似文献   

20.
The inhibition of nucleic acid synthesis by mycophenolic acid   总被引:16,自引:0,他引:16       下载免费PDF全文
1. Mycophenolic acid, an antibiotic of some antiquity that more recently has been found to have marked activity against a range of tumours in mice and rats, strongly inhibits DNA synthesis in the L strain of fibroblasts in vitro. 2. The extent of the inhibition of DNA synthesis is markedly increased by preincubation of the cells with mycophenolic acid before the addition of [(14)C]thymidine. 3. The inhibition of DNA synthesis by mycophenolic acid in L cells in vitro is reversed by guanine in a non-competitive manner, but not by hypoxanthine, xanthine or adenine. 4. The reversal of inhibition by guanine can be suppressed by hypoxanthine, 6-mercaptopurine and adenine. 5. Mycophenolic acid does not inhibit the incorporation of [(14)C]thymidine into DNA in suspensions of Landschütz and Yoshida ascites cells in vitro. 6. Mycophenolic acid inhibits the conversion of [(14)C]hypoxanthine into cold-acid-soluble and -insoluble guanine nucleotides in Landschütz and Yoshida ascites cells and also in L cells in vitro. There is some increase in the radioactivity of the adenine fraction in the presence of the antibiotic. 7. Mycophenolic acid inhibits the conversion of [(14)C]hypoxanthine into xanthine and guanine fractions in a cell-free system from Landschütz cells capable of converting hypoxanthine into IMP, XMP and GMP. 8. Preparations of IMP dehydrogenase from Landschütz ascites cells, calf thymus and LS cells are strongly inhibited by mycophenolic acid. The inhibition showed mixed type kinetics with K(i) values of between 3.03x10(-8) and 4.5x10(-8)m. 9. Evidence was also obtained for a partial, possibly indirect, inhibition by mycophenolic acid of an early stage of biosynthesis of purine nucleotides as indicated by a decrease in the accumulation of formylglycine amide ribonucleotide induced by the antibiotic azaserine in suspensions of Landschütz and Yoshida ascites cells and L cells in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号