首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Christensen QH  Cronan JE 《Biochemistry》2010,49(46):10024-10036
Bacillus subtilis lacks a recognizable homologue of the LipB octanoyltransferase, an enzyme essential for lipoic acid synthesis in Escherichia coli. LipB transfers the octanoyl moiety from octanoyl-acyl carrier protein to the lipoyl domains of the 2-oxoacid dehydrogenases via a thioester-linked octanoyl-LipB intermediate. The octanoylated dehydrogenase is then converted to the enzymatically active lipoylated species by insertion of two sulfur atoms into the octanoyl moiety by the S-adenosyl-l-methionine radical enzyme, LipA (lipoate synthase). B. subtilis synthesizes lipoic acid and contains a LipA homologue that is fully functional in E. coli. Therefore, the lack of a LipB homologue presented the puzzle of how B. subtilis synthesizes the LipA substrate. We report that B. subtilis encodes an octanoyltransferase that has virtually no sequence resemblance to E. coli LipB but instead has a sequence that resembles that of the E. coli lipoate ligase, LplA. On the basis of this resemblance, these genes have generally been annotated as encoding a lipoate ligase, an enzyme that in E. coli scavenges lipoic acid from the environment but plays no role in de novo synthesis. We have named the B. subtilis octanoyltransferase LipM and find that, like LipB, the LipM reaction proceeds through a thioester-linked acyl enzyme intermediate. The LipM active site nucleophile was identified as C150 by the finding that this thiol becomes modified when LipM is expressed in E. coli. The level of the octanoyl-LipM intermediate can be significantly decreased by blocking fatty acid synthesis during LipM expression, and C150 was confirmed as an essential active site residue by site-directed mutagenesis. LipM homologues seem the sole type of octanoyltransferase present in the firmicutes and are also present in the cyanobacteria. LipM type octanoyltransferases represent a new clade of the PF03099 protein family, suggesting that octanoyl transfer activity has evolved at least twice within this superfamily.  相似文献   

2.
Apicomplexan parasites contain a vestigial plastid called apicoplast which has been suggested to be a site of [Fe-S] cluster biogenesis. Here we report the cloning of lipoic acid synthase (LipA) from Toxoplasma gondii, a well known [Fe-S] protein. It is able to complement a LipA-deficient Escherichia coli strain, clearly demonstrating that the parasite protein is a functional LipA. The N-terminus of T. gondii LipA is unusual with respect to an internal signal peptide preceding an apicoplast targeting domain. Nevertheless, it efficiently targets a reporter protein to the apicoplast of T. gondii whereas co-localization with the fluorescently labeled mitochondrion was not detected. In silico analysis of several apicomplexan genomes indicates that the parasites, in addition to the presumably apicoplast-resident pyruvate dehydrogenase complex, contain three other mitochondrion-localized target proteins for lipoic acid attachment. We also identified single genes for lipoyl (octanoyl)-acyl carrier protein:protein transferase (LipB) and lipoate protein ligase (LplA) in these genomes. It thus appears that unlike plants, which have only two LipA and LipB isoenzymes in both the chloroplasts and the mitochondria, Apicomplexa seem to use the second known lipoylating activity, LplA, for lipoylation in their mitochondrion.  相似文献   

3.
The Escherichia coli lipA gene product has been genetically linked to carbon-sulfur bond formation in lipoic acid biosynthesis [Vanden Boom, T. J., Reed, K. E., and Cronan, J. E., Jr. (1991) J. Bacteriol. 173, 6411-6420], although in vitro lipoate biosynthesis with LipA has never been observed. In this study, the lipA gene and a hexahistidine tagged lipA construct (LipA-His) were overexpressed in E. coli as soluble proteins. The proteins were purified as a mixture of monomeric and dimeric species that contain approximately four iron atoms per LipA polypeptide and a similar amount of acid-labile sulfide. Electron paramagnetic resonance and electronic absorbance spectroscopy indicate that the proteins contain a mixture of [3Fe-4S] and [4Fe-4S] cluster states. Reduction with sodium dithionite results in small quantities of an S = 1/2 [4Fe-4S](1+) cluster with the majority of the protein containing a species consistent with an S = 0 [4Fe-4S](2+) cluster. LipA was assayed for lipoate or lipoyl-ACP formation using E. coli lipoate-protein ligase A (LplA) or lipoyl-[acyl-carrier-protein]-protein-N-lipoyltransferase (LipB), respectively, to lipoylate apo-pyruvate dehydrogenase complex (apo-PDC) [Jordan, S. W., and Cronan, J. E. (1997) Methods Enzymol. 279, 176-183]. When sodium dithionite-reduced LipA was incubated with octanoyl-ACP, LipB, apo-PDC, and S-adenosyl methionine (AdoMet), lipoylated PDC was formed. As shown by this assay, octanoic acid is not a substrate for LipA. Confirmation that LipA catalyzes formation of lipoyl groups from octanoyl-ACP was obtained by MALDI mass spectrometry of a recombinant PDC lipoyl-binding domain that had been lipoylated in a LipA reaction. These results provide information about the mechanism of LipA catalysis and place LipA within the family of iron-sulfur proteins that utilize AdoMet for radical-based chemistry.  相似文献   

4.
Lipoic acid (LA) is an essential cofactor of alpha-keto acid dehydrogenase complexes (KADHs) and the glycine cleavage system. In Plasmodium, LA is attached to the KADHs by organelle-specific lipoylation pathways. Biosynthesis of LA exclusively occurs in the apicoplast, comprising octanoyl-[acyl carrier protein]: protein N-octanoyltransferase (LipB) and LA synthase. Salvage of LA is mitochondrial and scavenged LA is ligated to the KADHs by LA protein ligase 1 (LplA1). Both pathways are entirely independent, suggesting that both are likely to be essential for parasite survival. However, disruption of the LipB gene did not negatively affect parasite growth despite a drastic loss of LA (>90%). Surprisingly, the sole, apicoplast-located pyruvate dehydrogenase still showed lipoylation, suggesting that an alternative lipoylation pathway exists in this organelle. We provide evidence that this residual lipoylation is attributable to the dual targeted, functional lipoate protein ligase 2 (LplA2). Localisation studies show that LplA2 is present in both mitochondrion and apicoplast suggesting redundancy between the lipoic acid protein ligases in the erythrocytic stages of P. falciparum.  相似文献   

5.
Lipoic acid is a covalently bound cofactor found throughout the domains of life that is required for aerobic metabolism of 2-oxoacids and for C1 metabolism. Utilization of exogenous lipoate is catalyzed by a ligation reaction that proceeds via a lipoyl-adenylate intermediate to attach the cofactor to the ϵ-amino group of a conserved lysine residue of protein lipoyl domains. The lipoyl ligases of demonstrated function have a large N-terminal catalytic domain and a small C-terminal accessory domain. Half of the members of the LplA family detected in silico have only the large catalytic domain. Two x-ray structures of the Thermoplasma acidophilum LplA structure have been reported, although the protein was reported to lack ligase activity. McManus et al. (McManus, E., Luisi, B. F., and Perham, R. N. (2006) J. Mol. Biol. 356, 625–637) hypothesized that the product of an adjacent gene was also required for ligase activity. We have shown this to be the case and have named the second protein, LplB. We found that complementation of Escherichia coli strains lacking lipoate ligase with T. acidophilum LplA was possible only when LplB was also present. LplA had no detectable ligase activity in vitro in the absence of LplB. Moreover LplA and LplB were shown to interact and were purified as a heterodimer. LplB was required for lipoyl-adenylate formation but was not required for transfer of the lipoyl moiety of lipoyl-adenylate to acceptor proteins. Surveys of sequenced genomes show that most lipoyl ligases of the kingdom Archaea are heterodimeric. We propose that the presence of an accessory domain provides a diagnostic to distinguish lipoyl ligase homologues from other members of the lipoate/biotin attachment enzyme family.Lipoic acid is a covalently bound cofactor that conveys activated reaction intermediates between different active sites of multienzyme complexes (1). Lipoate is essential for aerobic metabolism of 2-oxoacids and for glycine cleavage. In its active form lipoate is attached to the ϵ-amino group of a small (∼80-residue) well conserved lipoyl domain (LD)2 lysine residue via an amide bond. LDs are typically found at the N termini of the E2 subunits of 2-oxoacid dehydrogenase complexes. In the 2-oxoacid complexes, lipoylated LD receives the decarboxylated acid from the E1 subunit active site in thioester linkage to a lipoate thiol. The acyl thioester is then converted to the corresponding CoA thioester by thioester exchange catalyzed by the E2 subunit active site. The dihydrolipoamide dehydrogenase subunit (E3) then oxidizes the dihydrolipoyl-LD back to the lipoyl-LD to reset the catalytic cycle. In the glycine cleavage (also called glycine decarboxylase and glycine dehydrogenase) system, the lipoyl domain exists as a free protein designated H. Lipoyl-LD receives the product of glycine decarboxylation, methylamine, from the P protein. The methylamine is then transferred to the T protein to produce methylenetetrahydrofolate that is typically used to synthesize serine from a second molecule of glycine. In Escherichia coli, lipoic acid is essential for aerobic growth because of the need for pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase. The glycine cleavage system is not required for growth of wild type E. coli strains but is required for growth of Arabidopsis where the H protein can be present at millimolar concentrations in photosynthetic cells (2).The reactions whereby lipoic acid-modified proteins are produced are best understood in E. coli. The most straightforward pathway is via lipoate-protein ligase, an activity first described by L. J. Reed et al. (3) (see Fig. 1). These workers postulated that lipoate was attached to protein by a two-step ATP-dependent reaction with lipoyl-AMP as an activated intermediate (Fig. 1). Although the lipoate-protein ligases were key reagents in demonstration of the role of lipoic acid in the 2-oxoacid dehydrogenase reactions (3, 4), the protein was not purified to homogeneity, and thus the proposed mechanism could not be considered proved. The E. coli lplA gene was the first gene encoding a lipoate-protein ligase isolated, and LplA was the first such ligase purified to homogeneity (5, 6). The isolation of null mutants in lplA showed that LplA does not play a role in de novo lipoic acid synthesis but rather acts to scavenge lipoic acid from the environment (6, 7).Open in a separate windowFIGURE 1.Lipoic acid metabolism in E. coli. Panel A, the lipoyl ligase (LplA) reaction that proceeds through the lipoyl-adenylate intermediate. In E. coli LplA acts to scavenge lipoic acid from the growth medium. Panel B, schematic of lipoic acid synthesis in E. coli. LipB transfers an octanoyl moiety from the fatty acid biosynthetic intermediate, octanoyl-acyl carrier protein, to the LD domain of a lipoate-accepting protein (in this case the E2 subunit of a 2-oxoacid dehydrogenase). The octanoylated LD domain is the substrate of LipA, an S-adenosylmethionine radical enzyme that replaces one hydrogen atom on each of octanoate carbons 6 and 8 with sulfur atoms. Panel C, the differing arrangements of genes and domains found in lipoate ligases in T. acidophilum, E. coli, and Streptomyces coelicolor. Only a single nucleotide lies between the T. acidophilum LplB and LplA coding sequences.LplA is a 38-kDa monomeric protein (5). Assays with a fully defined system have demonstrated that LplA plus lipoate and Mg-ATP are sufficient to reconstitute lipoylation in vitro and that lipoyl-AMP is a reaction intermediate (5, 6, 8, 9). Thus, it is clear that LplA catalyzes both the ATP-dependent activation of lipoate to lipoyl-AMP as well as the transfer of this activated lipoyl species to apoprotein with concomitant release of AMP. The E. coli LplA enzyme has been shown to be capable of utilizing lipoate and several lipoate analogues such as octanoate as donors for the post-translational modification of E2 apoproteins in vivo (5, 6).Recently crystal structures of E. coli LplA and of LplA homologues have been reported including an E. coli LplA-lipoic acid complex (1012). The reported structures of the unliganded proteins agree well and show E. coli LplA to be a two-domain protein consisting of a large N-terminal domain and a small C-terminal domain (Figs. 1 and and2).2). However, the E. coli LplA-lipoic acid complex is difficult to interpret because lipoic acid molecules were heterogeneously bound to LplA molecules within the crystals and were poorly resolved. In one case the lipoic acid carboxyl was hydrogen-bonded to Ser-72, whereas in another case Arg-140 was the hydrogen bond donor (10). Because enzymes rarely show such plasticity and lipoic acid is a hydrophobic molecule, it seemed possible that the observed association of the cofactor with a hydrophobic LplA surface in the interdomain cavity was artifactual. Moreover in prior work K. E. Reed et al. (13) had isolated LplA mutants resistant to inhibition by an analogue of lipoic acid in which the sulfur atoms had been replaced with selenium. Because this is a very discrete modification of the LplA substrate, the mutant protein would be expected to have an alteration close to the pocket that binds the lipoic acid thiolane ring. However, the site of this mutation (Gly-76 to serine (7)) was distal from the lipoate binding site reported. This dilemma was resolved by two lipoic acid-containing structures of an LplA homologue from the archaeon Thermoplasma acidophilum (11, 12) that can be readily superimposed on the E. coli LplA structure except that the T. acidophilum protein lacks the E. coli LplA C-terminal domain (Fig. 2). In both T. acidophilum structures the lipoate thiolane ring was adjacent to the glycine residue that corresponds to E. coli Gly-76, the residue giving resistance to the selenium analogue, and a plausible reorganization of the molecule to prevent binding of the slightly larger analogue was proposed (12). Moreover addition of lipoic acid to a complex of the T. acidophilum LplA with ATP gave lipoyl-AMP showing that the lipoic acid was bound in a physiologically meaningful manner (11). The lipoyl-AMP was bound in a U-shaped pocket and was well shielded from solvent. Thus, it seems that the locations of the lipoate moieties in the two T. acidophilum LplA structures indicate that these represent catalytically competent lipoate binding sites (rather than the sites of E. coli LplA where lipoate bound). A caveat was that the T. acidophilum LplA was inactive in catalysis of the overall LplA reaction (12). Because T. acidophilum LplA lacks the C-terminal domain (CTD) of E. coli LplA (11, 12), this suggested that the missing domain was required for activity, and a second protein was proposed to interact with T. acidophilum LplA to allow the complete reaction (12). If this were the case, the T. acidophilum lipoyl ligase would provide an unusually facile system to investigate the role of the CTD in lipoate-protein ligases.Open in a separate windowFIGURE 2.Structural alignments of LplA and LipB structures. Previously published crystal structures were aligned using DeepView (37). Panel A, E. coli LplA (Protein Data Bank code 1X2H in green) aligned with T. acidophilum LplA (Protein Data Bank code 2ART in orange). The lipoyl-adenylate intermediate bound to T. acidophilum LplA is shown in purple. The adenylate binding loop is indicated with an arrow. Panel B, M. tuberculosis LipB (Protein Data Bank code 1W66 in gray) is aligned with the E. coli LplA structure of panel A. The purple line denotes the covalent decanoate adduct present in the M. tuberculosis LipB structure. The substrate binding pocket is conserved among members of the protein family. The accessory domain is not part of the binding pocket and appears to play an indirect role in catalysis.If the lipoate-protein ligase reaction can be catalyzed by a heteromeric protein this may allow better discrimination of lipoyl ligases from acyl carrier protein:protein octanoyltransferases. In E. coli de novo lipoic acid biosynthesis is accomplished by two enzymes, the LipB octanoyltransferase and the LipA lipoyl synthase (14) (Fig. 1). LipB transfers the octanoate moiety from the octanoyl-acyl carrier protein intermediate of fatty acid biosynthesis to the ϵ-amine of the conserved LD lysine residue resulting in amide-linked octanoate (Fig. 1). LipA then catalyzes replacement of a hydrogen atom on each of octanoate carbons 6 and 8 with sulfur atoms derived from a LipA iron-sulfur center via an S-adenosylmethionine-dependent radical mechanism (14, 15). That is, lipoic acid is assembled on its cognate proteins (16).Although the two classes of LD-modifying enzymes, LplA and LipB, show very low amino acid sequence conservation and utilize different chemistries, the proteins surprisingly show structural conservation and have related active site architectures (17, 18) (Fig. 2). The Mycobacterium tuberculosis LipB and T. acidophilum LplA can be superimposed by using all matching Cα positions with a root mean square deviation of ≈2.5 Å with good topological matching of most secondary structural elements (18). Hence in length and structure LipBs resemble LplAs that lack the C-terminal domain. Although the E. coli LipB and LplA sequences align very poorly, a large number of proteins in the data bases have similarities to both proteins, and therefore annotation of a given protein as a ligase or octanoyltransferase is not straightforward. If an LplA CTD can be a separate protein, an additional criterion to distinguish lipoate ligases and octanoyltransferases would be available. It should be noted that biotin ligases also show structural (but not sequence) conservation with LipB and LplA, and this group of proteins comprises the Pfam family PF03099 (19). However, all known biotin ligases have a C-terminal domain that greatly aids in their annotation. We report that, as predicted by McManus et al. (12), the CTD function essential for lipoate-protein ligase activity is encoded by a gene located immediately upstream of T. acidophilum lplA that we call lplB.  相似文献   

6.
Metagenomic analyses have advanced our understanding of ecological microbial diversity, but to what extent can metagenomic data be used to predict the metabolic capacity of difficult-to-study organisms and their abiotic environmental interactions? We tackle this question, using a comparative genomic approach, by considering the molecular basis of aerobiosis within archaea. Lipoylation, the covalent attachment of lipoic acid to 2-oxoacid dehydrogenase multienzyme complexes (OADHCs), is essential for metabolism in aerobic bacteria and eukarya. Lipoylation is catalysed either by lipoate protein ligase (LplA), which in archaea is typically encoded by two genes (LplA-N and LplA-C), or by a lipoyl(octanoyl) transferase (LipB or LipM) plus a lipoic acid synthetase (LipA). Does the genomic presence of lipoylation and OADHC genes across archaea from diverse habitats correlate with aerobiosis? First, analyses of 11,826 biotin protein ligase (BPL)-LplA-LipB transferase family members and 147 archaeal genomes identified 85 species with lipoylation capabilities and provided support for multiple ancestral acquisitions of lipoylation pathways during archaeal evolution. Second, with the exception of the Sulfolobales order, the majority of species possessing lipoylation systems exclusively retain LplA, or either LipB or LipM, consistent with archaeal genome streamlining. Third, obligate anaerobic archaea display widespread loss of lipoylation and OADHC genes. Conversely, a high level of correspondence is observed between aerobiosis and the presence of LplA/LipB/LipM, LipA and OADHC E2, consistent with the role of lipoylation in aerobic metabolism. This correspondence between OADHC lipoylation capacity and aerobiosis indicates that genomic pathway profiling in archaea is informative and that well characterized pathways may be predictive in relation to abiotic conditions in difficult-to-study extremophiles. Given the highly variable retention of gene repertoires across the archaea, the extension of comparative genomic pathway profiling to broader metabolic and homeostasis networks should be useful in revealing characteristics from metagenomic datasets related to adaptations to diverse environments.  相似文献   

7.
In an earlier study (S. W. Jordan and J. E. Cronan, Jr., J. Biol. Chem. 272:17903-17906, 1997) we reported a new enzyme, lipoyl-[acyl carrier protein]-protein N-lipoyltransferase, in Escherichia coli and mitochondria that transfers lipoic acid from lipoyl-acyl carrier protein to the lipoyl domains of pyruvate dehydrogenase. It was also shown that E. coli lipB mutants lack this enzyme activity, a finding consistent with lipB being the gene that encoded the lipoyltransferase. However, it remained possible that lipB encoded a positive regulator required for lipoyltransferase expression or action. We now report genetic and biochemical evidence demonstrating that lipB encodes the lipoyltransferase. A lipB temperature-sensitive mutant was shown to produce a thermolabile lipoyltransferase and a tagged version of the lipB-encoded protein was purified to homogeneity and shown to catalyze the transfer of either lipoic acid or octanoic acid from their acyl carrier protein thioesters to the lipoyl domain of pyruvate dehydrogenase. In the course of these experiments the ATG initiation codon commonly assigned to lipB genes in genomic databases was shown to produce a nonfunctional E. coli LipB protein, whereas initiation at an upstream TTG codon gave a stable and enzymatically active protein. Prior genetic results (T. W. Morris, K. E. Reed, and J. E. Cronan, Jr., J. Bacteriol. 177:1-10, 1995) suggested that lipoate protein ligase (LplA) could also utilize (albeit poorly) acyl carrier protein substrates in addition to its normal substrates lipoic acid plus ATP. We have detected a very slow LplA-catalyzed transfer of lipoic acid and octanoic acid from their acyl carrier protein thioesters to the lipoyl domain of pyruvate dehydrogenase. A nonhydrolyzable lipoyl-AMP analogue was found to competitively inhibit both ACP-dependent and ATP-dependent reactions of LplA, suggesting that the same active site catalyzes two chemically diverse reactions.  相似文献   

8.
In the companion paper we reported that Bacillus subtilis requires three proteins for lipoic acid metabolism, all of which are members of the lipoate protein ligase family. Two of the proteins, LipM and LplJ, have been shown to be an octanoyltransferase and a lipoate : protein ligase respectively. The third protein, LipL, is essential for lipoic acid synthesis, but had no detectable octanoyltransferase or ligase activity either in vitro or in vivo. We report that LipM specifically modifies the glycine cleavage system protein, GcvH, and therefore another mechanism must exist for modification of other lipoic acid requiring enzymes (e.g. pyruvate dehydrogenase). We show that this function is provided by LipL, which catalyses the amidotransfer (transamidation) of the octanoyl moiety from octanoyl‐GcvH to the E2 subunit of pyruvate dehydrogenase. LipL activity was demonstrated in vitro with purified components and proceeds via a thioester‐linked acyl‐enzyme intermediate. As predicted, ΔgcvH strains are lipoate auxotrophs. LipL represents a new enzyme activity. It is a GcvH:[lipoyl domain] amidotransferase that probably uses a Cys‐Lys catalytic dyad. Although the active site cysteine residues of LipL and LipB are located in different positions within the polypeptide chains, alignment of their structures show these residues occupy similar positions. Thus, these two homologous enzymes have convergent architectures.  相似文献   

9.
Lipoate-protein ligase A (LplA) catalyzes the formation of lipoyl-AMP from lipoate and ATP and then transfers the lipoyl moiety to a specific lysine residue on the acyltransferase subunit of alpha-ketoacid dehydrogenase complexes and on H-protein of the glycine cleavage system. The lypoyllysine arm plays a pivotal role in the complexes by shuttling the reaction intermediate and reducing equivalents between the active sites of the components of the complexes. We have determined the X-ray crystal structures of Escherichia coli LplA alone and in a complex with lipoic acid at 2.4 and 2.9 angstroms resolution, respectively. The structure of LplA consists of a large N-terminal domain and a small C-terminal domain. The structure identifies the substrate binding pocket at the interface between the two domains. Lipoic acid is bound in a hydrophobic cavity in the N-terminal domain through hydrophobic interactions and a weak hydrogen bond between carboxyl group of lipoic acid and the Ser-72 or Arg-140 residue of LplA. No large conformational change was observed in the main chain structure upon the binding of lipoic acid.  相似文献   

10.
The LipB octanoyltransferase catalyzes the first step of lipoic acid synthesis in Escherichia coli, transfer of the octanoyl moiety from octanoyl-acyl carrier protein to the lipoyl domains of the E2 subunits of the 2-oxoacid dehydrogenases of aerobic metabolism. Strains containing null mutations in lipB are auxotrophic for either lipoic acid or octanoic acid. We report the isolation of two spontaneously arising mutant strains that allow growth of lipB strains on glucose minimal medium; we determined that suppression was caused by single missense mutations within the coding sequence of the gene (lplA) that encodes lipoate-protein ligase. The LplA proteins encoded by the mutant genes have reduced Km values for free octanoic acid and thus are able to scavenge cytosolic octanoic acid for octanoylation of lipoyl domains.Escherichia coli has three lipoic acid-dependent enzyme systems: pyruvate dehydrogenase (PDH), 2-oxoglutarate dehydrogenase (OGDH), and the glycine cleavage system (GCV) (8). PDH catalyzes the oxidative decarboxylation of pyruvate to acetyl-coenzyme A (CoA), the tricarboxylic acid (TCA) cycle substrate and fatty acid building block. OGDH functions in the TCA cycle, where it catalyzes the decarboxylation of 2-oxoglutarate to succinyl-CoA, the precursor of several amino acids. GCV is involved in the breakdown of glycine into ammonia and C1 units. Whereas GCV is expressed only in the presence of glycine, PDH and OGDH are required for aerobic growth. (During anaerobic growth, acetyl-CoA is synthesized by other enzymes and an OGDH-independent branched form of the TCA cycle forms succinyl-CoA from succinate.) The three enzyme systems contain subunits (the E2 subunits of PDH and OGDH and the H protein of GCV) which contain at least one lipoyl domain, a conserved structure of ca. 80 residues (8). Lipoic acid is attached in an amide bond to a specific lysine residue of these domains, where it functions as a classical “swinging arm,” carrying reaction intermediates between the active sites of the lipoate-dependent systems (27).Lipoic acid [R-5-(1,2-dithiolan-3-yl)pentanoic acid, also called 6,8-dithiooctanoic acid and thioctic acid] is composed of an eight-carbon fatty acid backbone to which two sulfur atoms are attached at carbons 6 and 8 (Fig. (Fig.1).1). In the oxidized state, the sulfur atoms are in a disulfide linkage forming a five-membered ring with three backbone carbons. The disulfide bond is reduced upon binding of the intermediates (an acetyl moiety in the case of PDH, a succinyl moiety in the case of OGDH, and an aminomethyl moiety in the case of GCV). Following release of the intermediates to form the products of the enzyme complexes, the reduced lipoyl moiety must be reoxidized before entering another catalytic cycle. Oxidation is catalyzed by lipoamide dehydrogenase, a subunit component of the three lipoic acid-dependent enzyme systems (8). E. coli strains defective in lipoic acid biosynthesis are unable to grow on aerobic glucose minimal media unless the media are supplemented with acetate and succinate to bypass the need for the two lipoic acid-dependent dehydrogenases (15, 32).Open in a separate windowFIG. 1.Lipoic acid metabolism in E. coli. (A) LplA lipoate ligase reaction, in which lipoate reacts with ATP to form the activated intermediate, lipoyl-adenylate (lipoyl-AMP), which remains firmly bound within the active site. The lipoyl-adenylate mixed anhydride bond is then attacked by the ɛ-amino group of the target lysine residue of the acceptor lipoyl domain to form lipoylated protein. LplA also utilizes octanoic acid. (B) Lipoic acid synthesis in E. coli. LipB transfers an octanoyl moiety from the fatty acid biosynthetic intermediate, octanoyl-ACP, to the lipoyl domain of a lipoate-accepting protein (in this case the E2 subunit of a 2-oxoacid dehydrogenase). The octanoylated domain is the substrate of LipA, an S-adenosylmethionine radical enzyme that replaces one hydrogen atom on each of octanoate carbons 6 and 8 with sulfur atoms. For a review, see reference 8.Studies in our laboratory and others have elucidated the lipoic acid synthesis pathway of E. coli (Fig. (Fig.1).1). The LipB octanoyl-[acyl carrier protein {ACP}]:protein N-octanoyltransferase (20, 33, 34) transfers the octanoyl moiety from octanoyl-ACP, a fatty acid biosynthetic intermediate, to lipoyl domains. This reaction proceeds through an acyl enzyme intermediate in which the octanoyl moiety is in thioester linkage to a conserved cysteine residue in the enzyme active site (22, 33). The thioester bond is then attacked by the ɛ-amino group of the target lipoyl domain lysine residue to give the amide-linked lipoate moiety. The product of this catalysis, an octanoyl domain, is the substrate of the LipA lipoate synthase, an S-adenosylmethionine radical enzyme which inserts sulfur atoms at carbons 6 and 8. In addition to the LipB-LipA pathway of lipoic acid synthesis, E. coli also contains an enzyme that scavenges lipoic acid from the growth medium, the LplA lipoate-protein ligase. LplA uses ATP to activate lipoic acid to lipoyl-adenylate, the mixed anhydride of which is attacked by the lipoyl domain lysine reside to give the lipoylated domain (Fig. (Fig.1).1). LplA is also active with octanoic acid and efficiently attaches exogenous octanoate to lipoyl domains both in vivo and in vitro (11, 25, 26, 34). lplA null mutants have no phenotype in strains having an intact lipoic acid synthesis pathway (26).The subject of this report is the behavior of lipB null mutants, which (as expected from the above discussion) are lipoic acid auxotrophs (26, 32). Growth of lipB strains can also be supported by supplementation of the medium with octanoate (34). Upon plating of lipB null mutants on plates of minimal glucose medium, colonies arise that no longer require lipoic acid (26). These are suppressor mutations because the block in lipoic acid synthesis remains. Suppression in the strains studied in this work maps to the lplA gene. The LplA proteins encoded by these suppressor mutants contain point mutations that greatly decrease the Michaelis constant for free octanoic acid and allow efficient scavenging of cytosolic octanoate.  相似文献   

11.
The bacterial pathogen Listeria monocytogenes replicates within the cytosol of mammalian cells. Mechanisms by which the bacterium exploits the host cytosolic environment for essential nutrients are poorly defined. L. monocytogenes is a lipoate auxotroph and must scavenge this critical cofactor, using lipoate ligases to facilitate attachment of the lipoyl moiety to metabolic enzyme complexes. Although the L. monocytogenes genome encodes two putative lipoate ligases, LplA1 and LplA2, intracellular replication and virulence require only LplA1. Here we show that LplA1 enables utilization of host-derived lipoyl peptides by L. monocytogenes. LplA1 is dispensable for growth in the presence of free lipoate, but necessary for growth on low concentrations of mammalian lipoyl peptides. Furthermore, we demonstrate that the intracellular growth defect of the DeltalplA1 mutant is rescued by addition of exogenous lipoic acid to host cells, suggesting that L. monocytogenes dependence on LplA1 is dictated by limiting concentrations of available host lipoyl substrates. Thus, the ability of L. monocytogenes and other intracellular pathogens to efficiently use host lipoyl peptides as a source of lipoate may be a requisite adaptation for life within the mammalian cell.  相似文献   

12.
Lipoic acid is a cofactor required for intermediary metabolism that is either synthesized de novo or acquired from environmental sources. The bacterial pathogen Staphylococcus aureus encodes enzymes required for de novo biosynthesis, but also encodes two ligases, LplA1 and LplA2, that are sufficient for lipoic acid salvage during infection. S. aureus also encodes two H proteins, GcvH of the glycine cleavage system and the homologous GcvH‐L encoded in an operon with LplA2. GcvH is a recognized conduit for lipoyl transfer to α‐ketoacid dehydrogenase E2 subunits, while the function of GcvH‐L remains unclear. The potential to produce two ligases and two H proteins is an unusual characteristic of S. aureus that is unlike most other Gram positive Firmicutes and might allude to an expanded pathway of lipoic acid acquisition in this microorganism. Here, we demonstrate that LplA1 and LplA2 facilitate lipoic acid salvage by differentially targeting lipoyl domain‐containing proteins; LplA1 targets H proteins and LplA2 targets α‐ketoacid dehydrogenase E2 subunits. Furthermore, GcvH and GcvH‐L both facilitate lipoyl relay to E2 subunits. Altogether, these studies identify an expanded mode of lipoic acid salvage used by S. aureus and more broadly underscore the importance of bacterial adaptations when faced with nutritional limitation.  相似文献   

13.
Two genes, lipA and lipB, involved in lipoic acid biosynthesis or metabolism were characterized by DNA sequence analysis. The translational initiation site of the lipA gene was established, and the lipB gene product was identified as a 25-kDa protein. Overproduction of LipA resulted in the formation of inclusion bodies, from which the protein was readily purified. Cells grown under strictly anaerobic conditions required the lipA and lipB gene products for the synthesis of a functional glycine cleavage system. Mutants carrying a null mutation in the lipB gene retained a partial ability to synthesize lipoic acid and produced low levels of pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase activities. The lipA gene product failed to convert protein-bound octanoic acid moieties to lipoic acid moieties in vivo; however, the growth of both lipA and lipB mutants was supported by either 6-thiooctanoic acid or 8-thiooctanoic acid in place of lipoic acid. These data suggest that LipA is required for the insertion of the first sulfur into the octanoic acid backbone. LipB functions downstream of LipA, but its role in lipoic acid metabolism remains unclear.  相似文献   

14.
Lipoyl-lysine swinging arms are crucial to the reactions catalysed by the 2-oxo acid dehydrogenase multienzyme complexes. A gene encoding a putative lipoate protein ligase (LplA) of Thermoplasma acidophilum was cloned and expressed in Escherichia coli. The recombinant protein, a monomer of molecular mass 29 kDa, was catalytically inactive. Crystal structures in the absence and presence of bound lipoic acid were solved at 2.1 A resolution. The protein was found to fall into the alpha/beta class and to be structurally homologous to the catalytic domains of class II aminoacyl-tRNA synthases and biotin protein ligase, BirA. Lipoic acid in LplA was bound in the same position as biotin in BirA. The structure of the T.acidophilum LplA and limited proteolysis of E.coli LplA together highlighted some key features of the post-translational modification. A loop comprising residues 71-79 in the T.acidophilum ligase is proposed as interacting with the dithiolane ring of lipoic acid and discriminating against the entry of biotin. A second loop comprising residues 179-193 was disordered in the T.acidophilum structure; tryptic cleavage of the corresponding loop in the E.coli LplA under non-denaturing conditions rendered the enzyme catalytically inactive, emphasizing its importance. The putative LplA of T.acidophilum lacks a C-terminal domain found in its counterparts in E.coli (Gram-negative) or Streptococcus pneumoniae (Gram-positive). A gene encoding a protein that appears to have structural homology to the additional domain in the E.coli and S.pneumoniae enzymes was detected alongside the structural gene encoding the putative LplA in the T.acidophilum genome. It is likely that this protein is required to confer activity on the LplA as currently purified, one protein perhaps catalysing the formation of the obligatory lipoyl-AMP intermediate, and the other transferring the lipoyl group from it to the specific lysine residue in the target protein.  相似文献   

15.
Lipoic acid is a covalently bound disulfide-containing cofactor required for function of the pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and glycine cleavage enzyme complexes of Escherichia coli. Recently we described the isolation of the lplA locus, the first gene known to encode a lipoyl-protein ligase for the attachment of lipoyl groups to lipoate-dependent apoenzymes (T. W. Morris, K. E. Reed, and J. E. Cronan, Jr., J. Biol. Chem. 269:16091-16100, 1994). Here, we report an unexpected redundancy between the functions of lplA and lipB, a gene previously identified as a putative lipoate biosynthetic locus. First, analysis of lplA null mutants revealed the existence of a second lipoyl ligase enzyme. We found that lplA null mutants displayed no growth defects unless combined with lipA (lipoate synthesis) or lipB mutations and that overexpression of wild-type LplA suppressed lipB null mutations. Assays of growth, transport, lipoyl-protein content, and apoprotein modification demonstrated that lplA encoded a ligase for the incorporation of exogenously supplied lipoate, whereas lipB was required for function of the second lipoyl ligase, which utilizes lipoyl groups generated via endogenous (lipA-mediated) biosynthesis. The lipB-dependent ligase was further shown to cause the accumulation of aberrantly modified octanoyl-proteins in lipoate-deficient cells. Lipoate uptake assays of strains that overproduced lipoate-accepting apoproteins also demonstrated coupling between transport and the subsequent ligation of lipoate to apoprotein by the LplA enzyme. Although mutations in two genes (fadD and fadL) involved in fatty acid failed to affect lipoate utilization, disruption of the smp gene severely decreased lipoate utilization. DNA sequencing of the previously identified slr1 selenolipoate resistance mutation (K. E. Reed, T. W. Morris, and J. E. Cronan, Jr., Proc. Natl. Acad. Sci. USA 91:3720-3724, 1994) showed this mutation (now called lplA1) to be a G76S substitution in the LplA ligase. When compared with the wild-type allele, the cloned lplA1 allele conferred a threefold increase in the ability to discriminate against the selenium-containing analog. These results support a two-pathway/two-ligase model of lipoate metabolism in E. coli.  相似文献   

16.
Enterococcus faecalis lipoamidase was discovered almost 50 years ago (Reed, L. J., Koike, M., Levitch, M. E., and Leach, F. R. (1958) J. Biol. Chem. 232, 143-158) as an enzyme activity that cleaved lipoic acid from small lipoylated molecules and from pyruvate dehydrogenase thereby inactivating the enzyme. Although the partially purified enzyme was a key reagent in proving the crucial role of protein-bound lipoic acid in the reaction mechanism of the 2-oxoacid dehydrogenases, the identity of the lipoamidase protein and the encoding gene remained unknown. We report isolation of the lipoamidase gene by screening an expression library made in an unusual cosmid vector in which the copy number of the vector is readily varied from 1-2 to 40-80 in an appropriate Escherichia coli host. Although designed for manipulation of large genome segments, the vector was also ideally suited to isolation of the gene encoding the extremely toxic lipoamidase. The gene encoding lipoamidase was isolated by screening for expression in E. coli and proved to encode an unexpectedly large protein (80 kDa) that contained the sequence signature of the Ser-Ser-Lys triad amidohydrolase family. The hexa-histidine-tagged protein was expressed in E. coli and purified to near-homogeneity. The purified enzyme was found to cleave both small molecule lipoylated and biotinylated substrates as well as lipoic acid from two 2-oxoacid dehydrogenases and an isolated lipoylated lipoyl domain derived from the pyruvate dehydrogenase E2 subunit. Lipoamidase-mediated inactivation of the 2-oxoacid dehydrogenases was observed both in vivo and in vitro. Mutagenesis studies showed that the residues of the Ser-Ser-Lys triad were required for activity on both small molecule and protein substrates and confirmed that lipoamidase is a member of the Ser-Ser-Lys triad amidohydrolase family.  相似文献   

17.
Lipoic acid is an essential cofactor required for the function of key metabolic pathways in most organisms. We report the characterization of a Bacillus subtilis mutant obtained by disruption of the lipA (yutB) gene, which encodes lipoyl synthase (LipA), the enzyme that catalyzes the final step in the de novo biosynthesis of this cofactor. The function of lipA was inferred from the results of genetic and physiological experiments, and this study investigated its role in B. subtilis fatty acid metabolism. Interrupting lipoate-dependent reactions strongly inhibits growth in minimal medium, impairing the generation of branched-chain fatty acids and leading to accumulation of copious amounts of straight-chain saturated fatty acids in B. subtilis membranes. Although depletion of LipA induces the expression of the Δ5 desaturase, controlled by a two-component system that senses changes in membrane properties, the synthesis of unsaturated fatty acids is insufficient to support growth in the absence of precursors for branched-chain fatty acids. However, unsaturated fatty acids generated by deregulated overexpression of the Δ5 desaturase functionally replaces lipoic acid-dependent synthesis of branched-chain fatty acids. Furthermore, we show that the cold-sensitive phenotype of a B. subtilis strain deficient in Δ5 desaturase is suppressed by isoleucine only if LipA is present.Lipoic acid (LA; 6,8-thioctic acid or 1,2-dithiolane-3-pentanoic acid) is a sulfur-containing cofactor required for the function of several key enzymes involved in oxidative and single-carbon metabolism, including pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, branched-chain 2-oxoacid dehydrogenase (BCKADH), acetoin dehydrogenase, and the glycine cleavage system (10). Lipoate-requiring complexes typically contain three protein subunits, E1, E2, and E3. LA is linked through an amide bond to lysine residues in the E2 subunits (42) and acts as a swinging arm, transferring covalently attached reaction intermediates among the active sites of the enzyme complexes (40).Although the general role of LA as a bound cofactor has been known for decades, the mechanisms by which LA is synthesized and becomes linked to its cognate proteins in different organisms continue to be elucidated. The reactions whereby LA-modified proteins are produced are best understood in Escherichia coli. In this organism, lipoylation is mediated by two separate enzymes, lipoyl protein ligase A (LplA) and octanoyl-acyl carrier protein-protein transferase (LipB) (30, 31). While LplA uses exogenous LA, LipB transfers endogenous octanoic acid to the target proteins (19). These octanoylated domains are then converted into lipoylated derivatives by the S-adenosyl-l-methionine-dependent enzyme lipoyl synthase (LipA), which catalyzes the insertion of sulfur atoms into the carbon-6 and -8 positions of the corresponding fatty acids (29). This process bypasses the requirement for an exogenous supply of LA.In contrast to the wealth of knowledge available on LA synthesis and utilization in E. coli, the existing information about these pathways in gram-positive bacteria is scarce. It has been found that Listeria monocytogenes mutants defective in proteins homologous to the E. coli LplA enzymes are unable to scavenge exogenous LA for modification of lipoyl domains (22, 23, 38). However, L. monocytogenes is a natural lipoate auxotroph since it does not encode the enzymes necessary for lipoate biosynthesis (15, 55). Bacillus subtilis synthesizes LA, but the biosynthesis, attachment, and function of this essential nutrient in this model gram-positive organism have not yet been studied in detail (50). Analysis of the genome sequence of B. subtilis (25) revealed that it contains an open reading frame, yutB, encoding a protein with a high degree of homology to E. coli LipA and two open reading frames encoding proteins slightly similar to LplA, while no LipB homolog was detected.LA is a critical cofactor of BCKADH, the enzyme involved in the formation of the primer carbons for the initiation of branched-chain fatty acid (BCFA) synthesis (21). Early work indicated that a bfmB mutant of B. subtilis, defective in both BCKADH and pyruvate dehydrogenase, requires short-branched-chain carboxilic acids for growth (56). However, in our hands, this mutant presented a high percentage of reversion, precluding its use in the study of lipid metabolism. Since BCFAs are the dominant acyl chains found in membrane phospholipids of B. subtilis, the goal of this study was to employ a genetic approach to investigate the role of yutB in the physiology of this organism, in particular in fatty acid metabolism. In addition, we provide compelling evidence showing that Δ5 unsaturated fatty acids (UFA), the products of the B. subtilis desaturase, can fully replace the function of BCFAs. Furthermore, we demonstrate that UFA are essential to provide cryoprotective properties in strains depleted of LipA. This work reports the first characterization of a gram-positive mutant deficient in LA synthesis and its use to study the interplay between BCFAs and UFA metabolism.  相似文献   

18.
Lipoic acid is the covalently attached cofactor of several multi-component enzyme complexes that catalyze key metabolic reactions. Attachment of lipoic acid to the lipoyl-dependent enzymes is catalyzed by lipoate-protein ligases (LPLs). In Escherichia coli, two distinct enzymes lipoate-protein ligase A (LplA) and lipB-encoded lipoyltransferase (LipB) catalyze independent pathways for lipoylation of the target proteins. The reaction catalyzed by LplA occurs in two steps. First, LplA activates exogenously supplied lipoic acid at the expense of ATP to lipoyl-AMP. Next, it transfers the enzyme-bound lipoyl-AMP to the epsilon-amino group of a specific lysine residue of the lipoyl domain to give an amide linkage. To gain insight into the mechanism of action by LplA, we have determined the crystal structure of Thermoplasma acidophilum LplA in three forms: (i) the apo form; (ii) the ATP complex; and (iii) the lipoyl-AMP complex. The overall fold of LplA bears some resemblance to that of the biotinyl protein ligase module of the E. coli biotin holoenzyme synthetase/bio repressor (BirA). Lipoyl-AMP is bound deeply in the bifurcated pocket of LplA and adopts a U-shaped conformation. Only the phosphate group and part of the ribose sugar of lipoyl-AMP are accessible from the bulk solvent through a tunnel-like passage, whereas the rest of the activated intermediate is completely buried inside the active site pocket. This first view of the activated intermediate bound to LplA allowed us to propose a model of the complexes between Ta LplA and lipoyl domains, thus shedding light on the target protein/lysine residue specificity of LplA.  相似文献   

19.
Zhao X  Miller JR  Cronan JE 《Biochemistry》2005,44(50):16737-16746
The lipB gene of Escherichia coli encodes an enzyme (LipB) that transfers the octanoyl moiety of octanoyl-acyl carrier protein (octanoyl-ACP) to the lipoyl domains of the 2-oxo acid dehydrogenases and the H subunit of glycine cleavage enzyme. We report that the LipB reaction proceeds through an acyl-enzyme intermediate in which the octanoyl moiety forms a thioester bond with the thiol of residue C169. The intermediate was catalytically competent in that the octanoyl group of the purified octanoylated LipB was transferred either to an 87-residue lipoyl domain derived from E. coli pyruvate dehydrogenase or to ACP (in the reversal of the physiological reaction). The octanoylated LipB linkage was cleaved by thiol reagents and by neutral hydroxylamine, strongly suggesting a thioester bond. Separation and mass spectral analyses of the peptides of the unmodified and octanoylated proteins showed that each of the assigned peptides of the two proteins had identical masses, indicating that none of these peptides were octanoylated. However, the one major peptide that we failed to recover was that predicted to contain all three LipB cysteine residues. These three cysteine residues were therefore targeted for site-directed mutagenesis and only C169 was found to be essential for LipB function in vivo. The C169S protein had no detectable activity whereas the C169A protein retained trace activity. Surprisingly, both proteins lacking C169 formed an octanoyl-LipB species, although neither was catalytically competent. The octanoyl-LipB species formed by the C169S protein was resistant to neutral hydroxylamine treatment, consistent with formation of an ester linkage to the serine hydroxyl group. The octanoyl-C169A LipB species was probably acylated at C147. LipB species that lacked all three cysteine residues also formed a catalytically incompetent octanoyl adduct, indicating the presence of a reactive side chain other than a cysteine thiol that lies adjacent to the active site.  相似文献   

20.
Lipoic acid (LA) is a dithiol-containing cofactor that is essential for the function of α-keto acid dehydrogenase complexes. LA acts as a reversible acyl group acceptor and ‘swinging arm’ during acyl-coenzyme A formation. The cofactor is post-translationally attached to the acyl-transferase subunits of the multienzyme complexes through the action of octanoyl (lipoyl): N-octanoyl (lipoyl) transferase (LipB) or lipoic acid protein ligases (LplA). Remarkably, apicomplexan parasites possess LA biosynthesis as well as scavenging pathways and the two pathways are distributed between mitochondrion and a vestigial organelle, the apicoplast. The apicoplast-specific LipB is dispensable for parasite growth due to functional redundancy of the parasite''s lipoic acid/octanoic acid ligases/transferases. In this study, we show that LplA1 plays a pivotal role during the development of the erythrocytic stages of the malaria parasite. Gene disruptions in the human malaria parasite P. falciparum consistently were unsuccessful while in the rodent malaria model parasite P. berghei the LplA1 gene locus was targeted by knock-in and knockout constructs. However, the LplA1(−) mutant could not be cloned suggesting a critical role of LplA1 for asexual parasite growth in vitro and in vivo. These experimental genetics data suggest that lipoylation during expansion in red blood cells largely occurs through salvage from the host erythrocytes and subsequent ligation of LA to the target proteins of the malaria parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号