首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meiosis-specific pre-mRNA splicing in budding yeast embraces multiple pre-mRNA targets grouped into regulons defined by their genetic requirements for vegetatively optional splicing factors (e.g., splicing enhancer Mer1 and the U1 snRNP subunit Nam8) or snRNA modifications (trimethylguanosine caps). Here, we genetically demarcate a complete meiotic splicing regulon by the criterion of cDNA bypass of the requirement for the governing splicing regulators to execute sporulation. We thereby show that the Mer1 and Nam8 regulons embrace four essential pre-mRNAs: MER2, MER3, SPO22, and AMA1. Whereas Nam8 also regulates PCH2 splicing, PCH2 cDNA is not needed for sporulation by nam8Δ diploids. Our results show that there are no essential intron-containing RNAs missing from the known roster of Mer1 and Nam8 targets. Nam8 is composed of three RRM domains, flanked by N-terminal leader and C-terminal tail segments. We find that the RRM2 and RRM3 domains, and their putative RNA-binding sites, are essential for yeast sporulation, whereas the leader, tail, and RRM1 modules are not.  相似文献   

2.
Spingola M  Ares M 《Molecular cell》2000,6(2):329-338
Three introns whose splicing is activated during meiosis in S. cerevisiae contain a Mer1p-dependent splicing enhancer. The enhancer can impose Mer1p-activated splicing upon the constitutively spliced actin intron provided the basal splicing efficiency of actin is first reduced. Of several nonessential splicing factors tested, only the U1 snRNP protein Nam8p is indispensable for Mer1 p-activated splicing. We show that Mer1p associates with the U1 snRNP even in the absence of Nam8p or pre-mRNA. This work defines a yeast splicing enhancer and shows that constitutively expressed and cell type-specific factors combine to regulate splicing of a specific subset of pre-mRNAs including SPO70, MER2, and MER3.  相似文献   

3.
4.
5.
Mer1p activates the splicing of at least three pre-mRNAs (AMA1, MER2, MER3) during meiosis in the yeast Saccharomyces cerevisiae. We demonstrate that enhancer recognition by Mer1p is separable from Mer1p splicing activation. The C-terminal KH-type RNA-binding domain of Mer1p recognizes introns that contain the Mer1p splicing enhancer, while the N-terminal domain interacts with the spliceosome and activates splicing. Prior studies have implicated the U1 snRNP and recognition of the 5′ splice site as key elements in Mer1p-activated splicing. We provide new evidence that Mer1p may also function at later steps of spliceosome assembly. First, Mer1p can activate splicing of introns that have mutated branch point sequences. Secondly, Mer1p fails to activate splicing in the absence of the non-essential U2 snRNP protein Snu17p. Thirdly, Mer1p interacts with the branch point binding proteins Mud2p and Bbp1p and the U2 snRNP protein Prp11p by two-hybrid assays. We conclude that Mer1p is a modular splicing regulator that can activate splicing at several early steps of spliceosome assembly and depends on the activities of both U1 and U2 snRNP proteins to activate splicing.  相似文献   

6.
7.
8.
9.
Tgs1 is the enzyme that converts m(7)G RNA caps to the 2,2,7-trimethylguanosine (TMG) caps characteristic of spliceosomal snRNAs. Fungi grow vegetatively without TMG caps, thereby raising the question of what cellular transactions, if any, are TMG cap-dependent. Here, we report that Saccharomyces cerevisiae Tgs1 methyltransferase activity is essential for meiosis. tgs1Δ cells are specifically defective in splicing PCH2 and SAE3 meiotic pre-mRNAs. The TMG requirement for SAE3 splicing is alleviated by two intron mutations: a UAUUAAC to UACUAAC change that restores a consensus branchpoint and disruption of a stem-loop encompassing the branchpoint. The TMG requirement for PCH2 splicing is alleviated by a CACUAAC to UACUAAC change restoring a consensus branchpoint and by shortening the PCH2 5' exon. Placing the SAE3 and PCH2 introns within a HIS3 reporter confers Tgs1-dependent histidine prototrophy, signifying that the respective introns are portable determinants of TMG-dependent gene expression. Analysis of in vitro splicing in extracts of TGS1 versus tgs1Δ cells showed that SAE3 intron removal was enfeebled without TMG caps, whereas splicing of ACT1 was unaffected. Our findings illuminate a new mode of tunable splicing, a reliance on TMG caps for an essential developmental RNA transaction, and three genetically distinct meiotic splicing regulons in budding yeast.  相似文献   

10.
Both experimental work and surveys of the lengths of internal exons in nature have suggested that vertebrate internal exons require a minimum size of approximately 50 nucleotides for efficient inclusion in mature mRNA. This phenomenon has been ascribed to steric interference between complexes involved in recognition of the splicing signals at the two ends of short internal exons. To determine whether U1 small nuclear ribonucleoprotein, a multicomponent splicing factor that is involved in the first recognition of splice sites, contributes to the lower size limit of vertebrate internal exons, we have taken advantage of our previous observation that U1 small nuclear RNAs (snRNAs) which bind upstream or downstream of the 5' splice site (5'SS) stimulate splicing of the upstream intron. By varying the position of U1 binding relative to the 3'SS, we show that U1-dependent splicing of the upstream intron becomes inefficient when U1 is positioned 48 nucleotides or less downstream of the 3'SS, suggesting a minimal distance between U1 and the 3'SS of approximately 50 nucleotides. This distance corresponds well to the suggested minimum size of internal exons. The results of experiments in which the 3'SS region of the reporter was duplicated suggest an optimal distance of greater than 72 nucleotides. We have also found that inclusion of a 24-nucleotide miniexon is promoted by the binding of U1 to the downstream intron but not by binding to the 5'SS. Our results are discussed in the context of models to explain constitutive splicing of small exons in nature.  相似文献   

11.
12.
13.
The splicing of nuclear pre-mRNAs is catalyzed by a large, multicomponent ribonucleoprotein complex termed the spliceosome. Elucidation of the molecular mechanism of splicing identified small nuclear RNAs (snRNAs) as important components of the spliceosome, which, by analogy to the self-splicing group II introns, are implicated in formation of the catalytic center. In particular, the 5' splice site (5'SS) and the branch site, which represent the two substrates for the first step of splicing, are first recognized by U1 and U2 snRNPs, respectively. This initial recognition of splice sites is responsible for the global definition of exons and introns, and represents the primary target for regulation of splicing. Subsequently, pairing interaction between the 5'SS and U1 snRNA is disrupted and replaced by a new interaction of the 5'SS with U6 snRNA. The 5'SS signal contains an invariant GU dinucleotide present at the 5' end of nearly all known introns, however, the mechanism by which the spliceosome recognizes this element is not known. We have identified and characterized a specific UV light-induced crosslink formed between the 5'SS RNA and hPrp8, a protein component of U5 snRNP in the spliceosome that is likely to reflect a specific recognition of the GU dinucleotide for splicing. Because recognition of the 5'SS must be linked to formation of the catalytic site, the identification of a specific and direct interaction between the 5'SS and Prp8 has significant implications for the role of this protein in the mechanism of mRNA splicing.  相似文献   

14.
Mutation of the MER2 gene of Saccharomyces cerevisiae confers meiotic lethality. To gain insight into the function of the Mer2 protein, we have carried out a detailed characterization of the mer2 null mutant. Genetic analysis indicates that mer2 completely eliminates meiotic interchromosomal gene conversion and crossing over. In addition, mer2 abolishes intrachromosomal meiotic recombination, both in the ribosomal DNA array and in an artificial duplication. The results of a physical assay demonstrate that the mer2 mutation prevents the formation of meiosis-specific, double-strand breaks, indicating that the Mer2 protein acts at or before the initiation of meiotic recombination. Electron microscopic analysis reveals that the mer2 mutant makes axial elements, which are precursors to the synaptonemal complex, but homologous chromosomes fail to synapse. Fluorescence in situ hybridization of chromosome-specific DNA probes to spread meiotic chromosomes demonstrates that homolog alignment is also significantly reduced in the mer2 mutant. Although the MER2 gene is transcribed during vegetative growth, deletion or overexpression of the MER2 gene has no apparent effect on mitotic recombination or DNA damage repair. We suggest that the primary defect in the mer2 mutant is in the initiation of meiotic genetic exchange.  相似文献   

15.
Specific recognition of the 5' splice site (5'SS) by the spliceosome components was studied using a simple in vitro system in which a short 5'SS RNA oligonucleotide specifically induces the assembly of snRNP particles into spliceosome-like complexes and actively participates in a trans-splicing reaction. Short-range cross-liking demonstrates that a U5 snRNP protein component, p220 (the human analogue of the yeast Prp8) specifically interacts with the invariant GU dinucleotide at the 5' end of the intron. The GU:p220 interaction can be detected in the functional splicing complex B. Although p220 has been known to contact several nucleotides around the 5' splice junction, the p220:GU dinucleotide interaction described here is remarkably specific. Consistent with the high conservation of the GU, even minor modifications of this element affect recognition of the 5'SS RNA by p220. Substitution of uridine at the GU with base analogues containing a large methyl or iodo group, but not a smaller flouro group at base position 5, interferes with association of 5'SS RNA with snRNP complexes and their functional participation in splicing.  相似文献   

16.
M Sha  T Levy  P Kois    M M Konarska 《RNA (New York, N.Y.)》1998,4(9):1069-1082
We have developed a site-specific chemical modification technique to incorporate a photoreactive azidophenacyl (APA) group at designated internal positions along the RNA phosphodiester backbone. Using this technique, we have analyzed interactions of the 5' splice site (5'SS) RNA within the spliceosome. Several crosslinked products can be detected within complex B using the derivatized 5'SS RNAs, including U6 snRNA, hPrp8p, and 114-, 90-, 70-, 54-, and 27-kDa proteins. The 5'SS RNAs derivatized at intron positions +4 to +8 crosslink to U6 snRNA, confirming the previously reported pairing interaction between these sequences. hPrp8p and p70 are crosslinked to the 5'SS RNA when the APA is placed within the 5' exon. Finally, a set of unidentified proteins, including p114, p54, and p27, is detected with the 5'SS RNA derivatized at intron positions +4 to +8. Introduction of the bulky APA group near the 5'SS junction (positions -2 to +3) strongly interferes with complex B formation and thus no APA crosslinks are observed at these positions. Together with our earlier observation that hPrp8p crosslinks to the GU dinucleotide at the 5' end of the intron, these results suggest that the inhibitory effect of APA results from steric hindrance of the hPrp8p:5'SS interaction. Unexpectedly, thio-modifications within the region of the 5'SS RNA that is involved in base pairing to U6 snRNA strongly stimulate complex B formation.  相似文献   

17.
18.
Expression of functional TRA-2 protein in the male germline of Drosophila is regulated through a negative feedback mechanism in which a specific TRA-2 isoform represses splicing of the M1 intron in the TRA-2 pre-mRNA. We have previously shown that the mechanism of M1 splicing repression is conserved between distantly related Drosophila species. Using transgenic fly strains, we have examined the effects on regulation of mutations in two conserved features of the M1 intron. Our results show that TRA-2-dependent repression of M1 splicing depends on the presence of a suboptimal non-consensus 3′ splice site. Substitution of this 3′ splice site with a strong splice site resulted in TRA-2 independent splicing, while substitution with an unrelated weak 3′ splice site was compatible with repression, implying that reduced basal splicing efficiency is important for regulation. A second conserved element internal to the intron was found to be essential for efficient M1 splicing in the soma where the intron is not normally retained. We show that the role of this element is to enhance splicing and overcome the reduction in efficiency caused by the intron’s suboptimal 3′ splice site. Our results indicate that antagonistic elements in the M1 intron act together to establish a context that is permissive for repression of splicing by TRA-2 while allowing efficient splicing in the absence of a repressor.  相似文献   

19.
Conformational change within the spliceosome is required between the first catalytic step of pre-mRNA splicing, when the branch site attacks the 5' splice site (SS), and the second step, when the 5' exon attacks the 3'SS. Little is known, however, about repositioning of the reaction substrates during this transition. Whereas the 5'SS is positioned for the first step by pairing with the invariant U6 snRNA-ACAGAG site, we demonstrate that this pairing interaction must be disrupted to allow transition to the second step. We propose that removal of the branch structure from the catalytic center is in competition with binding of the 3'SS substrate for the second step. Changes in the relative occupancy of first and second step substrates at the catalytic center alter efficiency of the two steps of splicing, allowing use of suboptimal intron sequences and thereby altering substrate selectivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号