首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salt stress leads to massive accumulation of toxic levels of Na(+) and Cl(-) ions in plants. By using the recombinant fluorescent probe CLOMELEON, we demonstrate passive anion flux under salt stress. Chloride influx is restricted in the presence of divalent cations like Mg(2+) and Ca(2+), and completely blocked by La(3+). The amount but not the rate of the reported chloride uptake is independent from the kind of corresponding permeable cation (K(+) versus Na(+)), external pH and magnitude of osmotic stress. Cl(-) efflux however seems to involve stretch-activated transport. From the influence of Ca(2+) on reported changes of cytosolic anion concentrations, we speculate that transport mechanisms of Cl(-) and Na(+) might be thermodynamically coupled under saline conditions.  相似文献   

2.
Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li(+) and (86)Rb(+), with secondarily increased (86)Rb(+) influx sensitive to ouabain and to bumetanide. Increased RhAG-associated (14)C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of Li(+), (86)Rb(+), and (14)C-MA were pharmacologically distinct, and Li(+) uptakes associated with RhAG and RhAG F65S were differentially inhibited by NH(4)(+) and Gd(3+). RhAG-expressing oocytes were acidified and depolarized by 5 mM bath NH(3)/NH(4)(+), but alkalinized and depolarized by subsequent bath exposure to 5 mM methylammonium chloride (MA/MA(+)). RhAG F65S-expressing oocytes exhibited near-wild-type responses to NH(4)Cl, but MA/MA(+) elicited attenuated alkalinization and strong hyperpolarization. Expression of RhAG or RhAG F65S increased steady-state cation currents unaltered by bath Li(+) substitution or bath addition of 5 mM NH(4)Cl or MA/MA(+). These oocyte studies suggest that 1) RhAG expression increases oocyte transport of NH(3)/NH(4)(+) and MA/MA(+); 2) RhAG F65S exhibits gain-of-function phenotypes of increased cation conductance/permeability, and loss-of-function phenotypes of decreased and modified MA/MA(+) transport, and decreased NH(3)/NH(4)(+)-associated depolarization; and 3) RhAG transports NH(3)/NH(4)(+) and MA/MA(+) by distinct mechanisms, and/or the substrates elicit distinct cellular responses. Thus, RhAG F65S is a loss-of-function mutation for amine transport. The altered oocyte intracellular pH, membrane potential, and currents associated with RhAG or RhAG F65S expression may reflect distinct transport mechanisms.  相似文献   

3.
A novel relationship between branchial carbonic anhydrase II (CAII) and anion exchanger 1 (AE1) was investigated in the euryhaline spotted green pufferfish (Tetraodon nigroviridis). The immunoblots revealed that AE1 was only detected in the membrane fraction of gills while CAII can be probed both in the membrane and cytosol fractions of gills. CAII protein abundance in the membrane fraction is salinity dependent. Immunological detection of the membrane fraction CAII protein in gills showed 3.9-fold higher in the hyposmotic (freshwater) group than the hyperosmotic (seawater;35 per thousand) group. In contrast, there was no change in the protein level of cytosolic CAII between seawater and freshwater groups. The whole-mount immunocytochemical staining demonstrated that both AE1 and CAII were colocalized to the Na(+)/K(+)-ATPase-immunoreactive cells in gill epithelium of the pufferfish. The interaction between CAII and AE1 was further identified by co-immunoprecipitation because AE1 was detected in the immunoprecipitates of CAII and vice versa. Our results showed that in pufferfish gills CAII was not only expressed in the cytosol to produce the substrate for AE1 transport during Cl(-) influx but also associated with the plasma membrane via AE1. Obviously, it is essential for the physiological function of AE1 to interact with CAII in the membrane of gill Na(+)/K(+)-ATPase-immunoreactive cells. To our knowledge, this is the first study to demonstrate the interaction of branchial CAII and AE1 in fish. The novel correlation proposed a new model of Cl(-)/HCO(3) (-) transport in gills of the teleosts.  相似文献   

4.
5.
We have investigated the functional role of Cl(-) in the human Na(+)/Cl(-)/gamma-aminobutyric acid (GABA) and Na(+)/glucose cotransporters (GAT1 and SGLT1, respectively) expressed in Xenopus laevis oocytes. Substrate-evoked steady-state inward currents were examined in the presence and absence of external Cl(-). Replacement of Cl(-) by gluconate or 2-(N-morpholino)ethanesulfonic acid decreased the apparent affinity of GAT1 and SGLT1 for Na(+) and the organic substrate. In the absence of substrate, GAT1 and SGLT1 exhibited charge movements that manifested as pre-steady-state current transients. Removal of Cl(-) shifted the voltage dependence of charge movements to more negative potentials, with apparent affinity constants (K(0.5)) for Cl(-) of 21 and 115 mm for SGLT1 and GAT1, respectively. The maximum charge moved and the apparent valence were not altered. GAT1 stoichiometry was determined by measuring GABA-evoked currents and the unidirectional influx of (36)Cl(-), (22)Na(+), or [(3)H]GABA. Uptake of each GABA molecule was accompanied by inward movement of 2 positive charges, which was entirely accounted for by the influx of Na(+) in the presence or absence of Cl(-). Thus, the GAT1 stoichiometry was 2Na(+):1GABA. However, Cl(-) was transported by GAT1 because the inward movement of 2 positive charges was accompanied by the influx of one Cl(-) ion, suggesting unidirectional influx of 2Na(+):1Cl(-):1GABA per transport cycle. Activation of forward Na(+)/Cl(-)/GABA transport evoked (36)Cl(-) efflux and was blocked by the inhibitor SKF 89976A. These data suggest a Cl(-)/Cl(-) exchange mechanism during the GAT1 transport cycle. In contrast, Cl(-) was not transported by SGLT1. Thus, in both GAT1 and SGLT1, Cl(-) modulates the kinetics of cotransport by altering Na(+) affinity, but does not contribute to net charge transported per transport cycle. We conclude that Cl(-) dependence per se is not a useful criterion to classify Na(+) cotransporters.  相似文献   

6.
7.
The neurotransmitter glycine is removed from the synaptic cleft by two Na(+)-and Cl(-)-dependent transporters, the glial (GLYT1) and neuronal (GLYT2) glycine transporters. GLYT2 lacks a conserved cysteine in the first hydrophilic loop (EL1) that is reactive to [2-(trimethylammonium)ethyl] methanethiosulfonate (MTSET) in related transporters. A chimeric GLYT2 (GLYT2a-EL1) that contains GLYT1 sequences in this region, including the relevant cysteine, was sensitive to the reagent, and its sensitivity was decreased by co-substrates. We combined cysteine-specific biotinylation to detect transporter-reagent interactions with MTSET inactivation assays and temperature dependence analysis to study the mechanism by which Cl(-), Na(+), and glycine reduce methanethiosulfonate reagent inhibition. We demonstrate a Na(+) protective effect rather than an increased susceptibility to the reagent exerted by Li(+), as reported for the serotonin transporter. The different inhibition, protection, and reactivation properties between GLYT2a-EL1 and serotonin transporter suggest that EL1 is a source of structural heterogeneity involved in the specific effect of lithium on serotonin transport. The protection by Na(+) or Cl(-) on GLYT2a-EL1 was clearly dependent on temperature, suggesting that EL1 is not involved in ion binding but is subjected to ion-induced conformational changes. Na(+) and Cl(-) were required for glycine protection, indicating the necessity of prior ion interaction with the transporter for the binding of glycine. We conclude that EL1 acts as a fluctuating hinge undergoing sequential conformational changes during the transport cycle.  相似文献   

8.
Four structurally different protein phosphatases (PPs) inhibitors - fluoride, calyculin A, okadaic acid and cantharidin--were tested for their ability to modulate unidirectional Na(+) influx in rat red blood cells. Erythrocytes were incubated at 37 degrees C in isotonic and hypertonic media containing 1 mM ouabain and (22)Na in the absence or presence of PP inhibitors. Exposure of the cells to 20 mM fluoride or 50 nM calyculin A for 1 h under isosmotic conditions caused a significant stimulation of Na(+) influx, whereas addition of 200 microM cantharidin or 100 nM okadaic acid had no effect. After 2 h of treatment, however, all these PPs blockers significantly enhanced Na(+) transport in rat erythrocytes. Selective inhibitors of PP-1 and PP-2A types, calyculin A, cantharidin and okadaic acid, produced similar ( approximately 1.2-1.4-fold) stimulatory effects on Na(+) influx in the cells. Activation of Na(+) influx was unchanged with increasing calyculin A concentration from 50 to 200 nM. No additive stimulation of Na(+) influx was observed when the cells were treated with combination of 20 mM fluoride and 50 nM calyculin A. Na(+) influx induced by PPs blockers was inhibited by 1 mM amiloride and 200 muM bumetanide approximately in the equal extent, indicating the involvement of Na(+)/H(+) exchange and Na-K-2Cl cotransport in sodium transport through rat erythrocytes membrane. Activation of Na(+) transport in the cells induced by calyculin A and fluoride was associated with increase of intracellular Na(+) content. Shrinkage of the rat erythrocytes resulted in 2-fold activation of Na(+) influx. All tested PPs inhibitors additionally activated the Na(+) influx by 70-100% above basal shrinkage-induced level. Amiloride and bumetanide have diminished both the shrinkage-induced and PPs-inhibitors-induced Na(+) influxes. Thus, our observations clearly indicate that activities of Na(+)/H(+) exchanger and Na-K-2Cl cotransporter in rat erythrocytes are regulated by protein phosphatases and stimulated when protein dephosphorylation is inhibited.  相似文献   

9.
Freshwater (FW) rainbow trout (Oncorhynchus mykiss) urinary bladders mounted in vitro under symmetrical saline conditions displayed electroneutral active absorption of Na(+) and Cl(-) from the mucosal side; the transepithelial potential (V(t)) was 0.1 mV, and the short-circuit current was less than 1 microA cm(-2). Removal of Na(+) from mucosal saline decreased Cl(-) absorption by 56% and removal of Cl(-) decreased Na(+) absorption by 69%. However, active net absorption of both Na(+) and Cl(-) was not abolished when Cl(-) or Na(+) was replaced with an impermeant ion (gluconate or choline, respectively). Under physiological conditions with artificial urine (?Na(+) = 2.12 mM, ?Cl(-) = 3.51 mM) bathing the mucosal surface and saline bathing the serosal surface, transepithelial potential (V(t)) increased to a serosal positive approximately +7.6 mV. Unidirectional influx rates of both Na(+) and Cl(-) were 10-20-fold lower but active absorption of both ions still occurred according to the Ussing flux ratio criterion. Replacement of Na(+) with choline, or Cl(-) with gluconate, in the mucosal artificial urine yielded no change in unidirectional influx of Cl(-) or Na(+), respectively. However, kinetic analyses indicated a decrease in maximum Na(+) transport rate (J(max)) of 66% with no change in affinity (K(m)) in the low Cl(-) mucosal solution relative to the control solution. Similarly, there was a 79% decrease in J(max) values for Cl(-), again with no change in K(m), in the low-Na(+) mucosal bathing. The mucosal addition of DIDS, amiloride or bumetanide (10(-4) M) had no effect on either Na(+) or Cl(-) transport, under either symmetrical saline or artificial urine/saline conditions. Addition of the three drugs simultaneously (10(-4) M), or chlorothiazide (10(-3) M), under symmetrical saline conditions also had no effect on Na(+) or Cl(-) transport rates. Cyanide (10(-3) M) addition to mucosal artificial urine caused a slowly developing decrease of Na(+) influx to 59% and Cl(-) influx to 50% in the period after drug addition. Na(+) and Cl(-) reabsorption appears to be a partially coupled process in the urinary bladder of O. mykiss; transport mechanisms are both dependent upon and independent of the other ion.  相似文献   

10.
In order to characterize the transport systems mediating K+ uptake into oocytes, flux studies employing 86Rb were performed on Xenopus oocytes stripped of follicular cells by pretreatment with Ca2(+)-Mg2(+)-free Barth's medium. Total Rb+ uptake consisted of an ouabain-sensitive and an ouabain-insensitive flux. In the presence of 100 mmol/l NaCl and 0.1 mmol/l ouabain the ouabain-insensitive flux amounted to 754.7 +/- 59.9 pmol/oocyte per h (n = 30 cells, i.e., 10 cells each from three different animals). In the absence of Na+ (Na+ substituted by N-methylglucamine) or when Cl- was replaced by NO3- the ouabain-insensitive flux was reduced to 84.4 +/- 42.9 and 79.2 +/- 12.1 pmol/oocyte per h, respectively (n = 50 cells). Furthermore, this Na(+)- and Cl(-)-dependent flux was completely inhibited by 10(-4) mol/l bumetanide, a specific inhibitor of the Na(+)-K(+)-2Cl- cotransport system. These results suggest that K+ uptake via a bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport system represents a major K+ pathway in oocytes.  相似文献   

11.
The SLC4A1/AE1 gene encodes the electroneutral Cl(-)/HCO(3)(-) exchanger of erythrocytes and renal type A intercalated cells. AE1 mutations cause familial spherocytic and stomatocytic anemias, ovalocytosis, and distal renal tubular acidosis. The mutant mouse Ae1 polypeptide E699Q expressed in Xenopus oocytes cannot mediate Cl(-)/HCO(3)(-) exchange or (36)Cl(-) efflux but exhibits enhanced dual sulfate efflux mechanisms: electroneutral exchange of intracellular sulfate for extracellular sulfate (SO(4)(2-)(i)/SO(4)(2-)(o) exchange), and electrogenic exchange of intracellular sulfate for extracellular chloride (SO(4)(2-)(i)/Cl(-)(o) exchange). Whereas wild-type AE1 mediates 1:1 H(+)/SO(4)(2-) cotransport in exchange for either Cl(-) or for the H(+)/SO(4)(2-) ion pair, mutant Ae1 E699Q transports sulfate without cotransport of protons, similar to human erythrocyte AE1 in which the corresponding E681 carboxylate has been chemically converted to the alcohol (hAE1 E681OH). We now show that in contrast to the normal cis-stimulation by protons of wild-type AE1-mediated SO(4)(2-) transport, both SO(4)(2-)(i)/Cl(-)(o) exchange and SO(4)(2-)(i)/SO(4)(2-)(o) exchange mediated by mutant Ae1 E699Q are inhibited by acidic pH(o) and activated by alkaline pH(o). hAE1 E681OH displays a similarly altered pH(o) dependence of SO(4)(2-)(i)/Cl(-)(o) exchange. Elevated [SO(4)(2-)](i) increases the K(1/2) of Ae1 E699Q for both extracellular Cl(-) and SO(4)(2-), while reducing inhibition of both exchange mechanisms by acid pH(o). The E699Q mutation also leads to increased potency of self-inhibition by extracellular SO(4)(2-). Study of the Ae1 E699Q mutation has revealed the existence of a novel pH-regulatory site of the Ae1 polypeptide and should continue to provide valuable paths toward understanding substrate selectivity and self-inhibition in SLC4 anion transporters.  相似文献   

12.
Both Cs(+) and NH(4)(+) alter neuronal Cl(-) homeostasis, yet the mechanisms have not been clearly elucidated. We hypothesized that these two cations altered the operation of the neuronal K(+)-Cl(-) cotransporter (KCC2). Using exogenously expressed KCC2 protein, we first examined the interaction of cations at the transport site of KCC2 by monitoring furosemide-sensitive (86)Rb(+) influx as a function of external Rb(+) concentration at different fixed external cation concentrations (Na(+), Li(+), K(+), Cs(+), and NH(4)(+)). Neither Na(+) nor Li(+) affected furosemide-sensitive (86)Rb(+) influx, indicating their inability to interact at the cation translocation site of KCC2. As expected for an enzyme that accepts Rb(+) and K(+) as alternate substrates, K(+) was a competitive inhibitor of Rb(+) transport by KCC2. Like K(+), both Cs(+) and NH(4)(+) behaved as competitive inhibitors of Rb(+) transport by KCC2, indicating their potential as transport substrates. Using ion chromatography to measure unidirectional Rb(+) and Cs(+) influxes, we determined that although KCC2 was capable of transporting Cs(+), it did so with a lower apparent affinity and maximal velocity compared with Rb(+). To assess NH(4)(+) transport by KCC2, we monitored intracellular pH (pH(i)) with a pH-sensitive fluorescent dye after an NH(4)(+)-induced alkaline load. Cells expressing KCC2 protein recovered pH(i) much more rapidly than untransfected cells, indicating that KCC2 can mediate net NH(4)(+) uptake. Consistent with KCC2-mediated NH(4)(+) transport, pH(i) recovery in KCC2-expressing cells could be inhibited by furosemide (200 microM) or removal of external [Cl(-)]. Thermodynamic and kinetic considerations of KCC2 operating in alternate transport modes can explain altered neuronal Cl(-) homeostasis in the presence of Cs(+) and NH(4)(+).  相似文献   

13.
A single Cys replacement of Glu at position 252 (E252C) in loop VIII-IX of NhaA increases drastically the Km for Na(+) (50-fold) of the Na(+)/H(+) antiporter activity of NhaA and shifts the pH dependence of NhaA activity, by one pH unit, to the alkaline range. In parallel, E252C causes a similar alkaline pH shift to the pH-induced conformational change of loop VIII-IX. Thus, although both the Na(+)/H(+) antiporter activity of wild type NhaA and its accessibility to trypsin at position Lys(249) in loop VIII-IX increase with pH between pH 6.5 and 7.5, the response of E252C occurs above pH 8. Furthermore, probing accessibility of pure E252C protein in dodecyl maltoside solution to 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid revealed that E252C itself undergoes a pH-dependent conformational change, similar to position Lys(249), and the rate of the pH-induced conformational change is increased specifically by the presence of Na(+) or Li(+), the specific ligands of the antiporter. Chemical modification of E252C by N-ethylmaleimide, 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid; [2-(trimethylammonium)ethyl]methane thiosulfonate, or (2-sulfonatoethyl)methanethiosulfonate reversed, to a great extent, the pH shift conferred by E252C but had no effect on the K(m) of the mutant antiporter.  相似文献   

14.
The properties of system y(+)L-mediated transport were investigated on rat system y(+)L transporter, ry(+)LAT1, coexpressed with the heavy chain of cell surface antigen 4F2 in Xenopus oocytes. ry(+)LAT1-mediated transport of basic amino acids was Na(+)-independent, whereas that of neutral amino acids, although not completely, was dependent on Na(+), as is typical of system y(+)L-mediated transport. In the absence of Na(+), lowering of pH increased leucine transport, without affecting lysine transport. Therefore, it is proposed that H(+), besides Na(+) and Li(+), is capable of supporting neutral amino acid transport. Na(+) and H(+) augmented leucine transport by decreasing the apparent K(m) values, without affecting the V(max) values. We demonstrate that although ry(+)LAT1-mediated transport of [(14)C]l-leucine was accompanied by the cotransport of (22)Na(+), that of [(14)C]l-lysine was not. The Na(+) to leucine coupling ratio was determined to be 1:1 in the presence of high concentrations of Na(+). ry(+)LAT1-mediated leucine transport, but not lysine transport, induced intracellular acidification in Chinese hamster ovary cells coexpressing ry(+)LAT1 and 4F2 heavy chain in the absence of Na(+), but not in the presence of physiological concentrations of Na(+), indicating that cotransport of H(+) with leucine occurred in the absence of Na(+). Therefore, for the substrate recognition by ry(+)LAT1, the positive charge on basic amino acid side chains or that conferred by inorganic monovalent cations such as Na(+) and H(+), which are cotransported with neutral amino acids, is presumed to be required. We further demonstrate that ry(+)LAT1, due to its peculiar cation dependence, mediates a heteroexchange, wherein the influx of substrate amino acids is accompanied by the efflux of basic amino acids.  相似文献   

15.
A detailed study of hypertonically stimulated Na-K-2Cl cotransport (NKCC1) in Xenopus laevis oocytes was carried out to better understand the 1 K(+):1 Cl(-) stoichiometry of transport that was previously observed. In this study, we derived the velocity equations for K(+) influx under both rapid equilibrium assumptions and combined equilibrium and steady-state assumptions and demonstrate that the behavior of the equations and curves in Lineweaver-Burke plots are consistent with a model where Cl(-) binds first, followed by Na(+), a second Cl(-), and then K(+). We further demonstrate that stimulation of K(+) movement by K(+) on the trans side is an intrinsic property of a carrier that transports multiple substrates. We also demonstrate that K(+) movement through NKCC1 is strictly dependent upon the presence of external Na(+), even though only a fraction of Na(+) is in fact transported. Finally, we propose that the larger transport of K(+), as compared with Na(+), is a result of the return of partially unloaded carriers, which masks the net 1Na(+):1K(+):2Cl(-) stoichiometry of NKCC1. These data have profound implications for the physiology of Na-K-2Cl cotransport, since transport of K-Cl in some conditions seems to be uncoupled from the transport of Na-Cl.  相似文献   

16.
We examined branchial Na(+) and Cl(-) uptake in two species of stenohaline, freshwater fish (goldfish and the Amazonian neon tetra). Kinetic analysis revealed that the two species had similar uptake capacities and affinities for Na(+) and Cl(-). However, while uptakes of Na(+) and Cl(-) (JNain and JClin, respectively) by goldfish were completely inhibited at pH 4.5 and below, uptake in tetras was unaffected by pH down to 3.25. Examination of Cl(-) transport with blockers indicated that goldfish and neon tetras utilize Cl(-)/HCO-3 exchange; SITS and SCN(-) inhibited Cl(-) uptake in both species. In contrast, large differences in Na(+) transport were indicated between the species. In goldfish, exposure to four Na(+)/H(+) exchange blockers, as well as the Na(+) channel blocker phenamil, strongly inhibited JNain. Further, Na(+) and Cl(-) uptake were strongly inhibited by the Na(+)/K(+)/Cl(-) cotransport inhibitor furosemide, as was JNain in "Cl(-)-free" water and JClin in "Na(+)-free" water. This suggests the presence of multiple transporters and possibly even a direct linkage between the transport of Na(+) and Cl(-) in goldfish. In contrast, none of these drugs strongly reduced Na(+) transport in neon tetras, which raises the possibility of a significantly different Na(+) transport mechanism in this acid-tolerant species.  相似文献   

17.
Three different methods have been used to improve a model for fluid secretion in Upper Malpighian Tubules (UMT) of the blood sucking insect Rhodnius prolixus. (I) In the first, UMT double perfusions in 5th instar Rhodnius were used to measure their fluid secretion rate. They were stimulated to secrete with 5-HT. Double perfusions allowed access separately to the basolateral and the apical cell membranes with pharmacological agents known to block different ion transport functions, namely ATPases, cotransporters and/or countertransporters and ion and water channels: ouabain, bafilomycin A1, furosemide, bumetanide, SITS, acetazolamide, amiloride, DPC, BaCl(2), pCMBS and DTT. The basic assumption is that changes in water movement reflect changes in ion transport mechanisms. (II) Intracellular Na(+) concentrations were measured with a fluorometric method in dissected R. prolixus UMT, under several experimental conditions. (III) ATPase activities were measured in R. prolixus UMT. A tentative model for the function of the UMT cell is presented. We find that (a) at the basolateral cell membrane, fundamental is a Na(+)-K(+)-2Cl(-) cotransporter; of intermediate importance are the Na(+)-K(+)-ATPase and a ouabain-insensitive Na(+)-ATPase, ion channels and Rp-MIP water channels. (b) At the apical cell membrane, most important are a V-H(+)-ATPase; and a K(+) and/or Na(+)-H(+) exchanger.  相似文献   

18.
ATPase activity of the plasma membrane fraction from primary roots of corn (Zea mays L. WF9 x M14) was activated by Mg(2+) and further stimulated by monovalent cations (K(+) > Rb(+) > Cs(+) > Na(+) > Li(+)). K(+)-stimulated activity required Mg(2+) and was substrate-specific. Maximum ATPase activity in the presence of Mg(2+) and K(+) was at pH 6.5 and 40 C. Calcium and lanthanum (<0.5 mm) were inhibitors of ATPase, but only in the presence of Mg(2+). Oligomycin was not an inhibitor of the plasma membrane ATPase, whereas N,N'-dicyclohexylcarbodiimide was. Activity showed a simple Michaelis-Menten saturation with increasing ATP.Mg. The major effect of K(+) in stimulating ATPase activity was on maximum velocity. The kinetic data of K(+) stimulation were complex, but similar to the kinetics of short term K(+) influx in corn roots. Both K(+)-ATPase and K(+) influx kinetics met all criteria for negative cooperativity. The results provided further support for the concept that cation transport in plants is energized by ATP, and mediated by a cation-ATPase on the plasma membrane.  相似文献   

19.
In the present paper, the presence of a ouabain-insensitive Na(+)-stimulated, Mg(2+)-dependent ATPase activity in T. cruzi epimastigotes CL14 clone and Y strain was investigated. The increase in Na+ concentration (from 5 to 170 mM), in the presence of 2 mM ouabain, increases the ATPase activity in a saturable manner along a rectangular hyperbola. The Vmax was 18.0 +/- 1.0 and 21.1 +/- 1.1 nmoles Pi x mg-1 x min-1 and the half-activation value (K50) for Na+ was 34.3 +/- 5.8 mM and 37.7 +/- 5.3 in CL14 clone and in Y strain, respectively. The Na(+)-stimulated ATPase activity was inhibited by 5-[aminosulfonyl]-4-chloro-2-[(2-furanylmethyl)-amino] benzoic acid (furosemide) in a dose-dependent manner. The half-inhibition value (I50) was 0.22 +/- 0.03 and 0.24 +/- 0.07 mM, and the Hill number (n) was 0.99 +/- 0.2 and 2.16 +/- 0.29 for CL14 clone and Y strain, respectively. These data indicate that both cell types express the ouabain-insensitive Na(+)-ATPase activity, which might be considered the biochemical expression of the second Na+ pump.  相似文献   

20.
The mouse anion exchanger AE2/SLC4A2 Cl(-)/HCO(-)(3) exchanger is essential to post-weaning life. AE2 polypeptides regulate pH(i), chloride concentration, cell volume, and transepithelial ion transport in many tissues. Although the AE2a isoform has been extensively studied, the function and regulation of the other AE2 N-terminal variant mRNAs of mouse (AE2b1, AE2b2, AE2c1, and AE2c2) have not been examined. We now present an extended analysis of AE2 variant mRNA tissue distribution and function. We show in Xenopus oocytes that all AE2 variant polypeptides except AE2c2 mediated Cl(-) transport are subject to inhibition by acidic pH(i) and to activation by hypertonicity and NH(+)(4). However, AE2c1 differs from AE2a, AE2b1, and AE2b2 in its alkaline-shifted pH(o)((50)) (7.70 +/- 0.11 versus 6.80 +/- 0.05), suggesting the presence of a novel AE2a pH-sensitive regulatory site between amino acids 99 and 198. Initial N-terminal deletion mutagenesis restricted this site to the region between amino acids 120 and 150. Further analysis identified AE2a residues 127-129, 130-134, and 145-149 as jointly responsible for the difference in pH(o)((50)) between AE2c1 and the longer AE2a, AE2b1, and AE2b2 polypeptides. Thus, AE2c1 exhibits a unique pH(o) sensitivity among the murine AE2 variant polypeptides, in addition to a unique tissue distribution. Physiological coexpression of AE2c1 with other AE2 variant polypeptides in the same cell should extend the range over which changing pH(o) can regulate AE2 transport activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号