首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiotensin (ANG) II-dependent hypertension is characterized by increases in intrarenal ANG II levels, derangement in renal hemodynamics, and augmented tubular sodium reabsorptive capability. Increased nephron expression of renin-angiotensin system components, such as angiotensinogen by proximal tubule cells and renin by collecting duct principal cells, has been associated with an augmented ability of the kidney to form ANG II in hypertensive states. However, the contribution of de novo intrarenal ANG II production to the development and maintenance of ANG II-dependent hypertension remains unclear. The present study was performed to determine the effects of selective intrarenal renin inhibition on whole kidney hemodynamics and renal excretory function in Cyp1a1-Ren2 rats with ANG II-dependent malignant hypertension in the absence of the confounding influence of associated reductions in mean arterial pressure (MAP). Male Cyp1a1-Ren2 transgenic rats were induced to develop malignant hypertension, anesthetized, and surgically prepared for intrarenal administration of the direct renin inhibitor aliskiren (0.01 mg/kg). Following acute aliskiren treatment, urine flow and sodium excretion increased (10.5 ± 1.1 to 15.9 ± 1.9 μl/min, P < 0.001; 550 ± 160 to 1,370 ± 320 neq/min, P < 0.001, respectively) and ANG II excretion decreased (120 ± 30 to 63 ± 17 fmol/h, P < 0.05). There were no significant changes in MAP, glomerular filtration rate, estimated renal plasma flow, plasma ANG II levels, or protein excretion. The present findings demonstrate that selective renal renin inhibition elicits diuretic and natriuretic responses in Cyp1a1-Ren2 rats with ANG II-dependent malignant hypertension. Elevated intraluminal ANG II levels likely act to augment tubular reabsorptive function and, thereby, contribute to the elevated blood pressure in Cyp1a1-Ren2 rats with ANG II-dependent malignant hypertension.  相似文献   

2.
Renin expression in principal cells of collecting ducts (CD) is upregulated in angiotensin II (ANG II)-dependent hypertensive rats; however, it remains unclear whether increased CD-derived renin undergoes tubular secretion. Accordingly, urinary levels of renin (uRen), angiotensinogen (uAGT), and ANG II (uANG II) were measured in chronic ANG II-infused Sprague-Dawley rats (80 ng/min for 14 days, n = 10) and sham-operated rats (n = 10). Systolic blood pressure increased in the ANG II rats by day 5 and continued to increase throughout the study (day 13; ANG II: 175 ± 10 vs. sham: 116 ± 2 mmHg; P < 0.05). ANG II infusion increased renal cortical and medullary ANG II levels (cortical ANG II: 606 ± 72 vs. 247 ± 43 fmol/g; P < 0.05; medullary ANG II: 2,066 ± 116 vs. 646 ± 36 fmol/g; P < 0.05). Although plasma renin activity (PRA) was suppressed in the ANG II-infused rats (0.3 ± 0.2 vs. 5.5 ± 1.8 ng ANG I·ml(-1)·h(-1); P < 0.05), renin content in renal medulla was increased (12,605 ± 1,343 vs. 7,956 ± 765 ng ANG I·h(-1)·mg(-1); P < 0.05). Excretion of uAGT and uANG II increased in the ANG II rats [uAGT: 1,107 ± 106 vs. 60 ± 26 ng/day; P < 0.0001; uANG II: 3,813 ± 431 vs. 2,080 ± 361 fmol/day; P < 0.05]. By day 13, despite suppression of PRA, urinary prorenin content increased in ANG II rats [15.7 ± 3 vs. 2.6 ± 1 × 10(-3) enzyme units excreted (EUE)/day, P < 0.01] as was the excretion rate of renin (8.6 ± 2 × 10(-6) EUE/day) compared with sham (2.8 ± 1 × 10(-6) EUE/day; P < 0.05). Urinary renin and prorenin protein levels examined by Western blot were augmented ~10-fold in the ANG II-infused rats. Concomitant AT(1) receptor blockade with candesartan prevented the increase. Thus, in ANG II-dependent hypertensive rats with marked PRA suppression, increased urinary levels of renin and prorenin reflect their augmented secretion by CD cells into the luminal fluid. The greater availability of renin and AGT in the urine reflects the capability for intratubular ANG II formation which stimulates sodium reabsorption in distal nephron segments.  相似文献   

3.
Augmentation of intrarenal angiotensinogen (AGT) synthesis, secretion, and excretion is associated with the development of hypertension, renal oxidative stress, and tissue injury during ANG II-dependent hypertension. High salt (HS) exacerbates hypertension and kidney injury, but the mechanisms remain unclear. In this study, we determined the consequences of HS intake alone compared with chronic ANG II infusion and combined HS plus ANG II on the stimulation of urinary AGT (uAGT), renal oxidative stress, and renal injury markers. Sprague-Dawley rats were subjected to 1) a normal-salt diet [NS, n = 5]; 2) HS diet [8% NaCl, n = 5]; 3) ANG II infusion in NS rats [ANG II 80 ng/min, n = 5]; 4) ANG II infusion in HS rats [ANG II+HS, n = 5]; and 5) ANG II infusion in HS rats treated with ANG II type 1 receptor blocker (ARB) [ANG II+HS+ARB, n = 5] for 14 days. Rats fed a HS diet alone did not show changes in systolic blood pressure (SBP), proteinuria, cell proliferation, or uAGT excretion although they did exhibit mesangial expansion, collagen deposition, and had increased NADPH oxidase activity accompanied by increased peroxynitrite formation in the kidneys. Compared with ANG II rats, the combination of ANG II infusion and a HS diet led to exacerbation in SBP (175 ± 10 vs. 221 ± 8 mmHg; P < 0.05), proteinuria (46 ± 7 vs. 127 ± 7 mg/day; P < 0.05), and uAGT (1,109 ± 70 vs.. 7,200 ± 614 ng/day; P < 0.05) associated with greater collagen deposition, mesangial expansion, interstitial cell proliferation, and macrophage infiltration. In both ANG II groups, the O(2)(-) levels were increased due to increased NADPH oxidase activity without concomitant increases in peroxynitrite formation. The responses in ANG II rats were prevented or ameliorated by ARB treatment. The results indicate that HS independently stimulates ROS formation, which may synergize with the effect of ANG II to limit peroxynitrite formation, leading to exacerbation of uAGT and greater injury during ANG II salt hypertension.  相似文献   

4.
Angiotensin-converting enzyme 2 (ACE2) preferentially forms angiotensin-(1-7) [ANG-(1-7)] from ANG II. We showed that cardiac ACE2 is elevated following treatment of coronary artery-ligated rats with AT1 receptor blockers (ARBs). Cardiac myocytes and fibroblasts were isolated from neonatal rats to determine the molecular mechanisms for the ACE2 upregulation by ARB treatment. ANG II significantly reduced ACE2 activity and downregulated ACE2 mRNA in cardiac myocytes, effects blocked by the ARB losartan, indicating that ANG II regulates ACE2. ANG II also reduced ACE2 mRNA in cardiac fibroblasts; however, no enzyme activity was detected, reflecting the limited expression of ACE2 in these cells. Endothelin-1 (ET-1) also significantly reduced myocyte ACE2 mRNA. The reduction in ACE2 mRNA by ANG II or ET-1 was blocked by inhibitors of mitogen-activated protein kinase kinase 1, suggesting that ANG II or ET-1 activates extracellular signal-regulated kinase (ERK) 1/ERK2 to reduce ACE2. Although ACE2 mRNA was not affected by ANG-(1-7), both the ANG II- and ET-1-mediated reductions in ACE2 mRNA were blocked by the heptapeptide. The ANG-(1-7) modulatory effect was prevented by the ANG-(1-7) receptor antagonist [D-Ala7]-ANG-(1-7), indicating that the ANG-(1-7) response was mediated by a specific AT(1-7) receptor. Myocyte treatment with atrial natriuretic peptide (ANP) also reversed the ACE2 mRNA downregulation by ANG II or ET-1, whereas treatment with ANP alone was ineffective. These results indicate that multiple hypertrophic and anti-hypertropic peptides regulate ACE2 production in myocytes, suggesting that ACE2 expression in the heart is dependent upon the compliment and concentration of regulatory molecules.  相似文献   

5.
The generation of the Lew.Tg(mRen2) congenic hypertensive rat strain, developed through a backcross of the hypertensive (mRen2)27 transgenic rat with normotensive Lewis rats, provides a new model by which primary hypertension can be studied without the genetic variability found in the original strain. The purpose of this study was to characterize the Lew.Tg(mRen2) rats by dually investigating the effects of type 1 angiotensin II (ANG II) receptor (AT(1)) blockade and angiotensin-converting enzyme (ACE) activity inhibition on the ANG-(1-7)/ACE2 axis of the renin-angiotensin system in this new hypertensive model. The control of blood pressure elicited by 12-day administration of either lisinopril (mean difference change = 92 +/- 2, P < 0.05) or losartan (mean difference change = 69 +/- 2, P < 0.05) was associated with 54% and 33% increases in cardiac ACE2 mRNA and 54% and 43% increases in cardiac ACE mRNA, respectively. Lisinopril induced a 3.1-fold (P < 0.05) increase in renal cortical expression of ACE2, whereas losartan increased ACE2 mRNA 3.5-fold (P < 0.05). Both treatment regimens increased renal ACE mRNA 2.6-fold (P < 0.05). The two therapies augmented ACE2 protein activity, as well as increased cardiac and renal AT(1) receptor mRNAs. ACE inhibition reduced plasma ANG II levels (81%, P < 0.05) and increased plasma ANG-(1-7) (265%, P < 0.05), whereas losartan had no effect on the peptides. In contrast with what had been shown in normotensive rats, ACE inhibition decreased renal ANG II excretion and transiently decreased ANG-(1-7) excretion, whereas losartan treatment was associated with a consistent decrease in ANG-(1-7) urinary excretion rates. In response to the treatments, the expression of both renal cortical renin and angiotensinogen mRNAs was significantly augmented. The paradoxical effects of blockade of ANG II synthesis and activity on urinary excretion rates of the peptides and plasma angiotensins levels suggest that, in Lew.Tg(mRen2) congenic rats, a failure of compensatory ACE2 and ANG-(1-7)-dependent vasodepressor mechanisms may contribute both to the development and progression of hypertension driven by increased formation of endogenous ANG II.  相似文献   

6.
7.
High sodium intake is known to regulate the renal renin-angiotensin system (RAS) and is a risk factor for the pathogenesis of obesity-related hypertension. The complex nature of the RAS reveals that its various components may have opposing effects on natriuresis and blood pressure regulation. We hypothesized that high sodium intake differentially regulates and shifts a balance between opposing components of the renal RAS, namely, angiotensin-converting enzyme (ACE)-ANG II-type 1 ANG II receptor (AT(1)R) vs. AT(2)-ACE2-angiotensinogen (Ang) (1-7)-Mas receptor (MasR), in obesity. In the present study, we evaluated protein and/or mRNA expression of angiotensinogen, renin, AT(1A/B)R, ACE, AT(2)R, ACE2, and MasR in the kidney cortex following 2 wk of a 8% high-sodium (HS) diet in lean and obese Zucker rats. The expression data showed that the relative expression pattern of ACE and AT(1B)R increased, renin decreased, and ACE2, AT(2)R, and MasR remained unaltered in HS-fed lean rats. On the other hand, HS intake in obese rats caused an increase in the cortical expression of ACE, a decrease in ACE2, AT(2)R, and MasR, and no changes in renin and AT(1)R. The cortical levels of ANG II increased by threefold in obese rats on HS compared with obese rats on normal salt (NS), which was not different than in lean rats. The HS intake elevated mean arterial pressure in obese rats (27 mmHg) more than in lean rats (16 mmHg). This study suggests that HS intake causes a pronounced increase in ANG II levels and a reduction in the expression of the ACE2-AT(2)R-MasR axis in the kidney cortex of obese rats. We conclude that such changes may lead to the potentially unopposed function of AT(1)R, with its various cellular and physiological roles, including the contribution to the pathogenesis of obesity-related hypertension.  相似文献   

8.
The angiotensin-converting enzyme (ACE)/Angiotensin II (Ang II) and angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) (Ang-(1-7)) pathways are coexpressed in most tissues. The balance between these pathways determines, at least in part, whether tissue damage will occur in response to pathological stimuli. The present study tested the hypothesis that male sex and high blood pressure are associated with ACE/ACE2 imbalance in the lungs. Experiments were conducted in male and female Wistar rats and spontaneously hypertensive rats (SHRs). Lung ACE and ACE2 gene expression was also evaluated in normotensive and hypertensive humans using the Genotype-Tissue Expression (GTEx) project. Compared with Wistar rats and female SHRs, male SHRs displayed reduced lung ACE2 mRNA, ACE2 protein abundance and ACE2 activity, and increased Ang II concentration. Lung ACE mRNA levels were higher in male SHRs than in Wistar rats, whereas lung ACE protein abundance and activity were similar among the four groups of rats. Lung Ang-(1-7) concentration was higher in female than in male SHRs (89 ± 17 vs. 43 ± 2 pg/g, P<0.05). Lung ACE to ACE2 mRNA expression in hypertensive patients was significantly higher than that in normotensive subjects. Taken together, these results demonstrate that male hypertensive rats display imbalance between the ACE/Ang II and ACE2/Ang-(1-7) pathways in the lungs mainly attributable to ACE2 down-regulation. Further studies should be conducted to investigate whether this imbalance between ACE/ACE2 may promote and accelerate lung injury in respiratory infections, including coronavirus disease 2019 (COVID-19).  相似文献   

9.
Despite suppression of the circulating renin-angiotensin system (RAS), high salt intake (HSI) aggravates kidney injury in chronic kidney disease. To elucidate the effect of HSI on intrarenal RAS, we investigated the levels of intrarenal prorenin, renin, (pro)renin receptor (PRR), receptor-mediated prorenin activation, and ANG II in chronic anti-thymocyte serum (ATS) nephritic rats on HSI. Kidney fibrosis grew more severe in the nephritic rats on HSI than normal salt intake. Despite suppression of plasma renin and ANG II, marked increases in tubular prorenin and renin proteins without concomitant rises in renin mRNA, non-proteolytically activated prorenin, and ANG II were noted in the nephritic rats on HSI. Redistribution of PRR from the cytoplasm to the apical membrane, along with elevated non-proteolytically activated prorenin and ANG II, was observed in the collecting ducts and connecting tubules in the nephritic rats on HSI. Olmesartan decreased cortical prorenin, non-proteolytically activated prorenin and ANG II, and apical membranous PRR in the collecting ducts and connecting tubules, and attenuated the renal lesions. Cell surface trafficking of PRR was enhanced by ANG II and was suppressed by olmesartan in Madin-Darby canine kidney cells. These data suggest the involvement of the ANG II-dependent increase in apical membrane PRR in the augmentation of intrarenal binding of prorenin and renin, followed by nonproteolytic activation of prorenin, enhancement of renin catalytic activity, ANG II generation, and progression of kidney fibrosis in the nephritic rat kidneys on HSI. The origin of the increased tubular prorenin and renin remains to be clarified. Further studies measuring the urinary prorenin and renin are needed.  相似文献   

10.
Fetal uninephrectomy (uni-x) at 100 days of gestation results in compensatory nephrogenesis in the remaining kidney, resulting in a 30% reduction in total nephron number in male sheep. Recently, we showed that uni-x males at 6 mo of age have elevated arterial pressure, reduced renal blood flow (RBF), glomerular filtration rate (GFR), and low plasma renin levels (Singh R, Denton K, Bertram J, Jefferies A, Head G, Lombardo P, Schneider-Kolsky M, Moritz K. J Hypertens 27: 386-396, 2009; Singh R, Denton K, Jefferies A, Bertram J, Moritz K. Clin Sci (Lond) 118: 669-680, 2010). We hypothesized this was due to upregulation of the intrarenal renin-angiotensin system (RAS). In this study, renal responses to ANG II infusion and ANG II type 1 receptor (AT1R) blockade were examined in the same 6-mo-old male sheep. Uni-x animals had reduced levels of renal tissue and plasma renin and ANG II. Renal gene expression of renin, and gene and protein levels of AT1R and AT2R, were significantly lower in uni-x animals. In response to graded ANG II infusion, sham animals had the expected decrease in conscious RBF and GFR. Interestingly, the response was biphasic in uni-x sheep, with GFR initially decreasing, but then increasing at higher ANG II doses (34 ± 7%; P(group × treatment) < 0.001), due to a paradoxical decrease in renal vascular resistance (P(group × treatment) < 0.001). In response to AT1R blockade, while GFR and RBF responded similarly between groups, there was a marked increase in sodium excretion in uni-x compared with sham sheep (209 ± 35 vs. 25 ± 12%; P < 0.001). In conclusion, in 6-mo-old male sheep born with a single kidney, these studies demonstrate that this is a low-renin form of hypertension, in which responses to ANG II are perturbed and the intrarenal RAS is downregulated.  相似文献   

11.
ANG II is a potent renal vasoconstrictor and profibrotic factor and its activity is enhanced by oxidative stress. We sought to determine whether renal oxidative stress was persistent following recovery from acute kidney injury (AKI) induced by ischemia-reperfusion (I/R) injury in rats and whether this resulted in increased ANG II sensitivity. Rats were allowed to recover from bilateral renal I/R injury for 5 wk and renal blood flow responses were measured. Post-AKI rats showed significantly enhanced renal vasoconstrictor responses to ANG II relative to sham-operated controls and treatment of AKI rats with apocynin (15 mM, in the drinking water) normalized these responses. Recovery from AKI for 5 wk resulted in sustained oxidant stress as indicated by increased dihydroethidium incorporation in renal tissue slices and was normalized in apocynin-treated rats. Surprisingly, the renal mRNA expression for common NADPH oxidase subunits was not altered in kidneys following recovery from AKI; however, mRNA screening using PCR arrays suggested that post-AKI rats had decreased renal Gpx3 mRNA and an increased expression other prooxidant genes such as lactoperoxidase, myeloperoxidase, and dual oxidase-1. When rats were infused for 7 days with ANG II (100 ng·kg(-1)·min(-1)), renal fibrosis was not apparent in sham-operated control rats, but it was enhanced in post-AKI rats. The profibrotic response was significantly attenuated in rats treated with apocynin. These data suggest that there is sustained renal oxidant stress following recovery from AKI that alters both renal hemodynamic and fibrotic responses to ANG II, and may contribute to the transition to chronic kidney disease following AKI.  相似文献   

12.
13.
The present study was designed to evaluate, in Wistar rats, the effect of high- or low-salt diet on the hemodynamic parameters and on the renal and lumbar sympathetic nerve activity. The renal gene expression of the renin angiotensin system components was also evaluated, aiming to find some correlation between salt intake, sodium homeostasis and blood pressure increase. Male Wistar rats received low (0.06% Na, TD 92141-Harlan Teklad), a normal (0.5% Na, TD 92140), or a high-salt diet (3.12% Na, TD 92142) from weaning to adulthood. Hemodynamic parameters such as cardiac output and total peripheral resistance, and the renal and lumbar sympathetic nerve activity were determined (n=45). Plasma renin activity, plasma and renal content of angiotensin (ANG) I and II, and the renal mRNA expression of angiotensinogen, renin, AT1 and AT2 receptors were also measured (n=24). Compared to normal- and low-salt diet-, high-salt-treated rats were hypertensive and developed an increase (P<0.05) in total peripheral resistance and lumbar sympathetic nerve activity. A decrease in renal renin and angiotensinogen-mRNAs and in plasma ANG II and plasma renin activity was also found in salt overloaded animals. The renal sympathetic nerve activity was higher (P<0.05) in low- compared to high-salt-treated rats, and was associated with an increase (P<0.05) in renal ANG I and II and with a decrease (P<0.05) in AT2 renal mRNA. Plasma ANG I and II and plasma renin activity were higher in low- than in normal-salt rats. Our results show that increased blood pressure is associated with increases in lumbar sympathetic nerve activity and total peripheral resistance in high-salt-treated rats. However, in low-salt-treated rats an increase in the renal sympathetic nerve was correlated with an increase in the renal content of ANG I and II and with a decrease in AT2 renal mRNA. These changes are probably in favor of the antinatriuretic response and the sodium homeostasis in the low-salt group.  相似文献   

14.
15.
李秀丽  高原 《生理学报》1992,44(1):8-14
In anesthetized rats, it was observed that intracerebroventricular (I.C.V.) microinjection of angiotensin II (ANG II) in a dose of 16 pg evoked a significant increase in renal sodium excretion which began within 15 min and lasted for 90 min. The activity of Na+.K(+)-ATPase in renal cortex after I.C.V. microinjection of ANG II (1.51 +/- 0.26 mumol Pi/mg Pro.h) was inhibited as compared with that of the control injecting of artificial cerebrospinal fluid (2.66 +/- 0.28 mumol Pi/mg Pro.h, P less than 0.01). There was no change in mean arterial pressure. Within 15 min after I.C.V. administration of ANG II antibody, however, and antinatriuretic period of 135 min and a higher activity of Na+.K(+)-ATPase in renal cortex (3.61 +/- 0.34 mumol Pi/mg Pro.h, P less than 0.05 compared with control) were observed. There was no natriuresis in the animals microinjected with ANG II either into femoral vein or into spinal subarachnoid space. The result of the present investigation suggests that brain endogenous ANG II may possess some natriuretic activity possibly through inhibiting renal Na+.K(+)-ATPase activity.  相似文献   

16.
In humans, the effect of angiotensin-converting enzyme (ACE) gene polymorphisms in cardiovascular disease is still controversial. In the rat, a microsatellite marker in the ACE gene allows differentiation of the ACE gene polymorphism among strains with different ACE levels. We tested the hypothesis that this ACE gene polymorphism determines the extent of cardiac fibrosis induced by isoproterenol (Iso) in the rat. We used a male F(2) generation (homozygous LL and BB ACE genotypes determined by polymerase chain reaction) derived from two rat strains [Brown-Norway (BB) and Lewis (LL)] that differ with respect to their plasma ACE activities. For induction of left ventricular (LV) hypertrophy (LVH) and cardiac fibrosis, rats were infused with Iso (5 mg x kg(-1) x day(-1)) or saline (control) for 10 days and euthanized at day 1 after the last injection. The interstitial collagen volumetric fraction (ICVF), collagen I, and fibronectin content, but not collagen III content, were significantly higher in the homozygous BB rats than in homozygous LL rats. Differences in metalloprotease (MMP)-9, but not in MMP-2 activities as well as in cardiac cell proliferation, were also detected between LL and BB rats treated with Iso. LV ACE activity was higher in BB rats than LL rats and correlated with ICVF (r = 0.61, P < 0.002). No changes were observed in plasma ACE activities, ANG II plasma or LV levels, plasma renin activity, and ACE and ANG II type 1 receptor (AT1R) mRNA levels in the LV of rats with the two different ACE polymorphisms. Iso induced a similar degree of LVH [assessed by an increase in LV weight 100 per body weight, LV-to-right ventricle (RV) ratio, and LV protein content] in LL and BB rats. We concluded that rats in the F(2) generation with high plasma ACE activity developed more fibrosis but to a similar degree of LVH compared with rats with low plasma ACE activity.  相似文献   

17.
Female growth-restricted offspring are normotensive in adulthood. However, ovariectomy induces a marked increase in mean arterial pressure (MAP) that is abolished by renin angiotensin system (RAS) blockade, suggesting RAS involvement in the etiology of hypertension induced by ovariectomy in adult female growth-restricted offspring. Blockade of the RAS also abolishes hypertension in adult male growth-restricted offspring. Moreover, sensitivity to acute ANG II is enhanced in male growth-restricted offspring. Thus, we hypothesized that an enhanced sensitivity to acute ANG II may contribute to hypertension induced by ovariectomy in female growth-restricted offspring. Female offspring were subjected to ovariectomy (OVX) or sham ovariectomy (intact) at 10 wk of age. Cardio-renal hemodynamic parameters were determined before and after an acute infusion of ANG II (100 ng·kg(-1)·min(-1) for 30 min) at 16 wk of age in female offspring pretreated with enalapril (40 mg·kg(-1)·day(-1) for 7 days). Acute ANG II induced a significant increase in MAP in intact growth-restricted offspring (155 ± 2 mmHg, P < 0.05) relative to intact control (145 ± 4 mmHg). Ovariectomy augmented the pressor response to ANG II in growth-restricted offspring (163 ± 2 mmHg, P < 0.05), with no effect in control (142 ± 2 mmHg). Acute pressor responses to phenylephrine did not differ in growth-restricted offspring relative to control, intact, or ovariectomized. Furthermore, renal hemodynamic responses to acute ANG II were significantly enhanced only in ovariectomized female growth-restricted offspring. Thus, these data suggest that enhanced responsiveness to acute ANG II is programmed by intrauterine growth restriction and that sensitivity to acute ANG II is modulated by ovarian hormones in female growth-restricted offspring.  相似文献   

18.
It is well known that nonselective, nonsteroidal anti-inflammatory drugs inhibit renal renin production. Our previous studies indicated that angiotensin-converting enzyme inhibitor (ACEI)-mediated renin increases were absent in rats treated with a cyclooxygenase (COX)-2-selective inhibitor and in COX-2 -/- mice. The current study examined further whether COX-1 is also involved in mediating ACEI-induced renin production. Because renin increases are mediated by cAMP, we also examined whether increased renin is mediated by the prostaglandin E(2) receptor EP(2) subtype, which is coupled to G(s) and increases cAMP. Therefore, we investigated if genetic deletion of COX-1 or EP(2) prevents increased ACEI-induced renin expression. Age- and gender-matched wild-type (+/+) and homozygous null mice (-/-) were administered captopril for 7 days, and plasma and renal renin levels and renal renin mRNA expression were measured. There were no significant differences in the basal level of renal renin activity from plasma or renal tissue in COX-1 +/+ and -/- mice. Captopril administration increased renin equally [plasma renin activity (PRA): +/+ 9.3 +/- 2.2 vs. 50.1 +/- 10.9; -/- 13.7 +/- 1.5 vs. 43.9 +/- 6.6 ng ANG I x ml(-1) x h(-1); renal renin concentration: +/+ 11.8 +/- 1.7 vs. 35.3 +/- 3.9; -/- 13.0 +/- 3.0 vs. 27.8 +/- 2.7 ng ANG I x mg protein(-1) x h(-1); n = 6; P < 0.05 with or without captopril]. ACEI also increased renin mRNA expression (+/+ 2.4 +/- 0.2; -/- 2.1 +/- 0.2 fold control; n = 6-10; P < 0.05). Captopril led to similar increases in EP(2) -/- compared with +/+. The COX-2 inhibitor SC-58236 blocked ACEI-induced elevation in renal renin concentration in EP(2) null mice (+/+ 24.7 +/- 1.7 vs. 9.8 +/- 0.4; -/- 21.1 +/- 3.2 vs. 9.3 +/- 0.4 ng ANG I x mg protein(-1) x h(-1); n = 5) as well as in COX-1 -/- mice (SC-58236-treated PRA: +/+ 7.3 +/- 0.6; -/- 8.0 +/- 0.9 ng ANG I x ml(-1) x h(-1); renal renin: +/+ 9.1 +/- 0.9; -/- 9.6 +/- 0.5 ng ANG I x mg protein(-1) x h(-1); n = 6-7; P < 0.05 compared with no treatment). Immunohistochemical analysis of renin expression confirmed the above results. This study provides definitive evidence that metabolites of COX-2 rather than COX-1 mediate ACEI-induced renin increases. The persistent response in EP(2) nulls suggests involvement of prostaglandin E(2) receptor subtype 4 and/or prostacyclin receptor (IP).  相似文献   

19.
The present study was designed to determine ANG peptide content [ANG I, ANG II, ANG-(1-7)], ACE2 mRNA, and the immunocytochemical distribution of ANG-(1-7) and ACE2 in the uteroembryonic unit during early and late gestation in Sprague-Dawley rats and in a rat model of pregnancy-induced hypertension, the reduced uterine perfusion pressure (RUPP) model. At early pregnancy ANG-(1-7) and ACE2 staining were localized in the primary and secondary decidual zone and luminal and glandular epithelial cells. During late gestation, ANG-(1-7) and ACE2 staining was visualized in the labyrinth placenta and amniotic and yolk sac epithelium. Uterine ANG II concentration at early pregnancy was significantly decreased by 21-55% in the implantation and interimplantation sites compared with virgin rats, whereas ANG-(1-7) levels were maintained at prepregnancy levels. At late gestation, uterine concentrations of ANG I and ANG II were significantly increased (30% and 25%, respectively). In RUPP animals, ANG-(1-7) concentration is significantly reduced in the uterus (181 +/- 16 vs. 372 +/- 74 fmol/g of tissue) and placenta (143 +/- 26 vs. 197 +/- 20 fmol/g of tissue). ACE2 mRNA increased in the uterus of early pregnant compared with virgin rats, yet within the implantation site it was downregulated. At late pregnancy, ACE2 mRNA is elevated by 58% in the uterus and decreased by 59% in RUPP animals. The regulation of ANG-(1-7) and ACE2 in early and late pregnancy supports the hypothesis that ANG-(1-7) and ACE2 may act as a local autocrine/paracrine regulator throughout pregnancy, participating in the early (angiogenesis, apoptosis, and growth) and late (uteroplacental blood flow) events of pregnancy.  相似文献   

20.
We utilized mice with homozygous disruption of angiotensin-converting enzyme (ACE) (-/-), mice with heterozygous deletion of ACE (+/-), and wild-type mice (+/+) to test the hypothesis that genetic variation in ACE modulates tissue and plasma angiotensin (ANG) II concentrations. With the use of ANG I as substrate, kidney, heart, and lung ACE activity was reduced 80% in -/- mice compared with +/+ mice. However, ANG II concentrations and ANG II-to-ANG I ratios in the kidney, heart, and lung did not differ among genotypes. In contrast, plasma ANG II concentrations in -/- mice were <2 fmol/ml, whereas plasma ANG I concentrations were extremely high (765 fmol/ml). Chymase activity was increased 14-fold in the kidney (P < 0.05) and 1.5-fold in the heart (P < 0.05) of -/- versus +/+ mice but did not differ among genotypes in the lung. ANG II formation from enzymes other than ACE and chymase contributed <2% of total ANG II formation in all genotypes. These data suggest that ACE is essential to ANG II formation in the vascular space, whereas chymase may provide an important mechanism in maintaining steady-state ANG II levels in tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号