首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Effects of varying dietary protein intake on serum free amino acid (FAA) concentrations were studied in harbor seals (Phoca vitulina) fed two different prey fish diets: either exclusively low-fat, high-protein walleye pollock (Theragra chalcogramma) or high-fat, relatively high-energy-density Pacific herring (Clupea pallasi). Significant differences in FAA concentrations and patterns were observed between the two diets. All essential amino acids (EAA), except methionine and phenylalanine, and two nonessential amino acids (NEAA), glycine and tyrosine, decreased when the diet was switched from herring to pollock and increased on switching back to herring. Both total EAA concentrations and EAA : NEAA ratios decreased with the elevated protein intake typical of a low-fat pollock diet, indicating an inverse correlation between EAA concentrations and dietary protein intake levels. We propose that differing dietary protein intake, caused by differences in macronutrient composition of the two prey fish species, induced a change in protein metabolism that was reflected in blood-circulating amino acids. These findings suggest that surveys of amino acid profiles may be useful to partially determine the protein metabolic status of harbor seals.  相似文献   

3.
4.
This study was designed to examine the cellular and systemic nutrient sensing mechanisms as well as the intermediary metabolism responses in turbot (Scophthalmus maximus L.) fed with fishmeal diet (FM diet), 45% of FM replaced by meat and bone meal diet (MBM diet) or MBM diet supplemented with essential amino acids to match the amino acid profile of FM diet (MBM+AA diet). During the one month feeding trial, feed intake was not affected by the different diets. However, MBM diet caused significant reduction of specific growth rate and nutrient retentions. Compared with the FM diet, MBM diet down-regulated target of rapamycin (TOR) and insulin-like growth factor (IGFs) signaling pathways, whereas up-regulated the amino acid response (AAR) signaling pathway. Moreover, MBM diet significantly decreased glucose and lipid anabolism, while increased muscle protein degradation and lipid catabolism in liver. MBM+AA diet had no effects on improvement of MBM diet deficiencies. Compared with fasted, re-feeding markedly activated the TOR signaling pathway, IGF signaling pathway and glucose, lipid metabolism, while significantly depressed the protein degradation signaling pathway. These results thus provided a comprehensive display of molecular responses and a better explanation of deficiencies generated after fishmeal replacement by other protein sources.  相似文献   

5.
6.
Ectopic lipid accumulation has been observed in fish fed a high-lipid diet. However, no information is available on the mechanism by which dietary lipid levels comprehensively regulate lipid transport, uptake, synthesis and catabolism in fish. Therefore, the present study aimed to gain further insight into how dietary lipids affect lipid deposition in the liver of large yellow croaker(Larimichthys crocea). Fish (150.00±4.95 g) were fed a diet with a low (6%), moderate (12%, the control diet) or high (18%) crude lipid content for 10 weeks. Growth performance, plasma biochemical indexes, lipid contents and gene expression related to lipid deposition, including lipoprotein assembly and clearance, fatty acid uptake and triacylglycerol synthesis and catabolism, were assessed. Growth performance was not significantly affected. However, the hepato-somatic and viscera-somatic indexes as well as plasma triacylglycerol, non-esterified fatty acids and LDL-cholesterol levels were significantly increased in fish fed the high-lipid diet. In the livers of fish fed the high-lipid diet, the expression of genes related to lipoprotein clearance (LDLR) and fatty acid uptake (FABP11) was significantly up-regulated, whereas the expression of genes involved in lipoprotein assembly (apoB100), triacylglycerol synthesis and catabolism (DGAT2, CPT I) was significantly down-regulated compared with fish fed the control diet, and hepatic lipid deposition increased. In fish fed the low-lipid diet, the expression of genes associated with lipoprotein assembly and clearance (apoB100, LDLR, LRP-1), fatty acid uptake (CD36, FATP1, FABP3) and triacylglycerol synthesis (FAS) was significantly increased, whereas the expression of triacylglycerol catabolism related genes (ATGL, CPT I) was reduced compared with fish fed the control diet. However, hepatic lipid content in fish fed the low-lipid diet decreased mainly due to low dietary lipid intake. In summary, findings of this study provide molecular insight into the role of lipid deposition in the liver in response to different dietary lipid contents.  相似文献   

7.
Dietary fat plays a major role in obesity, lipid metabolism, and cardiovascular diseases. To determine whether the intake of different types of dietary fats affect the muscle fiber types that govern the metabolic and contractile properties of the skeletal muscle, we fed male Wistar rats with a 15% fat diet derived from different fat sources. Diets composed of soybean oil (n-6 polyunsaturated fatty acids (PUFA)-rich), fish oil (n-3 PUFA-rich), or lard (low in PUFAs) were administered to the rats for 4 weeks. Myosin heavy chain (MyHC) isoforms were used as biomarkers to delineate the skeletal muscle fiber types. Compared with soybean oil intake, fish oil intake showed significantly lower levels of the fast-type MyHC2B and higher levels of the intermediate-type MyHC2X composition in the extensor digitorum longus (EDL) muscle, which is a fast-type dominant muscle. Concomitantly, MyHC2X mRNA levels in fish oil-fed rats were significantly higher than those observed in the soybean oil-fed rats. The MyHC isoform composition in the lard-fed rats was an intermediate between that of the fish oil and soybean oil-fed rats. Mitochondrial uncoupling protein 3, pyruvate dehydrogenase kinase 4, and porin mRNA showed significantly upregulated levels in the EDL of fish oil-fed rats compared to those observed in soybean oil-fed and lard-fed rats, implying an activation of oxidative metabolism. In contrast, no changes in the composition of MyHC isoforms was observed in the soleus muscle, which is a slow-type dominant muscle. Fatty acid composition in the serum and the muscle was significantly influenced by the type of dietary fat consumed. In conclusion, dietary fat affects the expression of genes related to the contractile and metabolic properties in the fast-type dominant skeletal muscle, where the activation of oxidative metabolism is more pronounced after fish oil intake than that after soybean oil intake.  相似文献   

8.
Metabolomics assays have recently been used in humans for the identification of biomarkers for dietary assessment and diseases. The application of metabolomics to feline nutrition, however, has been very limited. The objective of this study was to identify how the feline blood metabolome changed in response to dietary macronutrient composition. Twelve adult domestic cats were fed four nutritionally complete diets [control, high-fat (HF), high-protein (HP), high-carbohydrate (HC)] at amounts to maintain ideal body weight and body condition score for 16 days. Overnight fasted plasma samples were collected on day 16 and subjected to liquid/gas chromatography and mass spectrometry. Principal component analysis showed that metabolite profiles of cats fed HP, HF, and HC dietary regimes formed distinct clusters. Cats fed the HP diet had a metabolite profile associated with decreased nucleotide catabolism, but increased amino acid metabolism and ketone bodies, indicating a greater use of protein and fat for energy. Cats fed the HP diet had a significant increase in metabolites associated with gut microbial metabolism. Cats fed the HF diet had metabolites indicative of increased lipid metabolism, including free fatty acids, monoacylglycerols, glycerol-3-phosphate, cholesterol, ketone bodies, and markers of oxidative stress. γ-glutamylleucine, 3-hydroxyisobutyrate, and 3-indoxyl sulfate were identified by random forest analysis to distinguish cats fed the three macronutrient-rich diets. In conclusion, macronutrient-rich diets primarily altered markers of amino acid and lipid metabolism, with little changes in markers of carbohydrate and energy metabolism. Moreover, the HP diet influenced several metabolites originating from gut microbial metabolism.  相似文献   

9.
We determined the effect of dietary starch on growth performance and feed utilization in European sea bass juveniles. Data on the dietary regulation of key hepatic enzymes of the glycolytic, gluconeogenic, lipogenic and amino acid metabolic pathways (hexokinase, HK; glucokinase, GK; pyruvate kinase, PK; fructose-1,6-bisphosphatase, FBPase; glucose-6-phosphatase, G6Pase; glucose-6-phosphate dehydrogenase, G6PD; alanine aminotransferase, ALAT; aspartate aminotransferase, ASAT and glutamate dehydrogenase, GDH) were also measured. Five isonitrogenous (48% crude protein) and isolipidic (14% crude lipids) diets were formulated to contain 10% normal starch (diet NS10), 10% waxy starch (diet WS10), 20% normal starch (diet NS20), 20% waxy starch (diet WS20) or no starch (control diet). Another diet was formulated with no carbohydrate, and contained 68% crude protein and 14% crude lipids (diet HP). Each experimental diet was fed to triplicate groups of 30 fish (initial weight: 23.3 g) on an equivalent feeding scheme for 12 weeks. The best growth performance and feed efficiency were achieved with fish fed the HP diet. Neither the level nor the nature of starch had measurable effects on growth performance of sea bass juveniles. Digestibility of starch was higher with waxy starch and decreased with increasing levels of starch in the diet. Whole-body composition and plasma metabolites, mainly glycemia, were not affected by the level and nature of the dietary starch. Data on enzyme activities suggest that dietary carbohydrates significantly improve protein utilization associated with increased glycolytic enzyme activities (GK and PK), as well as decreased gluconeogenic (FBPase) and amino acid catabolic (GDH) enzyme activities. The nature of dietary carbohydrates tested had little influence on performance criteria.  相似文献   

10.
11.
Conjugation of bile acids (BAs) to the amino acids taurine or glycine increases their solubility and promotes liver BA secretion. Supplementing diets with taurine or glycine modulates BA metabolism and enhances fecal BA excretion in rats. However, it is still unclear whether dietary proteins varying in taurine and glycine contents alter BA metabolism, and thereby modulate the recently discovered systemic effects of BAs. Here we show that rats fed a diet containing saithe fish protein hydrolysate (saithe FPH), rich in taurine and glycine, for 26 days had markedly elevated fasting plasma BA levels relative to rats fed soy protein or casein. Concomitantly, the saithe FPH fed rats had reduced liver lipids and fasting plasma TAG levels. Furthermore, visceral adipose tissue mass was reduced and expression of genes involved in fatty acid oxidation and energy expenditure was induced in perirenal/retroperitoneal adipose tissues of rats fed saithe FPH. Our results provide the first evidence that dietary protein sources with different amino acid compositions can modulate the level of plasma bile acids and our data suggest potential novel mechanisms by which dietary protein sources can affect energy metabolism.  相似文献   

12.
It has been reported that phytoextracts that contain alkylresorcinols (ARs) protect against severe myofibrillar degeneration found in isoproterenol-induced myocardial infarction. In this study, we examined the effect of dietary ARs derived from wheat bran extracts on muscle atrophy in denervated mice. The mice were divided into the following four groups: (1) sham-operated (control) mice fed with normal diet (S-ND), (2) denervated mice fed with normal diet (D-ND), (3) control mice fed with ARs-supplemented diet (S-AR) and (4) denervated mice fed with ARs-supplemented diet (D-AR). The intake of ARs prevented the denervation-induced reduction of the weight of the hind limb muscles and the myofiber size. However, the expression of ubiquitin ligases and autophagy-related genes, which is associated with muscle proteolysis, was slightly higher in D-AR than in D-ND. Moreover, the abundance of the autophagy marker p62 was significantly higher in D-AR than in D-ND. Muscle atrophy has been known to be associated with a disturbed energy metabolism. The expression of pyruvate dehydrogenase kinase 4 (PDK4), which is related to fatty acid metabolism, was decreased in D-ND as compared with that in S-ND. In contrast, dietary supplementation with ARs inhibited the decrease of PDK4 expression caused by denervation. Furthermore, the abnormal expression pattern of genes related to the abundance of lipid droplets-coated proteins that was induced by denervation was improved by ARs. These results raise the possibility that dietary supplementation with ARs modifies the disruption of fatty acid metabolism induced by lipid autophagy, resulting in the prevention of muscle atrophy.  相似文献   

13.
We hypothesize that variations in dietary carbohydrate levels produce changes in glucosensor parameters in previously characterized glucosensing areas (hypothalamus and hindbrain) related with the regulation of food intake of a carnivorous fish species like rainbow trout. Therefore, we fed trout with standard, carbohydrate-free (CF) or high-carbohydrate (HC) diets for 10 days to assess changes in glucosensing system and food intake. Fish fed CF diet displayed hypoglycemia and increased food intake. Fish fed a HC diet displayed hyperglycemia and decreased food intake. Changes in food intake due to dietary carbohydrates were accompanied in hypothalamus and hindbrain of fish fed with HC diet by changes in parameters involved in glucosensing, such as increased glucose, glucose 6-phosphate, and glycogen levels and increased glucokinase (GK), glycogen synthase, and pyruvate kinase activities as well as increased GK and GLUT2 expression. All those results address for the first time in fish, despite the relative intolerance to glucose of carnivorous species, that dietary carbohydrates are important regulators of the glucosensing system in carnivorous fish, suggesting that the information generated by this system can be associated with the changes observed in food intake.  相似文献   

14.
Obesity is a risk factor for the development of chronic kidney disease (CKD) and end-stage renal disease. It is not clear whether the adoption of a high-protein diet in obese patients affects renal lipid metabolism or kidney function. Thus the aims of this study were to assess in obese Zuckerfa/fa rats the effects of different types and amounts of dietary protein on the expression of lipogenic and inflammatory genes, as well as renal lipid concentration and biochemical parameters of kidney function. Rats were fed different concentrations of soy protein or casein (20, 30, 45%) for 2 mo. Independent of the type of protein ingested, higher dietary protein intake led to higher serum triglycerides (TG) than rats fed adequate concentrations of protein. Additionally, the soy protein diet significantly increased serum TG compared with the casein diet. However, rats fed soy protein had significantly decreased serum cholesterol concentrations compared with those fed a casein diet. No significant differences in renal TG and cholesterol concentrations were observed between rats fed with either protein diets. Renal expression of sterol-regulatory element binding protein 2 (SREBP-2) and its target gene HMG-CoA reductase was significantly increased as the concentration of dietary protein increased. The highest protein diets were associated with greater expression of proinflammatory cytokines in the kidney, independent of the type of dietary protein. These results indicate that high soy or casein protein diets upregulate the expression of lipogenic and proinflammatory genes in the kidney.  相似文献   

15.
Proteomic sensitivity to dietary manipulations in rainbow trout   总被引:6,自引:0,他引:6  
Changes in dietary protein sources due to substitution of fish meal by other protein sources can have metabolic consequences in farmed fish. A proteomics approach was used to study the protein profiles of livers of rainbow trout that have been fed two diets containing different proportions of plant ingredients. Both diets control (C) and soy (S) contained fish meal and plant ingredients and synthetic amino acids, but diet S had a greater proportion of soybean meal. A feeding trial was performed for 12 weeks at the end of which, growth and protein metabolism parameters were measured. Protein growth rates were not different in fish fed different diets; however, protein consumption and protein synthesis rates were higher in the fish fed the diet S. Fish fed diet S had lower efficiency of retention of synthesised protein. Ammonia excretion was increased as well as the activities of hepatic glutamate dehydrogenase and aspartate amino transferase (ASAT). No differences were found in free amino acid pools in either liver or muscle between diets. Protein extraction followed by high-resolution two-dimensional electrophoresis, coupled with gel image analysis, allowed identification and expression of hundreds of protein. Individual proteins of interest were then subjected to further analysis leading to protein identification by trypsin digest fingerprinting. During this study, approximately 800 liver proteins were analysed for expression pattern, of which 33 were found to be differentially expressed between diets C and S. Seventeen proteins were positively identified after database searching. Proteins were identified from diverse metabolic pathways, demonstrating the complex nature of gene expression responses to dietary manipulation revealed by proteomic characterisation.  相似文献   

16.
Irm  Misbah  Mu  Wei  Xiaoyi  Wu  Geng  Lina  Wang  Xiao  Ye  Bo  Ma  Lei  Zhou  Zhiyu 《Amino acids》2021,53(7):1065-1077

An 8-week feeding trial was conducted to evaluate optimum dietary methionine (Met) requirement of juvenile humpback grouper (Cromileptes altivelis) and the influence of dietary methionine (Met) supplementations on growth, gut micromorphology, protein and lipid metabolism. Seven isoproteic (48.91%) and isolipidic diets (10%) were made to contain 0.70, 0.88, 1.04, 1.27 1.46, 1.61 and 1.76% of dry matter Met levels. Results showed that lower survival, weight gain (WG%), protein efficiency ratio (PER), protein productive value (PPV) but higher daily feed intake (DFI) and feed conversion ratio (FCR) were observed in the Met deficient groups (0.70 and 0.88%). Optimum dietary Met requirement for humpback grouper was found to be 1.07% through the straight-broken line analysis of WG% against Met. Fish fed Met deficient diets (0.70, 0.88%) exhibited lower mRNA levels of growth hormone (GH), growth hormone receptor (GHR), insulin-like growth factor-I (IGF-1), target of rapamycin (TOR) as well as S6 kinase 1 (S6K1) than other dietary groups. Whereas, expression of genes related to general control nonderepressible (GCN2) kinase i.e., GCN2 and C/EBPβ enhancer-binding protein β was upregulated in fish fed low Met diets (P < 0.05). The mRNA expression of hepatic fatty acid synthase (FAS) and sterol regulatory element-binding protein-1 (SREBP-1) were higher in fish fed 0.70 and 0.88% dietary Met group and the lipolytic genes, hepatic peroxisome proliferator-activated receptor α (PPARα) and carnitine palmitoyl transferase-1 (CPT-1) showed an opposite variation tendency as FAS or SREBP1. Generally, the optimum Met requirement for humpback grouper was predicted to be 1.07% of dry matter.

  相似文献   

17.
Chicken hepatic histidase activity varies with dietary protein consumption, but the mechanisms responsible for this alteration in activity are unclear. In the present research, the complete coding sequence and deduced amino acid sequence for chicken histidase was determined from clones isolated from a chicken liver cDNA library. The deduced amino acid sequence of chicken histidase has greater than 85% identity with the amino acid sequences of rat, mouse, and human histidase. In a series of four experiments, broiler chicks were allowed free access for 1.5, 3, 6, or 24 h to a low (13 g/100 g diet), basal (22 g/100 g diet) and high (40 g/100 g diet) protein diet. In the final experiment 5, chicks were allowed free access for 24 h to the basal, high protein diet or the basal diet supplemented with three different levels of l-histidine (0.22 g/100 g diet, 0.43 g/100 g diet or 0.86 g/100 g diet). There were no differences in the expression of the mRNA for histidase at 1.5 h, but at 3 h, histidase mRNA expression was significantly (P < .05) greater in chicks fed the high protein diet compared to chicks fed the low protein diet. At 6 and 24 h, histidase mRNA expression was significantly enhanced in chicks fed the high protein diet, and significantly reduced in chicks fed the low protein diet, compared with chicks fed the basal diet. Histidase mRNA expression was not altered by supplementing the basal diet with histidine. The results suggest that previously observed alterations in the activity of histidase, which were correlated to dietary protein intake, are mediated by rapid changes in the mRNA expression of this enzyme, and are not necessarily related to dietary histidine intake.  相似文献   

18.

Background

Although dietary ketogenic essential amino acid (KAA) content modifies accumulation of hepatic lipids, the molecular interactions between KAAs and lipid metabolism are yet to be fully elucidated.

Methodology/Principal Findings

We designed a diet with a high ratio (E/N) of essential amino acids (EAAs) to non-EAAs by partially replacing dietary protein with 5 major free KAAs (Leu, Ile, Val, Lys and Thr) without altering carbohydrate and fat content. This high-KAA diet was assessed for its preventive effects on diet-induced hepatic steatosis and whole-animal insulin resistance. C57B6 mice were fed with a high-fat diet, and hyperinsulinemic ob/ob mice were fed with a high-fat or high-sucrose diet. The high-KAA diet improved hepatic steatosis with decreased de novo lipogensis (DNL) fluxes as well as reduced expressions of lipogenic genes. In C57B6 mice, the high-KAA diet lowered postprandial insulin secretion and improved glucose tolerance, in association with restored expression of muscle insulin signaling proteins repressed by the high-fat diet. Lipotoxic metabolites and their synthetic fluxes were also evaluated with reference to insulin resistance. The high-KAA diet lowered muscle and liver ceramides, both by reducing dietary lipid incorporation into muscular ceramides and preventing incorporation of DNL-derived fatty acids into hepatic ceramides.

Conclusion

Our results indicate that dietary KAA intake improves hepatic steatosis and insulin resistance by modulating lipid synthetic pathways.  相似文献   

19.
The role of somatolactin (SL) in the regulation of energy homeostasis in gilthead sea bream (Sparus aurata) has been analysed. First, a down-regulation of plasma SL levels in response to gross shifts in dietary amino acid profile and the graded replacement of fish meal by plant protein sources (50%, 75% and 100%) has been observed. Thus, the impaired growth performance with changes in dietary amino acid profile and dietary protein source was accompanied by a decrease in plasma SL levels, which also decreased over the course of the post-prandial period irrespective of dietary nitrogen source. Secondly, we examined the effect of SL and growth hormone (GH) administration on voluntary feed intake. A single intraperitoneal injection of recombinant gilthead sea bream SL (0.1 microg/g fish) evoked a short-term inhibition of feed intake, whereas the same dose of GH exerted a marked enhancement of feed intake that still persisted 1 week later. Further, we addressed the effect of arginine (Arg) injection upon SL and related metabolic hormones (GH, insulin-like growth factor-I (IGF-I), insulin and glucagon) in fish fed diets with different nitrogen sources. A consistent effect of Arg injection (6.6 micromol/g fish) on plasma GH and IGF-I levels was not found regardless of dietary treatment. In contrast, the insulinotropic effect of Arg was found irrespective of dietary treatment, although the up-regulation of plasma glucagon and glucose levels was more persistent in fish fed a fish meal based diet (diet FM) than in those fed a plant protein diet with a 75% replacement (diet PP75). In the same way, a persistent and two-fold increase in plasma SL levels was observed in fish fed diet FM, whereas no effect was found in fish fed diet PP75. Taken together, these findings provide additional evidence for a role of SL as a marker of energy status, which may be perceived by fish as a daily and seasonal signal of abundant energy at a precise calendar time.  相似文献   

20.
By feeding a carbohydrate diet (without protein) to fasted rats, malic enzyme mRNA activity in the liver was increased to the level in rats fed a carbohydrate and protein diet, whereas the enzyme activity itself was increased to 60% of that level. It appears that malic enzyme mRNA activity was increased by dietary carbohydrate, while dietary protein contributed to an increase in the translation of mRNA. In the animals fed carbohydrate without protein, glucose-6-phosphate dehydrogenase mRNA activity increased to 50% of the level in rats fed the carbohydrate and protein diet, whereas the enzyme activity increased to only 25%. By feeding a protein diet (without carbohydrate), glucose-6-phosphate dehydrogenase activity increased to 65% of the level in rats fed both carbohydrate and protein. This enzyme induction appears to be more dependent on protein than carbohydrate. With the carbohydrate diet, acetyl-CoA carboxylase was induced up to the level in the carbohydrate and protein diet group, whereas fatty acid synthetase was induced to only 33%. Acetyl-CoA carboxylase induction appears to be carbohydrate dependent. On the other hand, isotopic leucine incorporation studies showed that the magnitudes of the enzyme inductions caused by the dietary nutrients should be ascribed to the enzyme synthesis rates rather than the degradation. By fat feeding, the mRNA activities of malic enzyme and glucose-6-phosphate dehydrogenase were markedly decreased along with the enzyme induction. Fat appears to reduce these enzyme inductions before the translation of mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号