首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analyte-responsive smart polymeric materials are of great interest and have been actively investigated in the field of regenerative medicine. Phenylboronate containing copolymers form gels with polyols under alkaline conditions. Monosaccharides, by virtue of their higher affinity towards boronate, can displace polyols and solubilize such gels. In the present study, we investigate the possibility of utilizing phenylboronate-polyol interactions at physiological pH in order to develop monosaccharide-responsive degradable scaffold materials for systems dealing with cells and tissues. Amine assisted phenylboronate-polyol interactions were employed to develop novel hydrogel and cryogel scaffolds at neutral pH. The scaffolds displayed monosaccharide inducible gel-sol phase transformability. In vitro cell culture studies demonstrated the ability of scaffolds to support cell adhesion, viability and proliferation. Fructose induced gel degradation is used to recover cells cultured on the hydrogels. The cryogels displayed open macroporous structure and superior mechanical properties. These novel phase transformable phenylboronate-polyol based scaffolds displayed a great potential for various cell sheet and tissue engineering applications. Their monosaccharide responsiveness at physiological pH is very useful and can be utilized in the fields of cell immobilization, spheroid culture, saccharide recognition and analyte-responsive drug delivery.  相似文献   

2.
Current strategies for cell delivery in cartilage and bone regeneration   总被引:6,自引:0,他引:6  
Several cell-based tissue-engineering therapies are emerging to regenerate damaged tissues. These strategies use autologous cells in combination with bioresorbable delivery materials. Major functions of a delivery scaffold are to provide initial mechanical stability, homogenous three-dimensional cell distribution, improved tissue differentiation, suitable handling and properties for delivery and fixation into patients. Delivery of cells can be achieved using injectable matrices, soft scaffolds, membranes, solid load-bearing scaffolds or immunoprotective macroencapsulation. Thus, to expand the clinical potential, next generation therapies will depend on smart delivery concepts that make use of the regenerative potential of stem cells, morphogenetic growth factors and biomimetic materials.  相似文献   

3.
Potential benefits of co-culturing monocytes (MC) with vascular smooth muscle cells have been reported on for tissue engineering applications with a degradable, polar, hydrophobic, and ionic polyurethane (D-PHI). Since the interaction of MC and endothelial cells (EC) within the blood vessel endothelium is also a process of wound repair it was of interest to investigate their function when cultured on the synthetic D-PHI materials, prior to considering the materials' use in vascular engineering. The co-culture (MC/EC) in vitro studies were carried out on films in 96 well plates and porous scaffold disks were prepared for implant studies in an in vivo subcutaneous mouse model. After 7 days in culture, the MC/EC condition was equal to EC growth but had lower esterase activity (a measure of degradative potential), no pro-inflammatory TNF-α and a relatively high anti-inflammatory IL-10 release while the ECs maintained their functional marker CD31. After explantation of the porous scaffolds, a live/dead stain showed that the cells infiltrating the scaffolds were viable and histological stains (May-Grunwald, Trichrome) demonstrated tissue in growth and extracellular matrix synthesis. Lysates from the implant scaffolds analyzed with a cytokine antibody array showed decreased pro-inflammatory cytokines (IL-6, TNF-α, GM-CSF), increased anti-inflammatory cytokines (IL-10, IL-13, TNF-RI), and increased chemotactic cytokines (MCP-1, MCP-5, RANTES). The low foreign body response elicited by D-PHI when implanted in vivo supported the in vitro studies (EC and MC co-culture), demonstrating that D-PHI promoted EC growth along with an anti-inflammatory MC, further demonstrating its potential as a tissue engineering scaffold for vascular applications.  相似文献   

4.
Composite scaffolds for cartilage tissue engineering   总被引:2,自引:0,他引:2  
Moutos FT  Guilak F 《Biorheology》2008,45(3-4):501-512
Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines and DNA fragments) with a biomaterial scaffold that functions as a template to control the geometry of the newly formed tissue, while facilitating the attachment, proliferation, and differentiation of embedded cells. Biomaterial scaffolds also play a crucial role in determining the functional properties of engineered tissues, including biomechanical characteristics such as inhomogeneity, anisotropy, nonlinearity or viscoelasticity. While single-phase, homogeneous materials have been used extensively to create numerous types of tissue constructs, there continue to be significant challenges in the development of scaffolds that can provide the functional properties of load-bearing tissues such as articular cartilage. In an attempt to create more complex scaffolds that promote the regeneration of functional engineered tissues, composite scaffolds comprising two or more distinct materials have been developed. This paper reviews various studies on the development and testing of composite scaffolds for the tissue engineering of articular cartilage, using techniques such as embedded fibers and textiles for reinforcement, embedded solid structures, multi-layered designs, or three-dimensionally woven composite materials. In many cases, the use of composite scaffolds can provide unique biomechanical and biological properties for the development of functional tissue engineering scaffolds.  相似文献   

5.
Electrospun scaffolds hold promise for the regeneration of dense connective tissues, given their nanoscale topographies, provision of directional cues for infiltrating cells and versatile composition. Synthetic slow-degrading scaffolds provide long-term mechanical support and nanoscale instructional cues; however, these scaffolds suffer from a poor infiltration rate. Alternatively, nanofibrous constructs formed from natural biomimetic materials (such as collagen) rapidly infiltrate but provide little mechanical support. To take advantage of the positive features of these constructs, we have developed a composite scaffold consisting in both a biomimetic fiber fraction (i.e., Type I collagen nanofibers) together with a traditional synthetic (i.e., poly-[ε-caprolactone], PCL) fiber fraction. We hypothesize that inclusion of biomimetic elements will improve initial cell adhesion and eventual scaffold infiltration, whereas the synthetic elements will provide controlled and long-term mechanical support. We have developed a method of forming and crosslinking collagen nanofibers by using the natural crosslinking agent genipin (GP). Further, we have formed composites from collagen and PCL and evaluated the long-term performance of these scaffolds when seeded with mesenchymal stem cells. Our results demonstrate that GP crosslinking is cytocompatible and generates stable nanofibrous type I collagen constructs. Composites with varying fractions of the biomimetic and synthetic fiber families are formed and retain their collagen fiber fractions during in vitro culture. However, at the maximum collagen fiber fractions (20%), cell ingress is limited compared with pure PCL scaffolds. These results provide a new foundation for the development and optimization of biomimetic/synthetic nanofibrous composites for in vivo tissue engineering.  相似文献   

6.
Tissue engineering of blood vessel   总被引:4,自引:0,他引:4  
Vascular grafts are in large demand for coronary and peripheral bypass surgeries. Although synthetic grafts have been developed, replacement of vessels with purely synthetic polymeric conduits often leads to the failure of such graft, especially in the grafts less than 6 mm in diameter or in the areas of low blood flow, mainly due to the early formation of thrombosis. Moreover, the commonly used materials lack growth potential, and long-term results have revealed several material-related failures, such as stenosis, thromboembolization, calcium deposition and infection. Tissue engineering has become a promising approach for generating a bio-compatible vessel graft with growth potential. Since the first success of constructing blood vessels with collagen and cultured vascular cells by Weinberg and Bell, there has been considerable progress in the area of vessel engineering. To date, tissue- engineered blood vessels (TEBVs) could be successfully constructed in vitro, and be used to repair the vascular defects in animal models. This review describes the major progress in the field, including the seeding cell sources, the biodegradable scaffolds, the construction technologies, as well as the encouraging achievements in clinical applications. The remaining challenges are also discussed.  相似文献   

7.
Recent advances in bone tissue engineering scaffolds   总被引:1,自引:0,他引:1  
Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, made of biodegradable materials that harbor different growth factors, drugs, genes, or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved.  相似文献   

8.
Lin N  Lin J  Bo L  Weidong P  Chen S  Xu R 《Cell proliferation》2010,43(5):427-434
Objectives: Alginate scaffolds are the most frequently investigated biomaterials in tissue engineering. Tissue engineering techniques that generate liver tissue have become important for treatment of a number of liver diseases and recent studies indicate that bone marrow‐derived stem cells (BMSCs) can differentiate into hepatocyte‐like cells. The goal of the study described here, was to examine in vitro hepatic differentiation potential of BMSCs cultured in an alginate scaffold. Materials and methods: To investigate the potential of BMSCs to differentiate into hepatocyte‐like cells, we cultured BMSCs in alginate scaffolds in the presence of specific growth factors including hepatocyte growth factor, epidermal growth factor and fibroblast growth factor‐4. Results: We can demonstrate that alginate scaffolds are compatible for growth of BMSCs and when cultured in alginate scaffolds for several days they display several liver‐specific markers and functions. Specifically, they expressed genes encoding alpha‐foetoprotein, albumin (ALB), connexin 32 and CYP7A1. In addition, these BMSCs produced both ALB and urea, expressed cytokeratin‐18 (CK‐18) and were capable of glycogen storage. Percentage of CK‐18 positive cells, a marker of hepatocytes, was 56.7%. Conclusions: Our three‐dimensional alginate scaffolds were highly biocompatible with BMSCs. Furthermore, culturing induced their differentiation into hepatocyte‐like cells. Therefore, BMSCs cultured in alginate scaffolds may be applicable for hepatic tissue engineering.  相似文献   

9.
Electrospun composite scaffolds show high ability to be used in regenerative medicine and drug delivery, due to the nanofibrous structure and high surface area to volume ratio. In this study, we used nanofibrous scaffolds fabricated by chitosan (CS), poly(vinyl alcohol) (PVA), carbopol, and polycaprolactone using a dual electrospinning technique while curcumin (Cur) incorporated inside of the CS/PVA fibers. Scaffolds were fully characterized via scanning electron microscopy, water contact angle, tensile measurement, hydration, protein adsorption, and wrinkled tests. Furthermore, viability of the buccal fat pad-derived mesenchymal stem cells (BFP-MSCs) was also investigated using MTT assay for up to 14 days while cultured on these scaffolds. Cell cycle assay was also performed to more detailed evaluation of the stem cells growth when grown on scaffolds (with and without Cur) compared with the culture plate. Results demonstrated that Cur loaded nanofibrous scaffold had more suitable capability for water absorption and mechanical properties compared with the scaffold without Cur and it could also support the stem cells viability and proliferation. Cur release profile showed a decreasing effect on BFP-MSCs viability in the initial stage, but it showed a positive effect on stem cell viability in a long-term manner. In general, the results indicated that this nanofibrous scaffold has great potential as a delivery of the Cur and BFP-MSCs simultaneously, and so holds the promising potential for use in various regenerative medicine applications.  相似文献   

10.
Jet-based technologies are increasingly being explored as potential high-throughput and high-resolution methods for the manipulation of biological materials. Previously shown to be of use in generating scaffolds from biocompatible materials, we were interested to explore the possibility of using electrospinning technology for the generation of scaffolds comprised of living cells. For this, it was necessary to identify appropriate parameters under which viable threads containing living cells could be produced. Here, we describe a method of electrospinning that can be used to deposit active biological threads and scaffolds. This has been achieved by use of a coaxial needle arrangement where a concentrated living biosuspension flows through the inner needle and a medical-grade poly(dimethylsiloxane) (PDMS) medium with high viscosity (12,500 mPa s) and low electrical conductivity (10-15 S m-1) flows through the outer needle. Using this technique, we have identified the operational conditions under which the finest cell-bearing composite microthreads are formed. Collected cells that have been cultured, postelectrospinning, have been viable and show no evidence of having incurred any cellular damage during the bionanofabrication process. This study demonstrates the feasibility of using coaxial electrospinning technology for biological and biomedical applications requiring the deposition of living cells as composite microthreads for forming active biological scaffolds.  相似文献   

11.
One of the milestones in tissue engineering has been the development of 3D scaffolds that guide cells to form functional tissue. Recently, mouldless manufacturing techniques, known as solid free-form fabrication (SFF), or rapid prototyping, have been successfully used to fabricate complex scaffolds. Similarly, to achieve simultaneous addition of cells during the scaffold fabrication, novel robotic assembly and automated 3D cell encapsulation techniques are being developed. As a result of these technologies, tissue-engineered constructs can be prepared that contain a controlled spatial distribution of cells and growth factors, as well as engineered gradients of scaffold materials with a predicted microstructure. Here, we review the application, advancement and future directions of SFF techniques in the design and creation of scaffolds for use in clinically driven tissue engineering.  相似文献   

12.
Recently tremendous progress has been evidenced by the advancements in developing innovative three-dimensional(3 D)scaffolds using various techniques for addressing the autogenous grafting of bone. In this work, we demonstrated the fabrication of porous polycaprolactone(PCL) scaffolds for osteogenic differentiation based on supercritical fluid-assisted hybrid processes of phase inversion and foaming. This eco-friendly process resulted in the highly porous biomimetic scaffolds with open and interconnected architectures. Initially, a 2~3 factorial experiment was designed for investigating the relative significance of various processing parameters and achieving better control over the porosity as well as the compressive mechanical properties of the scaffold. Then, single factor experiment was carried out to understand the effects of various processing parameters on the morphology of scaffolds. On the other hand, we encapsulated a growth factor, i.e., bone morphogenic protein-2(BMP-2), as a model protein in these porous scaffolds for evaluating their osteogenic differentiation. In vitro investigations of growth factor loaded PCL scaffolds using bone marrow stromal cells(BMSCs) have shown that these growth factor-encumbered scaffolds were capable of differentiating the cells over the control experiments. Furthermore, the osteogenic differentiation was confirmed by measuring the cell proliferation, and alkaline phosphatase(ALP) activity, which were significantly higher demonstrating the active bone growth. Together, these results have suggested that the fabrication of growth factor-loaded porous scaffolds prepared by the eco-friendly hybrid processing efficiently promoted the osteogenic differentiation and may have a significant potential in bone tissue engineering.  相似文献   

13.
Fabrication of three‐dimensional (3D) scaffolds with appropriate mechanical properties and desired architecture for promoting cell growth and new tissue formation is one of the most important efforts in tissue engineering field. Scaffolds fabricated from bioactive ceramic materials such as hydroxyapatite and tricalcium phosphate show promise because of their biological ability to support bone tissue regeneration. However, the use of ceramics as scaffold materials is limited because of their inherent brittleness and difficult processability. The aim of this study was to create robust ceramic scaffolds, which have a desired architecture. Such scaffolds were successfully fabricated by projection‐based microstereolithography, and dilatometric analysis was conducted to study the sintering behavior of the ceramic materials. The mechanical properties of the scaffolds were improved by infiltrating them with a polycaprolactone solution. The toughness and compressive strength of these ceramic/polymer scaffolds were about twice those of ceramic scaffolds. Furthermore, the osteogenic gene expression on ceramic/polymer scaffolds was better than that on ceramic scaffolds. Through this study, we overcame the limitations of previous research on fabricating ceramic scaffolds and these new robust ceramic scaffolds may provide a much improved 3D substrate for bone tissue regeneration. Biotechnol. Bioeng. 2013; 110: 1444–1455. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The goal of this project was to develop 3-D biomaterial scaffolds that present cues to direct the differentiation of embryonic stem (ES) cell-derived neural progenitor cells, seeded inside the scaffolds, into mature neural phenotypes, specifically neurons and oligodendrocytes. Release studies were performed to determine the appropriate conditions for retention of neurotrophin-3 (NT-3), sonic hedgehog, and platelet-derived growth factor (PDGF) by an affinity-based delivery system incorporated into fibrin scaffolds. Embryoid bodies containing neural progenitors were formed from mouse ES cells, using a 4−/4+ retinoic acid treatment protocol, and then seeded inside fibrin scaffolds containing the drug delivery system. This delivery system was used to deliver various growth factor doses and combinations to the cells seeded inside the scaffolds. Controlled delivery of NT-3 and PDGF simultaneously increased the fraction of neural progenitors, neurons, and oligodendrocytes while decreasing the fraction of astrocytes obtained compared to control cultures seeded inside unmodified fibrin scaffolds with no growth factors present in the medium. These results demonstrate that such a strategy can be used to generate an engineered tissue for the potential treatment of spinal cord injury and could be extended to the study of differentiation in other tissues.  相似文献   

15.
In this study, we developed bio-active molecules immobilized chitosan scaffolds with controlled pore architectures for enhanced viability of human mesenchymal stem cells (hMSCs). The decreasing in molecular weight of chitosan by ultrasonication of chitosan solution was effective in the formation of porous chitosan scaffolds, resulting in an increase of inter-connecting micropores (∼10 μm) between macropores. Using a layer-by-layer method, we then prepared heparin-coated chitosan scaffolds as depots for basic fibroblast growth factors (bFGF). Enzyme-linked immunosorbent assays confirmed that heparin-coated chitosan scaffolds could bind higher amount of bFGF (24.21 ng/mg) compared to 2.53 ng/mg of non-coated scaffold. Moreover, we were able to manipulate the release profiles of bFGF from the scaffolds for 7 days. In vitro studies showed that chitosan scaffolds induced the improved viability and proliferation of hMSCs through their synergetic effects of the inter-connecting micropores and the sustained released of bFGF. Our results suggest that bFGF immobilized chitosan scaffolds with controlled inter-connecting pores, in combination with other heparin-binding growth factors, have potential implants for controlling biological functions in regenerative medicine.  相似文献   

16.
A paradigm shift is taking place in orthopaedic and reconstructive surgery from using medical devices and tissue grafts to a tissue engineering approach that uses biodegradable scaffolds combined with cells or biological molecules to repair and/or regenerate tissues. One of the potential benefits offered by solid free-form fabrication technology (SFF) is the ability to create scaffolds with highly reproducible architecture and compositional variation across the entire scaffold, due to its tightly controlled computer-driven fabrication. In this review, we define scaffold properties and attempt to provide some broad criteria and constraints for scaffold design in bone engineering.We also discuss the application-specific modifications driven by surgeon's requirements in vitro and/or in vivo. Next, we review the current use of SFF techniques in scaffold fabrication in the context of their clinical use in bone regeneration. Lastly, we comment on future developments in our groups, such as the functionalization of novel composite scaffolds with combinations of growth factors; and more specifically the promising area of heparan sulphate polysaccharide immobilization within the bone tissue engineering arena.  相似文献   

17.
Tissue engineering is a multidisciplinary field that applies the principles of engineering and life-sciences for regeneration of damaged tissues. Stem cells have attracted much interest in tissue engineering as a cell source due to their ability to proliferate in an undifferentiated state for prolonged time and capability of differentiating to different cell types after induction. Scaffolds play an important role in tissue engineering as a substrate that can mimic the native extracellular matrix and the properties of scaffolds have been shown to affect the cell behavior such as the cell attachment, proliferation and differentiation. Here, we focus on the recent reports that investigated the various aspects of scaffolds including the materials used for scaffold fabrication, surface modification of scaffolds, topography and mechanical properties of scaffolds towards stem cells differentiation effect. We will present a more detailed overview on the effect of mechanical properties of scaffolds on stem cells fate.  相似文献   

18.
Boehler RM  Graham JG  Shea LD 《BioTechniques》2011,51(4):239-40, 242, 244 passim
Tissue engineering scaffolds have emerged as a powerful tool within regenerative medicine. These materials are being designed to create environments that promote regeneration through a combination of: (i) scaffold architecture, (ii) the use of scaffolds as vehicles for transplanting progenitor cells, and/or (iii) localized delivery of inductive factors or genes encoding for these inductive factors. This review describes the techniques associated with each of these components. Additionally, the immune response is increasingly recognized as a factor influencing regeneration. The immune reaction to an implant begins with an acute response to the injury and innate recognition of foreign materials, with the subsequent chronic immune response involving specific recognition of antigens (e.g., transplanted cells) by the adaptive immune response, which can eventually lead to rejection of the implant. Thus, we also describe the impact of each component on the immune response, and strategies (e.g., material design, anti-inflammatory cytokine delivery, and immune cell recruitment/transplantation) to modulate, yet not eliminate, the local immune response in order to promote regeneration, which represents another important tool for regenerative medicine.  相似文献   

19.
Several applications in tissue engineering require transplantation of cells embedded in appropriate biomaterial scaffolds. Such structures may consist of 3D non-woven fibrous materials whereas little is known about the impact of mesh size, pore architecture and fibre morphology on cellular behavior. In this study, we have developed polyvinylidene fluoride (PVDF) non-woven scaffolds with round, trilobal, or snowflake fibre cross section and different fibre crimp patterns (10, 16, or 28 needles per inch). Human mesenchymal stromal cells (MSCs) from adipose tissue were seeded in parallel on these scaffolds and their growth was compared. Initial cell adhesion during the seeding procedure was higher on non-wovens with round fibres than on those with snowflake or trilobal cross sections. All PVDF non-woven fabrics facilitated cell growth over a time course of 15 days. Interestingly, proliferation was significantly higher on non-wovens with round or trilobal fibres as compared to those with snowflake profile. Furthermore, proliferation increased in a wider, less dense network. Scanning electron microscopy (SEM) revealed that the MSCs aligned along the fibres and formed cellular layers spanning over the pores. 3D PVDF non-woven scaffolds support growth of MSCs, however fibre morphology and mesh size are relevant: proliferation is enhanced by round fibre cross sections and in rather wide-meshed scaffolds.  相似文献   

20.
Culturing cells on three-dimensional, biodegradable scaffolds may create tissues suitable either for reconstructive surgery applications or as novel in vitro model systems. In this study, we have tested the hypothesis that the phenotype of smooth muscle cells (SMCs) in three-dimensional, engineered tissues is regulated by the chemistry of the scaffold material. Specifically, we have directly compared cell growth and patterns of extracellular matrix (ECM) (e.g. , elastin and collagen) gene expression on two types of synthetic polymer scaffolds and type I collagen scaffolds. The growth rates of SMCs on the synthetic polymer scaffolds were significantly higher than on type I collagen sponges. The rate of elastin production by SMCs on polyglycolic acid (PGA) scaffolds was 3.5 +/- 1.1-fold higher than that on type I collagen sponges on Day 11 of culture. In contrast, the collagen production rate on type I collagen sponges was 3.3 +/- 1.1-fold higher than that on PGA scaffolds. This scaffold-dependent switching between elastin and collagen gene expression was confirmed by Northern blot analysis. The finding that the scaffold chemistry regulates the phenotype of SMCs independent of the scaffold physical form was confirmed by culturing SMCs on two-dimensional films of the scaffold materials. It is likely that cells adhere to these scaffolds via different ligands, as the major protein adsorbed from the serum onto synthetic polymers was vitronectin, whereas fibronectin and vitronectin were present at high density on type I collagen sponges. In summary, this study demonstrates that three-dimensional smooth muscle-like tissues can be created by culturing SMCs on three-dimensional scaffolds, and that the phenotype of the SMCs is strongly regulated by the scaffold chemistry. These engineered tissues provide novel, three-dimensional models to study cellular interaction with ECM in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号