首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A large fraction of the Ca-2plus- and Mg-2plus-dependent ATPase (EC 3.6.1.3) in sarcoplasmic reticulum membranes solubilized with Triton X-100 was phosphorylated with Pi. The phosphorylation required Mg-2plus but was strongly inhibited by low concentrations of Ca-2plus. A Ca-2plus ion concentration of 30 muM caused half-maximum inhibition in the presence of 50 mM MgCl2. The phosphorylated enzyme showed a rapid turnover and was in dynamic equilibrium with Pi in the medium. At equilibrium the amount of the phosphorylated enzyme increased markedly with increased in the reaction temperature. The apparent standard free energy change, the apparent standard enthalpy change, and the apparent standard entropy change in the formation of the phosphorylated enzyme from the enzyme-phosphate complex in the presence of excess Mg-2plus at 37 degrees and pH 7.0 were, respectively, 0.35 Cal per mol, 15.9 Cal per mol, and 50.2 e.u. per mol. The susceptibility of the acid-denatured phosphorylated enzyme to hydroxylamine showed that the phosphorylated enzyme is of an acyl phosphate type. The present results are consistent with the probability that the phosphorylation results from reversal of late steps in the Ca-2plus transport process. The results clearly show that the phosphorylated enzyme is stabilized by a great increase in entropy upon its formation from the enzyme-phosphate complex.  相似文献   

2.
Resting cells of Staphylococcus aureus displayed a phosphate (Pi) exchange that was induced by growth with glucose 6-phosphate (G6P) or sn-glycerol 3-phosphate (G3P). Pi-loaded membrane vesicles from these cells accumulated 32Pi, 2-deoxyglucose 6-phosphate (2DG6P) or G3P by an electroneutral exchange that required no external source of energy. On the other hand, when vesicles were loaded with morpholinopropane sulfonic acid (MOPS), only transport of 32Pi (and L-histidine) was observed, and in that case transport depended on addition of an oxidizable substrate (DL-lactate). In such MOPS-loaded vesicles, accumulation of the organic phosphates, 2DG6P and G3P, could not be observed until vesicles were preincubated with both Pi and DL-lactate to establish an internal pool of Pi. This trans effect demonstrates that movement of 2DG6P or G3P is based on an antiport (exchange) with internal Pi. Reconstitution of membrane protein allowed a quantitative analysis of Pi-linked exchange. Pi-loaded proteoliposomes and membrane vesicles had comparable activities for the homologous 32Pi: Pi exchange (Kt's of 2.2 and 1.4 mM; Vmax's of 180 and 83 nmol Pi/min per mg protein), indicating that the exchange reaction was recovered intact in the artificial system. Other work showed that heterologous exchange from either G6P- or G3P-grown cells had a preference for 2DG6P (Kt = 27 microM) over G3P (Kt = 1.3 mM) and Pi (Kt = 2.2 mM), suggesting that the same antiporter was induced in both cases. We conclude that 32Pi: Pi exchange exhibited by resting cells reflects operation of an antiporter with high specificity for sugar 6-phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
D Wu  P D Boyer 《Biochemistry》1986,25(11):3390-3396
When the heat-activated chloroplast F1 ATPase hydrolyzes [3H, gamma-32P]ATP, followed by the removal of medium ATP, ADP, and Pi, the enzyme has labeled ATP, ADP, and Pi bound to it in about equal amounts. The total of the bound [3H]ADP and [3H]ATP approaches 1 mol/mol of enzyme. Over a 30-min period, most of the bound [32P]Pi falls off, and the bound [3H]ATP is converted to bound [3H]ADP. Enzyme with such remaining tightly bound ADP will form bound ATP from relatively high concentrations of medium Pi with either Mg2+ or Ca2+ present. The tightly bound ADP is thus at a site that retains a catalytic capacity for slow single-site ATP hydrolysis (or synthesis) and is likely the site that participates in cooperative rapid net ATP hydrolysis. During hydrolysis of 50 microM [3H]ATP in the presence of either Mg2+ or Ca2+, the enzyme has a steady-state level of about one bound [3H]ADP per mole of enzyme. Because bound [3H]ATP is also present, the [3H]ADP is regarded as being present on two cooperating catalytic sites. The formation and levels of bound ATP, ADP, and Pi show that reversal of bound ATP hydrolysis can occur with either Ca2+ or Mg2+ present. They do not reveal why no phosphate oxygen exchange accompanies cleavage of low ATP concentrations with Ca2+ in contrast to Mg2+ with the heat-activated enzyme. Phosphate oxygen exchange does occur with either Mg2+ or Ca2+ present when low ATP concentrations are hydrolyzed with the octyl glucoside activated ATPase. Ligand binding properties of Ca2+ at the catalytic site rather than lack of reversible cleavage of bound ATP may underlie lack of oxygen exchange under some conditions.  相似文献   

4.
The time course of oxygen-18 exchange between [18O]Pi and normal water, catalyzed by myosin subfragment 1 in the presence of MgADP, was followed using the shift in 31P NMR caused by the presence of oxygen-18 bound to the phosphorus. Essentially all molecules of [18O]Pi that bind to the enzyme undergo complete exchange and are released as [16O4]Pi. Exchange probably occurs by formation of myosin.ATP from a myosin.ADP.Pi complex and is rapid relative to release of Pi from this complex. The kinetics of exchange give a value for the rate constant for binding Pi to myosin.ADP of 0.23 M-1 S-1 (pH 8.0, 22 degrees C). This value is consistent with exchange occurring by reversal of the ATP-ase reaction back to the myosin.ATP complex.  相似文献   

5.
Ribosomes prepared from murine lymphosarcoma cells were phosphorylated by a cyclic AMP-independent protein kinase designated H4P kinase. H4P kinase was isolated as an inactive enzyme which was activated by Mg2+-ATP and an endogenous converting enzyme. In the absence of preactivation by Mg2+-ATP and an endogenous converting enzyme, H4P kinase catalyzed phosphorylation of 80, 60, and 40 S ribosomal subunits at a low rate. After activation, the H4P kinase selectively catalyzed phosphorylation of the S 6 protein in the 40 S ribosomal subunit. Under the assay conditions selected, at least 90% of the [32P]phosphate transferred to the 40 S ribosomal preparation was incorporated into S 6. The apparent Km for 40 S subunits phosphorylated by H4P kinase was 7.2 microM. The calculated Vmax was 50 nmol of Pi transferred per min/mg. Exhaustive phosphorylation of 40 S subunits resulted in incorporation of 3 mol of phosphate/mol of S 6, in contrast to results reported previously which indicated 0.3 mol of phosphate was transferred by a similar enzyme from reticulocyte (Del Grande, R. W., and Traugh, J. A. (1982) Eur. J. Biochem. 123, 421-428). These data are consistent with a potential role for H4P kinase in the insulin-mediated phosphorylation of S 6 at multiple sites.  相似文献   

6.
The membrane sidedness of Pi interaction in reactions which characterize reversal of the Ca2+ pump of sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle was investigated. Vesicles previously loaded with calcium [32P]phosphate were incubated with 0.1 mM ADP and different concentrations of nonradioactive Pi. Alternatively, vesicles loaded with nonradioactive calcium phosphate were incubated in a medium containing 32Pi. The rates of Ca2+ efflux and ATP synthesis were siginficantly activated only when Pi was included in the assay medium. Although the Pi contained by the vesicles crosses the membrane at a rate proportional to the Ca2+ efflux, [gamma-32P]ATP was synthesized only when 32Pi interacted with the outer surface of the membrane. Similarly, ATP in equilibrium 32Pi or ITP in equilibrium 32Pi exchange could be measured only when the external pool of Pi was labeled. Both for ATP synthesis and for the ITP in equilibrium Pi exchange reaction, membrane phosphorylation by 32Pi was negligible unless the external pool of Pi was labeled. The ionophore X-537 A increased the rate of Ca2+ efflux but inhibited the synthesis of ATP. During reversal of the Ca2+ pump, Pi apparently interacts with the membrane only at the outer surface, and at a site different from that where Ca2+ crosses the membrane.  相似文献   

7.
A two-dimensional polyacrylamide gel electrophoresis procedure has been used to identify initiation factors rapidly in the high-salt-wash fraction from reticulocyte ribosomes. Initiation factors are identified by relative mobility and by co-electrophoresis with purified factors. A creatine phosphate/ATP/GTP/Pi exchange system is described which has been used to maintain [gamma-32P]ATP and [gamma-32P]GTP at constant specific activity in the cell-free protein-synthesizing system. Phosphorylated proteins associated with the protein-synthesizing complex have been identified using a combination of the two procedures. The salt-wash fraction contains eight major phosphorylated proteins and a number of minor ones. Two phosphorylated proteins are observed to comigrate with two of the three subunits of eukaryotic initiation factor 2 (eIF-2), the initiation factor involved in binding Met-tRNAf onto the 40-S subunit and promoting dissociation of 80-S ribosomes. eIF-4B, one of the proteins involved in binding mRNA to 40-S subunits is also phosphorylated. The remainder of phosphorylated proteins in the high-salt-wash fraction are not previously characterized initiation factors and have not been identified further. Two of the six phosphoproteins associated with the salt-washed ribosomes comigrate with ribosomal proteins; one is the major phosphorylated protein in 40-S ribosomal subunits, the other is an acidic protein.  相似文献   

8.
Reconstitution of sugar phosphate transport systems of Escherichia coli   总被引:19,自引:0,他引:19  
Studies with Escherichia coli cells showed that the transport systems encoded by glpT (sn-glycerol 3-phosphate transport) and uhpT (hexose phosphate transport) catalyze a reversible 32Pi:Pi exchange. This reaction could be used to monitor the glpT or uhpT activities during reconstitution. Membranes from suitably constructed strains were extracted with octylglucoside in the presence of lipid and glycerol, and proteoliposomes were formed by dilution in 0.1 M KPi (pH 7). Both reconstituted systems mediated a 32Pi:Pi exchange which was blocked by the appropriate heterologous substrate, sn-glycerol 3-phosphate (G3P) or 2-deoxyglucose 6-phosphate (2DG6P), with an apparent Ki near 50 microM. In the absence of an imposed cation-motive gradient, Pi-loaded proteoliposomes also transported the expected physiological substrate; Michaelis constants for the transport of G3P or 2DG6P were near 20 microM. The heterologous exchange showed a maximal velocity of 130 nmol/min/mg protein via the glpT system and 11 nmol/min/mg protein for the uhpT system. This difference was expected because the G3P transport activity had been reconstituted from a strain carrying multiple copies of the glpT gene. Taken together, these results suggest that anion exchange may be the molecular basis for transport by the glpT and uhpT proteins.  相似文献   

9.
Phosphorylation of NaI-treated bovine brain cortex microsomes by inorganic phosphate in the presence of Mg2+ and ouabain has been studied at 0 degrees C (pH 7.4) and 20 degrees C (pH 7.0). Nearly maximal (90%) and half-maximal phosphorylation are achieved at 20 degrees C within 2 min with 50--155 and 5.6--17 muM 32Pi, respectively, and at 0 degrees C within 75 s with 300--600 and 33--66 muM 32Pi, respectively. Maximal phosphorylation yields 146 pmol 32P - mg-1 protein. Without ouabain (20 degrees C, pH 7.0) less than 25% of the incorporation observed in the presence of ouabain is reached. Preincubation of the native microsomes with Mg2+ and K+, in order to decompose possibly present high-energy phosphoryl-bonds prior to ouabain treatment, does not affect the maximal phosphate incorporation. This indicates that the inorganic phosphate incorporation is not due to an exchange with high-energy phosphoryl-bonds, which might have been preserved in the microsomal preparations. Phosphorylation of the native microsomes by ATP in the presence of Mg2+ and Na+ reaches 90 and 50% maximal levels within 15--30 s at 0 degrees C and pH 7.4 at concentrations of [gamma-32P]ATP of 5--32 and 0.5--3.5 muM, respectively. The maximal phosphorylation level is 149 pmol 32P-mg-1 protein, equal to that of ouabain-treated microsomes phosphorylated by inorganic phosphate. Both inorganic phosphate and ATP phosphorylate on site per active enzyme subunit of 135 000 molecular weight. From the equilibrium constants for the phosphorylation of ouabain-treated microsomes by inorganic phosphate at 0 degrees C and 20 degrees C standard free-energy changes of --5.4 and --6.8 kcal/mol, respectively, are calculated. These values yield a standard enthalpy change of 14 kcal/mol and an entropy change of 70 cal/mol - degree K. This characterizes the reaction as a process driven by an entropy change. The intermediate formed by phosphorylation with Pi has maximal stability at acidic pH, as is the case for the intermediate formed with ATP. Solubilization in sodium dodecyl sulfate stabilizes the phosphoryl-bond in the pH range of 4--7. The non-solubilized preparation has optimal stability at pH 2--4, the level of which is equal to that of detergent-solubilized intermediate. Sodium dodecyl sulfate gel electrophoresis of the microsomes at pH 3, following incorporation of 32Pi yields 11 protein bands, only one of which (mol. wt 100 000--106 000) carries the radioactive label. This protein has the same molecular weight as the protein, which is phosphorylated by ATP in the presence of Mg2+ and Na+.  相似文献   

10.
We have developed two methods for quantitatively measuring inorganic pyrophosphate (PPi) in the presence of 10(3)--10(4) molar excesses of inorganic phosphate (Pi) and used them to measure the extent of enzyme-bound pyrophosphate (EPPi) formation in solutions of yeast inorganic pyrophosphatase and Pi. We have also measured the rate of enzyme-catalyzed H2O--phosphate oxygen exchange. We find both processes to have essentially identical dependence on Mg2+ and Pi concentrations, thus providing important confirmation for the recent proposal by Janson et al. (1979) that oxygen exchange proceeds via EPPi formation. Our results are consistent with a model in which three Mg2+ per active site are required for EPPi formation but inconsistent with a model requiring only two Mg2+ per active site and permit the formulation of an overall scheme for inorganic pyrophosphatase catalysis of PPi--Pi equilibration as well as the evaluation of equilibrium and rate constants in this scheme. The major results and conclusions of our work are the following: (a) the equilibrium constant for PPi (enzyme-bound) in equilibrium with 2Pi (enzyme-bound) is 4.8; (b) following PPi hydrolysis, the first released Pi contains an oxygen from solvent water; (c) the steps for PPi hydrolysis on the enzyme and for release of both product Pi's are all partially rate determining in overall enzyme-catalyzed PPi hydrolysis; (d) PPi formation on the enzyme is rate determining for H2O--Pi oxygen exchange; (e) PPi dissociation from the enzyme is very slow and is the rate-determining step in Pi--PPi exchange (Cohn, 1958; Janson et al., 1979). This also accounts for the observation that the calculated dissociation constant for MgPPi complex binding to enzyme is considerably lower than the measured Km for enzyme-catalyzed MgPPi hydrolysis.  相似文献   

11.
When chick liver cells in monolayer culture were incubated with 32Pi in the presence of insulin, acetyl-CoA carboxylase became extensively labeled with 32Pi reaching a stoichiometry of 9 to 10 mol of phosphoryl group per mol of 240,000-dalton enzyme subunit. The covalently bound phosphate was found to be metabolically labile, turning over with a t1/2 of approximately 2 h (enzyme t1/2 approximately equal to 24 h). Addition of Bt2cAMP altered neither the rate nor extent of phosphorylation. Contrary to other reports, the fully phosphorylated acetyl-CoA carboxylase appears to be catalytically active.  相似文献   

12.
Branched-chain alpha-ketoacid dehydrogenase complex was isolated from rat heart, bovine kidney, and rabbit liver, heart, kidney, brain, and skeletal muscle. Phosphorylation to approximately 1 mol Pi/mol alpha-subunit of the alpha-ketoacid decarboxylase component was linearly associated with 90-95% inactivation. The complex from some tissues (i.e., from rabbit kidney and heart, and rat heart) showed 30-40% more phosphate incorporation for an additional 5-10% inactivation. Reverse-phase HPLC analysis of tryptic digests of 32P-labeled complexes from all of the above tissues revealed two major (peaks 1 and 2) and one minor (peak 3) phosphopeptide which represent phosphorylation sites 1, 2, and a combination of 1 and 2, respectively. These phosphopeptides, numbered according to the order of elution from reverse-phase HPLC, had the same elution time regardless of the tissue or animal source of the complex. The amino acid sequence of site 1 from rabbit heart branched-chain alpha-ketoacid dehydrogenase was Ile-Gly-His-His-Ser(P)-Thr-Ser-Asp-Asp-Ser-Ser-Ala-Tyr-Arg. Regardless of the source of the complex, both sites were almost equally phosphorylated until total phosphorylation was approximately 1 mol Pi/mol of alpha-subunit and the rate of inactivation was correlated with the rate of total, site 1, or site 2 phosphorylation. Phosphorylation beyond this amount was associated with greater site 2 than site 1 phosphorylation. alpha-Chloroisocaproate, a potent inhibitor of branched-chain alpha-ketoacid dehydrogenase kinase activity, greatly reduced total phosphorylation and inactivation; however, phosphorylation of site 2 was almost abolished and inactivation was directly correlated with phosphorylation of site 1. Thus, the complex isolated from different tissues and mammals had an apparent conservation of amino acid sequence adjacent to the phosphorylation sites. Both sites were phosphorylated to a similar extent temporally although site 1 phosphorylation was directly responsible for inactivation.  相似文献   

13.
1. The isolation of F0F1-ATPase complex from Rhodospirillum rubrum chromatophores by the use of taurodeoxycholate is described. 2. The enzyme preparation contains about 12 polypeptides; five are subunits of the F1 moiety. 3. The ATPase activity of the purified enzyme is dependent on the addition of phospholipids. 4. Km-vales for Mg2+-ATP and Ca2+-ATP are similar to the values obtained for the membrane-bound enzyme. 5. The F0F1-ATPase complex is more than 70% inhibited by oligomycin and N,N'-dicyclohexylcarbodiimide. 6. The F0F1-ATPase complex was integrated into liposomes. The reconstituted proteoliposomes catalyzed energy transduction as shown by ATP-dependent quenching of acridine dye fluorescence and ATP-32Pi exchange.  相似文献   

14.
(1) Incubation of the beef heart mitochondrial ATPase, F1 with Mg-ATP was required for the binding of the natural inhibitor, IF1, to F1 to form the inactive F1-IF1 complex. When F1 was incubated in the presence of [14C]ATP and MgCl2, about 2 mol 14C-labeled adenine nucleotides were found to bind per mol of F1; the bound 14C-labeled nucleotides consisted of [14C]ADP arising from [14C]ATP hydrolysis and [14C]ATP. The 14C- labeled nucleotide binding was not prevented by IF1. These data are in agreement with the idea that the formation of the F1-IF1 complex requires an appropriate conformation of F1. (2) The 14C-labeled adenine nucleotides bound to F1 following preincubation of F1 with Mg-[14C] ATP could be exchanged with added [3H]ADP or [3H]ATP. No exchange occurred between added [3H]ADP or [3H]ATP and the 14 C-labeled adenine nucleotides bound to the F1-IF1 complex. These data suggest that the conformation of F1 in the isolated F1-IF1 complex is further modified in such a way that the bound 14C-labeled nucleotides are no longer available for exchange. (3) 32Pi was able to bind to isolated F1 with a stoichiometry of about 1 mol of Pi per mol of F1 (Penefsky, H.S. (1977) J. Biol. Chem. 252, 2891-2899). There was no binding of 32Pi to the F1-IF1 complex. Thus, not only the nucleotides sites, but also the Pi site, are masked from interaction with external ligands in the isolated F1-IF1 complex.  相似文献   

15.
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase appears to be the only enzyme catalyzing the formation and hydrolysis of Fru-2,6-P2. The enzyme as we isolate it, contains a trace of tightly bound Fru-6-P. In this condition, it exhibited an ATPase activity comparable to its kinase activity. Inorganic phosphate stimulated all of its activities, by increasing the affinity for all substrates and increasing the Vmax of ATP and Fru-2,6-P2 hydrolysis. The enzyme catalyzed ADP/ATP and Fru-6-P/Fru-2,6-P2 exchanges at rates comparable to net reaction rates. It was phosphorylated by both [gamma-32P]ATP and [2-32P] Fru-2,6-P2, and the label from either donor was chased by either unlabeled donor, showing that the bound phosphate is hydrolyzed if not transferred to an acceptor ligand. The rate of labeling of the enzyme by [2-32P]Fru-2,6-P2 was 2 orders of magnitude greater than the maximal velocity of the bisphosphatase and therefore sufficiently fast to be a step in the hydrolysis. Both inorganic phosphate and Fru-6-P increased the rate and steady state of enzyme phosphorylation by ATP. Fru-2,6-P2 inhibited the ATPase and kinase reactions and Fru-6-P inhibited the Fru-2,6 bisphosphatase reaction while ATP and ADP had no effect. Removal of the trace of Fru-6-P by Glu-6-P isomerase and Glu-6-P dehydrogenase reduced enzyme phosphorylation by ATP to very low levels, greatly inhibited the ATPase, and rendered it insensitive to Pi, but did not affect ADP/ATP exchange. (alpha + beta)Methylfructofuranoside-6-P did not increase the rate or steady state labeling by ATP. These results suggest that labeling of the enzyme by ATP involved the production of [2-32P]Fru-2,6-P2 from the trace Fru-6-P. The 6-phosphofructo-2-kinase, fructose 2,6-bisphosphatase, and ATP/ADP exchange were all inhibited by diethylpyrocarbonate, suggesting the involvement of histidine residues in all three reactions. These results can be most readily explained in terms of two catalytic sites, a kinase site whose phosphorylation by ATP is negligible (or whose E-P is labile) and a Fru-2,6 bisphosphatase site which is readily phosphorylated by Fru-2,6-P2.  相似文献   

16.
The catalytic subunit of the Ser/Thr protein phosphatase 1 (PP1cat) hydrolyses N-acetyl Arg-Arg-Ala-phosphoThr-Val-Ala (K(M) = 3.7 mM) in a reaction that is inhibited competitively by inorganic phosphate (Pi, Ki = 1.6 mM) but unaffected by the product peptide alcohol at concentrations up to 3 mM. The enzyme does not catalyse the incorporation of 18O-label from 18O-labelled water into Pi whether, or not, the product alcohol is present. The dephosphorylated product alcohol of phosphorylated histone. an alternative substrate for the enzyme, serves as a competitive inhibitor for phosphopeptide hydrolysis (Ki = 60 microM) and co-mediates 18O-label exchange into Pi in a concentration-dependent manner (K(M) = 64 microM). These results indicate that hydrolysis occurs through the direct attack of an activated water molecule on the phosphate ester moiety of the substrate in a ternary complex mechanism.  相似文献   

17.
The hydrophobic nature of the active site of two energy-transducing ATPases was explored by comparing interactions between Pi and each of three hydrophobic drugs in the absence and presence of organic solvents. The drugs tested were the Fe . bathophenanthroline complex and the anticalmodulin drugs, calmidazolium and trifluoperazine. All inhibit the Pi in equilibrium with ATP exchange reaction catalyzed by submitochondrial particles and the ATPase activity of both submitochondrial particles and soluble F1 ATPase. The inhibition by the three drugs is reversed by either raising the Pi concentration or by adding organic solvent (dimethylsulfoxide, ethyleneglycol or methanol) to the medium. The inhibition of the Pi in equilibrium with ATP exchange by trifluoperazine becomes more pronounced when the electrochemical proton gradient formed across the membrane of the submitochondrial particles is decreased by the addition to the medium of the proton ionophore carbonylcyanide p-trifluoromethoxyphenylhydrazone. The ATPase activity and the Ca2+ uptake by sarcoplasmic reticulum vesicles are inhibited by the Fe . bathophenanthroline complex, calmidazolium and trifluoperazine. Phosphorylation of the ATPases by Pi, synthesis of ATP from ADP and Pi and the fast efflux of Ca2+ observed during reversal of the Ca2+ pump are inhibited by the three drugs. The inhibition is reversed by raising the concentration of Pi or dimethylsulfoxide. The three drugs tested appear to compete with Pi for a common binding site on the Ca2+-ATPase. The data presented are interpreted according to the proposal that the catalytic site of an enzyme involved in energy transduction undergoes a hydrophobic-hydrophilic transition during the catalytic cycle.  相似文献   

18.
Purified Na+,K(+)-ATPase from kidney outer medulla was phosphorylated by Pi in a reaction synergistically stimulated by Mg2+, when 40% (v/v) dimethyl sulfoxide was added to the assay medium. The phosphoenzyme formed at this solvent concentration was able to synthesize ATP even in the presence of Mg2+, because hydrolysis was impaired. ATP in equilibrium [32P]Pi exchange was also inhibited, indicating that partial reactions in the forward direction were blocked by the solvent. In 40% (v/v) dimethyl sulfoxide the enzyme's affinity for ADP decreased, in comparison with the values observed in purely aqueous medium. Addition of K+, which accelerated dephosphorylation of Na+,K(+)-ATPase in a totally water medium, partially reversed the inhibition of hydrolysis that was observed in the presence of dimethyl sulfoxide.  相似文献   

19.
The Ca2(+)-dependent adenosinetriphosphatase (Ca2(+)-ATPase) from the sarcoplasmic reticulum (SR) of rat skeletal muscles is phosphorylated by inorganic phosphate (Pi) in the absence of Ca2+. The reaction can be described by the following simplified scheme: [formula: see text] where E-P is a covalent, acid-stable and ADP-insensitive phosphoenzyme, and E.Pi is a noncovalent and acid-labile complex. The reaction is Mg2(+)-dependent. Membrane fragments deposited on Millipore filters were successively perfused with two solutions, at constant flow. The effluent samples were analyzed. The perfused solutions were Ca2+ free and always contained 40% dimethylsulfoxide (DMSO), plus other reactants. Following the successive perfusion of solutions without and with [32P]Pi, 32P binding is only detected in the presence of Mg2+, indicating the formation of the phosphoenzymes (E.Pi and E-P). Following perfusions of the phosphoenzymes with 5% trichloroacetic acid, 32P release indicates the amount of the acid-labile moiety (E.Pi). After phosphorylations, the filters were washed with acid and unlabeled Pi, and the remaining radioactivity was measured to evaluate the acid-stable phosphoenzyme (E-P). The acid-labile and acid-stable phosphoenzymes amounted, respectively, 0.72 +/- 0.12, and 1.48 +/- 0.10 nmol of Pi/mg of protein ( +/- S.E., n = 5), after phosphorylations with 20 microM Pi. The results indicate: (1) The method allowed the evaluation of the acid-labile intermediate of the SR Ca2(+)-ATPase cycle. Keq = k2/k-2), in the above scheme, approaches 2.0. (2) The substrate of the phosphorylation reaction, in the presence of DMSO, is likely to be the Mg.Pi complex, since Mg2+ is necessary for step 1 in the above scheme.  相似文献   

20.
1. A method is described to prepare an ATPase-ATP synthase complex from pig heart mitochondria exhibiting a very high ATP-32Pi exchange activity (1.6 mumol/min per mag protein in optimal conditions). 2. The preparation is virtually devoid of nucleoside diphosphokinase and adenylate kinase activities. 3. Freeze-fracture studies show that the ATPase-ATP synthase complex is integrated in lipid vesicles of 400-600 A in diameter. 4. It contains the endogenous natural proteic inhibitor which seems to behave as a coupling factor. 5. The rate of ATP hydrolysis catalyzed by the ATPase-ATP synthase complex is competitively inhibited by ADP, while the presence of ADP increases the initial rate of 32Pi incorporation into ATP. 6. The 32Pi incorporation into ATP can occur at a rate almost equal to that of nucleoside triphosphate (NTP) hydrolysis provided that the rate of NTP hydrolysis is kept low and that the ADP concentration is high enough. In these conditions, a very high coupling between NTP hydrolysis and ATP synthesis can be demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号