首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors studied C14-leucine and S35-methionine incorporation into the brain tissue homogenates and protein from different parts of the brain of rats subjected to intrauterine hypoxia. Depression of protein synthesis in certain brain structures, particularly in the hyppocampus was observed alongside with the stimulation of the amino acid incorporation into proteins of the other parts of the brain. Changes of the amino acid penetration into tissue homogenates fialed to correlate with the rate of their incorporation into proteins in separate structures of the brain. Experimental results pointed to disfunction in the protein metabolism intensity and in the blood-brain barrier system occurring during the late ontogenesis in rats surviving the intrauterine hypoxia.  相似文献   

2.
Despite astounding diversity in their structure and function, proteins are constructed from 22 protein or ‘canonical’ amino acids. Hundreds of amino acid analogues exist; many occur naturally in plants, some are synthetically produced or can be produced in vivo by oxidation of amino acid side-chains. Certain structural analogues of the protein amino acids can escape detection by the cellular machinery for protein synthesis and become misincorporated into the growing polypeptide chain of proteins to generate non-native proteins. In this review we seek to provide a comprehensive overview of the current knowledge on the biosynthetic incorporation of amino acid analogues into proteins by mammalian cells. We highlight factors influencing their incorporation and how the non-native proteins generated can alter cell function. We examine the ability of amino acid analogues, representing those commonly found in damaged proteins in pathological tissues, to be misincorporated into proteins by cells in vitro, providing us with a useful tool in the laboratory to generate modified proteins representing those present in a wide-range of pathologies. We also discuss the evidence for amino acid analogue incorporation in vivo and its association with autoimmune symptoms. We confine the review to studies in which the synthetic machinery of cell has not been modified to accept non-protein amino acids.  相似文献   

3.
4.
In aquatic ecosystems, [3H]thymidine incorporation into bacterial DNA and [3H]leucine incorporation into proteins are usually used to estimate bacterial production. The incorporation rates of four amino acids (leucine, tyrosine, lysine, alanine) into proteins of bacteria were measured in parallel on natural freshwater samples from the basin of the river Meuse (Belgium). Comparison of the incorporation into proteins and into the total macromolecular fraction showed that these different amino acids were incorporated at more than 90% into proteins. From incorporation measurements at four subsaturated concentrations (range, 2–77 nm), the maximum incorporation rates were determined. Strong correlations (r > 0.91 for all the calculated correlations) were found between the maximum incorporation rates of the different tested amino acids over a range of two orders of magnitude of bacterial activity. Bacterial production estimates were calculated using theoretical and experimental conversion factors. The productions calculated from the incorporation rates of the four amino acids were in good concordance, especially when the experimental conversion factors were used (slope range, 0.91–1.11, and r > 0.91). This study suggests that the incorporation of various amino acids into proteins can be used to estimate bacterial production.  相似文献   

5.
Abstract: Experiments were performed to determine whether ppsttranslational addition of amino acids to axonal proteins occurs in axons of the rat sciatic nerve. Two ligatures were placed 1 cm apart on sciatic nerves. Six days later, segments proximal to each ligature were removed, homogenized, centrifuged at 150,000 · g , and analyzed for the ability to incorporate 3H-amino acids into proteins. No incorporation of amino acids into proteins was found in the high-speed supernatant, but when the supernatant was passed through a Sephacryl S-200 chromatography column (removing molecules less than 20 kD), [3H]arginine, lysine, leucine and aspartic acid were incorporated into proteins in both proximal and distal nerve segments. Small but consistently greater amounts of radioactivity were incorporated into proteins in proximal segments compared with distal segments, indicating that the components necessary for the reaction are transported axonally. This reaction represents the posttranslational incorporation of a variety of amino acids into proteins of rat sciatic nerve axons. Other experiments showed that the incorporation of amino acids into proteins is by covalent bonding, that the amino acid donor is likely to be tRNA, and that the reaction is inhibited in vivo by a substance whose molecular mass is less than 20 kD. This inhibition is not affected by incubation with physiological concentrations of unlabeled amino acids, by boiling, or by treatment with Proteinase K. When the axonally transported component of the reaction was determined in regenerating nerves, the amount of incorporation of amino acids into protein was 15–150 times that in intact nerves. The results indicate that the components of this reaction are transported axonally in rat sciatic nerves and that the reaction is increased dramatically in growing axons during nerve regeneration.  相似文献   

6.
Acetate incorporation into proteins including acidic proteins and basic proteins was studied by introduction of isotopically labeled precursors during sea urchin development. At pregastrulational stages, the acetate incorporation exhibited relatively low activities, whereas a remarked enhancement was apparently observed at gastrula stage and more advanced stages. Although some amount of exogenous acetate might be metabolically converted to amino acids, the acetate incorporation into proteins appeared to be mainly attributed to acetylation of proteins that should be coupled with peptide synthesis, as indicated by the incorporation occurring on peptide-synthesizing polysomes and strong inhibition of it by administration of puromycin.  相似文献   

7.
Proteins which bind to nucleic acids and regulate their structure and functions are numerous and exceptionally important. Such proteins employ a variety of strategies for recognition of the relevant structural elements in their nucleic acid substrates, some of which have been shown to involve rather subtle interactions which might have been difficult to design from first principles. In the present study, we have explored the preparation of proteins containing unnatural amino acids having nucleobase side chains. In principle, the introduction of multiple nucleobase amino acids into the nucleic acid binding domain of a protein should enable these modified proteins to interact with their nucleic acid substrates using Watson-Crick and other base pairing interactions. We describe the synthesis of five alanyl nucleobase amino acids protected in a fashion which enabled their attachment to a suppressor tRNA, and their incorporation into each of two proteins with acceptable efficiencies. The nucleobases studied included cytosine, uracil, thymine, adenine and guanine, i.e. the major nucleobase constituents of DNA and RNA. Dihydrofolate reductase was chosen as one model protein to enable direct comparison of the facility of incorporation of the nucleobase amino acids with numerous other unnatural amino acids studied previously. The Klenow fragment of DNA polymerase I was chosen as a representative DNA binding protein whose mode of action has been studied in detail.  相似文献   

8.
Role of peptide bond breaks in the incorporation of amino acids into proteins in a "protein--amino acid" system is investigated. For this purpose the incorporation of labelled amino acids into trypsin under the inhibition of its autolysis by a specific inhibitor from soybean and epsilon-amino-caproic acid is studied. The trypsin inhibitor from soybean is found to suppress considerably the incorporation of 14C-glycine, 14C-lysine and 14C-methionine into crystal trypsin and not to affect the incorporation of labelled amino acids into chomotrypsin, papain and carboxypeptidase. Epsilon-Aminocaproic acid inhibited 14C-glycine incorporation into crystal trypsin by 40% and did not change its incorporation level into serum albumin. The dependency of amino acid incorporation level into trypsin on the activity of autolysis in the "protein--amino acid" system is demonstrated.  相似文献   

9.
The action of light on protein synthesis was examined in the cabbage seedlings, a system extensively used in the studies of anthocyanin synthesis. Continuous red and far red light have no effect on total protein content while they cause a marked decrease in the level of free amino acids in cabbage seedlings. The rate of protein synthesis, measured as incorporation of radioaetively-labelled amino acids into proteins, is clearly stimulated by light. Phytochrome involvement in the light stimulation of the incorporation is also demonstrated by the red-far red reversibility of the response. The relative effectiveness of continuous red and far red light upon the incorporation of amino acids into proteins is affected by the nature of the system used to study the incorporation process. When excised cotyledons and short period of incorporation were used, continuous far red was more effective than red. However, when whole seedlings and long period of incorporation were used, red and far red were equally effective. Streptomycin causes a 10– 15% decrease in the rate of incorporation of amino acids into proteins of all cellular fractions, except the plastid fraction where a much higher inhibition (30%) was observed.  相似文献   

10.
Position-specific incorporation of nonnatural amino acids into proteins (nonnatural mutagenesis) via an in vitro protein synthesizing system was applied to incorporate a variety of amino acids carrying specialty side groups. A list of nonnatural amino acids thus far successfully incorporated through in vitro translation systems is presented. The position of nonnatural amino acid incorporation was directed by four-base codon/anticodon pairs such as CGGG/CCCG and AGGU/ACCU. The four-base codon strategy was more efficient than the amber codon strategy and could incorporate multiple nonnatural amino acids into single proteins. This multiple mutagenesis will find wide applications, especially in building paths of electron transfer on proteins. The extension of translation systems by the introduction of nonnatural amino acids, four-base codon/anticodon pairs, orthogonal tRNAs, and artificial aminoacyl tRNA synthetases, is a promising approach towards the creation of "synthetic microorganisms" with specialty functions.  相似文献   

11.
Effect of phenylalanine on protein synthesis in the developing rat brain   总被引:12,自引:7,他引:5  
1. Inhibition of the rate of incorporation of [(35)S]methionine into protein by phenylalanine was more effective in 18-day-old than in 8-day-old or adult rat brain. 2. Among the subcellular fractions incorporation of [(35)S]methionine into myelin proteins was most inhibited in 18-day-old rat brain. 3. Transport of [(35)S]methionine and [(14)C]leucine into the brain acid-soluble pool was significantly decreased in 18-day-old rats by phenylalanine (2mg/g body wt.). The decrease of the two amino acids in the acid-soluble pool equalled the inhibition of their rate of incorporation into the protein. 4. Under identical conditions, entry of [(14)C]glycine into the brain acid-soluble pool and incorporation into protein and uptake of [(14)C]acetate into lipid was not affected by phenylalanine. 5. It is proposed that decreased myelin synthesis seen in hyperphenylalaninaemia or phenylketonuria may be due to alteration of the free amino acid pool in the brain during the vulnerable period of brain development. Amyelination may be one of many causes of mental retardation seen in phenylketonuria.  相似文献   

12.
The final destination of glycosylphosphatidylinositol (GPI)-attached proteins in Saccharomyces cerevisiae is the plasma membrane or the cell wall. Two kinds of signals have been proposed for their cellular localization: (i) the specific amino acid residues V, I, or L at the site 4 or 5 amino acids upstream of the GPI attachment site (the omega site) and Y or N at the site 2 amino acids upstream of the omega site for cell wall localization and (ii) dibasic residues in the region upstream of the omega site (the omega-minus region) for plasma membrane localization. The relationships between these amino acid residues and efficiencies of cell wall incorporation were examined by constructing fusion reporter proteins from open reading frames encoding putative GPI-attached proteins. The levels of incorporation were high in the constructs containing the specific amino acid residues and quite low in those containing two basic amino acid residues in the omega-minus region. With constructs that contained neither specific residues nor two basic residues, levels of incorporation were moderate. These correlations clearly suggest that GPI-attached proteins have two different signals which act positively or negatively in cell wall incorporation for their cellular localization.  相似文献   

13.
Ubiquitination functions as a sorting signal for lysosomal degradation of cell-surface proteins by facilitating their internalization from the plasma membrane and incorporation into lumenal vesicles of multivesicular bodies (MVBs). Ubiquitin may also mediate sorting of proteins from the trans-Golgi network (TGN) to the endosome, thereby preventing their appearance on the cell surface and hastening their degradation in the lysosome-vacuole. Substantiation of a direct ubiquitin-dependent TGN sorting pathway relies in part on identifying candidate machinery that may function as a ubiquitin-sorting 'receptor'at the TGN. Members of the GGA family of coat proteins localize to the TGN and promote the incorporation of proteins into clathrin-coated vesicles destined for transport to endosomes. We show that the GGA coat proteins bind directly to ubiquitin through their GAT domain and demonstrate that this interaction is required for the ubiquitin-dependent sorting of the Gap1 amino acid transporter from the TGN to endosomes. Thus, GGA proteins fulfill the role of ubiquitin sorting receptors at the TGN.  相似文献   

14.
Experiments performed on rats shown that in peritonitis the mass of the animal's organs and C14-amino acid incorporation into tissue proteins is reduced. Free amino acid content in tissues and serum is increased. Decreased incorporation of C14-amino acid into hepatic proteins antecedes the increase of free amino acid content in this organ. In the kidneys, spleen and skeletal muscles diminished synthesis of proteins and increased protein catabolism occur simultaneously. It was shown that during the initial 24 hours of peritonitis the amino acid exchange between organs and systemic circulation are disturbed, however, the diminished synthesis of tissue proteins is not the result of free amino acid deficiency.  相似文献   

15.
1. Aflatoxin and the pyrrolizidine alkaloid retrorsine inhibited the incorporation of labelled amino acids into rat liver and plasma proteins in vivo. Inhibition was greater and detected earlier with retrorsine (1hr.) than with aflatoxin (3hr.). 2. Both toxins affected the liver ribosomal aggregates, causing increases in the proportion of monomers plus dimers. The effect of retrorsine was greater than that of aflatoxin. 3. Incorporation of labelled amino acids into proteins of cell-free preparations of liver from rats treated with aflatoxin was lower than in control preparations. The main site of inhibition appeared to be the ribosomes. 4. Both toxins inhibited the incorporation of orotate into liver nuclear RNA 1hr. after administration.  相似文献   

16.
Posttranslational modifications modulate the activities of most eukaryotic proteins and play a critical role in all aspects of cellular life. Understanding functional roles of these modifications requires homogeneously modified proteins that are usually difficult to purify from their natural sources. An emerging powerful tool for synthesis of proteins with defined posttranslational modifications is to genetically encode modified amino acids in living cells and incorporate them directly into proteins during the protein translation process. Using this approach, homogenous proteins with tyrosine sulfation, tyrosine phosphorylation mimics, tyrosine nitration, lysine acetylation, lysine methylation, and ubiquitination have been synthesized in large quantities. In this review, we provide a brief introduction to protein posttranslational modifications and the genetic noncanonical amino acid (NAA) incorporation technique, then discuss successful applications of the genetic NAA incorporation approach to produce proteins with defined modifications, and end with challenges and ongoing methodology developments for synthesis of proteins with other modifications.  相似文献   

17.
Aspects of the suitability of various labelled amino acids for measuring their local incorporation into proteins by positron emission tomography, especially radiochemical aspects including choice of radionuclide, position of label and ease of preparation, are discussed.  相似文献   

18.
The present studies demonstrate that testicular macrophages respond to follicle-stimulating hormone (FSH) by: 1) stimulating the rate of incorporation of amino acids into secreted proteins; 2) increasing the rate of incorporation of uridine into RNA; and 3) enhancing the accumulation of intracellular cyclic adenosine monophosphate (cAMP; which was potentiated by the addition of 1 mM 3-isobutyl-1-methylxanthine; MIX). In addition, dibutyryl cAMP (dbcAMP) enhanced the incorporation of amino acids into secreted proteins; however, this cAMP analog had no effect on the incorporation of uridine into RNA. Finally, it was demonstrated that testicular macrophages possess specific receptors with a high affinity for FSH.  相似文献   

19.
Residue-specific incorporation of non-canonical amino acids into proteins allows facile alteration and enhancement of protein properties. In this review, we describe recent technical developments and applications of residue-specific incorporation to problems ranging from elucidation of biochemical mechanisms to engineering of protein-based biomaterials. We hope to inform the reader of the ease and broad utility of residue-specific non-canonical amino acid incorporation with the goal of inspiring investigators outside the field to consider applying this tool to their own research.  相似文献   

20.
Recently, non-canonical amino acids (NCAA) incorporation was developed to enhance the functional properties of proteins. Incorporation of NCAA containing chlorine atom is conceptually an attractive approach to prepare pharmacologically active substances, which is a difficult task since chlorine is bulky atom. In this study, we evaluated the efficiency and extent of in vivo incorporation of tyrosine analogue 3-chlorotyrosine [(3-Cl)Tyr] into the recombinant proteins GFP and GFPHS (highly stable GFP). The incorporation of (3-Cl)Tyr into GFP leads to dramatic reduction in the expression level of protein. On the other hand, the incorporation of (3-Cl)Tyr into GFPHS was expressed well as a soluble form. In addition we used bioinformatics tools for the analysis to explore the possible constraints in micro-environment of each natural amino acid residue to be replaced with chlorine atom accommodation into GFPHS. In conclusion, our approaches are reliable and straightforward way to enhance the translation of chlorinated amino acids into proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号