首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 41 stands was sampled for species composition and 29 of these stands for plant standing crop and net annual production at 7 sites on 6 arctic islands. Fourteen additional sites on 10 islands were studied in less detail.
Through polar ordination, three groupings were recognized: polar barrens with an average species richness of 6, a phytomass of 24 g m−2, and a net annual production of 0.8 g m−2. Comparable data for the cushion plant and snowflush communities were 9, 120, 3 and 13 species, 400 g m−2, phytomass and 41 g m−2 net production respectively. Cryptogams are minor except within showflush communities.
The soils show no horizon development, arc alkaline, and are very tow in organic matter, nitrogen, and phosphorus. It is believed that the combination of limited soil moisture in mid-summer and very low nutrient levels are the primary reason for such low plant cover and plant production in these predominantly polar barren landscapes. Geologic substrate with an abundance of frost-shattered rock and topographic position are factors that control the limited availability of water.  相似文献   

2.
Coastal barrens in Nova Scotia are heathlands characterised by short, predominantly ericaceous vegetation, sparse tree cover, exposed bedrock, pockets of Sphagnum bog, and stressful climatic conditions. Although coastal barrens are prominent in the physical and cultural landscape, they are largely unprotected. We selected six barrens along the Atlantic coast, and surveyed 20 1-m2 plots at each barren for vascular plants, macrolichens, mosses and environmental factors. We recorded 173 species (105 vascular, 41 macrolichen, 27 moss), including six provincially rare vascular species found predominantly in nearshore areas with high levels of substrate salt and nutrients, variable substrate depth, and short vegetation. Although vascular plant and moss richness were similarly correlated with vegetation height, substrate depth, organic matter content, and rock exposure, there were no clear correlations between vascular plant, macrolichen and moss richness across all sites. Vascular plant rarity and species richness were not correlated, but had inverse relationships with key environmental gradients. Tailoring conservation efforts to protect areas of high richness may thus mean that rare species are missed, and vice versa. Ordination and ANOSIM show that barrens vegetation differs widely among sites; therefore, protecting any singular coastal barren will not protect the entire range of vegetation communities and species in this heathland type. Conservation planning should emphasize protecting environmental gradients correlated with richness, rarity and plant community structure, including substrate depth and moisture, and vegetation height. Additionally, protected areas should include a coastal-inland gradient and a diversity of substrate types, including exposed rock and trees.  相似文献   

3.
In most studies concerning the carbon (C) exchange between soil and atmosphere only the topsoil (0–0.3 m) is taken into account. However, it has been shown that important amounts of stable soil organic carbon (SOC) are also stored at greater depth. Here, we developed a quantitative model to estimate the evolution of the distribution of SOC with depth between 1960 (database 'Aardewerk') and 2006 in northern Belgium. This temporal analysis was conducted under different land use, texture and drainage conditions. The results indicate that intensified land management practices seriously affect the SOC status of the soil. The increase in plough depth and a change in crop rotation result in a significant decrease of C near the surface for dry silt loam cropland soils, (i.e. 1.02 ± 0.23 kg C m−2 in the top 0.3 m between 1960 and 2006). In wet to extremely wet grasslands, topsoil SOC decreased significantly, indicating a negative influence of intensive soil drainage on SOC stock. This resulted in a decline of SOC between 1960 and 2006 in the top 1 m, ranging from 3.99 ± 2.57 kg C m−2 in extremely wet silt loam soils to 2.04 ± 2.08 kg C m−2 in wet sandy soils. A slight increase of SOC stock is observed under dry to moderately wet grasslands at greater depths corresponding to increased livestock densities in the region. The increase of SOC in the top 1 m under grassland ranges from 0.65 ± 1.39 kg C m−2 in well drained silt loam soils to 2.59 ± 6.49 kg C m−2 in moderately drained silt loam soils over entire period.  相似文献   

4.
Lodgepole pine (Pinus contorta var. latifolia) stands were sampled in central Yukon, Canada (61.5–64°N latitude), which represented the northernmost 9% of the tree's North American range. Within this area, lodgepole pine occupied only ? 2% of the landscape. This study determined: 1) what forest sociations occurred (i.e. structural dominance‐types); 2) how plant growth form composition and richness differed from the central portion of the species’ geographical range; and 3) if stands were biased towards occurring on more thermally favorable south‐facing slopes. Five lodgepole pine sociations were recognized among 100 relevés: Rhododendron groenlandicum (Labrador tea); Cladonia arbuscula (green reindeer lichen); Calamagrostis purpurascens (purple reedgrass); Hylocomium splendens (stairstep moss) and Alnus viridis (green alder, n = 4 relevés). Rhododendron stands were proportionally more common on low gradient sites and had more total plant cover than the other sociations. Cladonia and Calamagrostis stands were typically associated with dry coarse‐textured soils and warm dry sites, respectively; whereas the composition of the Hylocomium sociation reflected the detrimental influences of atypically dense forest canopies on understory vascular plants. Only the Calamagrostis sociation was unique to the study region. Species richness among common northern lodgepole pine sociations averaged 16–19 taxa per relevé (p > 0.05). Northern compared to central range (n = 1394) relevés were compositionally different based on little overlap of their datasets in the ordination space. Northern vegetation had less (p < 0.001) total plant (129% vs 184%), deciduous shrub (9% vs 26%), broad‐leaved herb (5% vs 25%), and bryophyte (27% vs 54%) cover; had greater macro‐lichen cover (13% vs 5%) and lower floristic richness (11 vs 24 taxa) and was less than half as phytosociological diverse. Lodgepole pine stands in the northernmost portion of their range were not biased towards occurring on south‐facing slopes, which suggested an ecological potential for range expansion.  相似文献   

5.
温度对不同粘粒含量稻田土壤有机碳矿化的影响   总被引:16,自引:0,他引:16  
模拟了亚热带地区3种不同粘粒含量的水稻土(砂壤土、壤粘土、粉粘土)在5种温度(10、15、20、25和30℃)下的有机碳(SOC)矿化特征,分析SOC矿化对温度变化的响应.结果表明:在160d的培养期内,温度对3种水稻土SOC矿化量的影响有一定差异,30℃时砂壤土、壤粘土和粉粘土SOC矿化量分别是10℃时的3.5、5.2和4.7倍.在较低温度(≤20℃)下,SOC矿化速度较低且相对稳定;在较高温度(≥25℃)下,前期SOC矿化速度较高,随着培养时间的延长逐渐降低,并趋于稳定.3种水稻土SOC矿化的温度系数(Q10)随培养时间出现波动,砂壤土的Q10平均值最低,为1.92,壤粘土和粉粘土的Q10平均值较接近,分别为2.37和2.32;3种土壤矿化速率常数(k)与温度呈极显著的指数相关(P<0.01).3种水稻土有机碳矿化对温度变化的响应敏感度依次为壤粘土>粉粘土>砂壤土.  相似文献   

6.
Cover and richness of a 5‐year revegetation effort were studied with ,respect to small‐scale disturbance and nutrient manipulations. The site, originally a relict tallgrass prairie mined for gravel, was replanted to native grasses using a seed mixture of tall‐, mixed‐, and short‐grass species. Following one wet and three relatively dry years, a community emerged, dominated by species common in saline soils not found along the Colorado Front Range. A single species, Alkali sacaton (Sporobolus airoides), composed nearly 50% of relative vegetation cover in control plots exhibiting a negative relationship between cover and richness. Seeded species composed approximately 92% of vegetation cover. The remaining 8% was composed of weeds from nearby areas, seed bank survivors, or mix contaminants. Three years of soil nutrient amendments, which lowered plant‐available nitrogen and phosphorus, significantly increased relative cover of seeded species to 97.5%. Fertilizer additions of phosphate enhanced abundance of introduced annual grasses (Bromus spp.) but did not significantly alter cover in control plots. Unmanipulated 4‐m2 plots contained an average of 4.7 planted species and 3.9 nonplanted species during the 5‐year period, whereas plots that received grass herbicide averaged 5.4 nonplanted species. Species richness ranged from an average 6.9 species in low‐nutrient, undisturbed plots to 10.9 species in the relatively high‐nutrient, disturbed plots. The use of stockpiled soils, applied sparingly, in conjunction with a native seed mix containing species uncommon to the preexisting community generated a species‐depauperate, novel plant community that appears resistant to invasion by ruderal species.  相似文献   

7.
A 40‐year‐old rehabilitated forest developed on a sodic wasteland at Banthra, Lucknow, north India, was studied for the performance of various species in different vegetation strata as well as their overall impact in soil amelioration. The plant communities of the three selected stands (S1, S2, and S3) of this forest were categorized into three vegetation strata: overstory trees, understory trees and shrubs, and a ground layer with scattered herbs and tree seedlings. The three stands contained 44, 19, and 8 species in each stratum, respectively, and three climber species. Importance value index (IVI) and basal area/cover did not show a clear dominance for particular species, and this is identified as a mixed forest with deciduous as well as evergreen species. Therefore, dominant species in each layer were categorized according to an IVI value of 10 and greater than 10% relative basal area. Within each stratum, species richness and plant population density decreased with an increase in plant size. Both species diversity and productivity were relatively high compared to the reference site because of protection from biotic disturbances, which cannot be controlled on the reference site. Creation of new forest on the barren land has contributed significant soil amelioration in the degraded sodic soil of the Indogangetic plains. The soil properties of the three stands did not vary much, although different tree species dominated the stands. Maximum soil amelioration was recorded for total N, followed by mineralized N, available N, and organic carbon contents for the nutritional properties. With regard to chemical properties, exchangeable sodium was greatly reduced in comparison to other properties viz pH, electrical conductivity, cation exchange capacity, and exchangeable Ca content. During 40 years of growth and development of the diverse vegetation in the revegetated forest, microbial C increased to about five times that of the surrounding barren sodic soils. There were no significant changes in soil structure even though the water‐holding capacity of the soil improved to about 53% of the once barren land due to a 7‐fold increase in organic carbon content.  相似文献   

8.
Summary Pole sized stands ofPopulus tremuloides Michx.,Picea glauca (Moench.) Voss,Pinus resinosa Ait., andPinus banksiana Lamb., were sampled on both a very fine sandy loam and a loamy sand. Relative species ranking in above-ground tree biomass (Pinus resinosa>Populus>Picea>Pinus banksiana) and above-ground tree nutrient (N, P, K, Ca, Mg) weights (Populus>Picea>Pinus resinosa>Pinus banksiana) were similar on both soils. Particularly large proportions of biomass and nutrients were found in aspen bark and spruce foliage and branches on both soils. Harvesting entire above-ground trees would remove up to three times more nutrients than would harvesting only the bole.Herbs and shrubs had less than 3% of the total vegetation organic matter but contributed as much as one-half of the total annual litterfall nutrients. Litterfall weights and nutrient concentrations, and especially forest floor nutrients, were all less on the loamy sand. Nutrients in the rooting zone of the loamy sand were 12 to 29% less than in the very fine sandy loam except for P which averaged 24% higher. On both soils, exchangeable Ca in the surface soil was much lower under Populus and Picea than under the pines, owing to species differences in uptake and apparently slow release of Ca by weathering.Ca in the above-ground Populus amounted to 18% (very fine sandy loam) to 25% (loamy sand) of the exchangeable Ca in the total complex. Intensive utilization of this species in particular could stress the Ca economy of these sites.This article was written and prepared by U.S. Government employees on official time; it is therefore in the public domain.Principal Silviculturist and Research Soil Scientist, resp.  相似文献   

9.
Botanical surveys from prior to 1949 documented the plant species composition of the mulga (Acacia aneura) communities in the eastern Mulga Lands Bioregion of Queensland, Australia. These surveys recorded 282 vascular plant species including 268 natives and 14 exotics. Since 1949, mulga communities have experienced considerable modification through continuous grazing by domestic sheep and cattle even during drought periods and extensive vegetation clearance. To increase our knowledge on floristic composition and diversity change over this time, floristic data were recollected from mulga communities in the same region between 2007 and 2010 using a more systematic procedure. These surveys recorded 292 vascular plant species including 269 natives and 23 exotics. Species richness and composition within five life forms: tree, shrub, vine, forb and graminoid were compared between the recent survey data and the historical survey data. The majority of native plant species were either in the forb (45.4% of total native species) or graminoid (25.7% of total native species) life forms over the 60-year period. There was no significant difference in species richness between the historical and recent surveys within tree or shrub life forms, but there were differences in species richness in vine, forb and graminoid life forms over time. Similarities in native species between the historical and recent surveys were high. Sorensen Similarity Indices (ISS) were: 0.77 at species level, 0.84 at genus level and 0.87 at family level. In contrast, the similarity indices for exotic species was low (0.59) for species and genera (0.61), but high for families (0.86). More exotic species were recorded recently than historically. Among these, buffel grass (Pennisetum ciliare) and colocynth (Citrullus colocynthis) were more commonly encountered than other exotic species in the eastern mulga communities of south central Queensland, Australia.  相似文献   

10.
The distribution and frequency of bryophyte and lichen vegetation on ice-free regions of the Windmill Islands are presented using data derived from aerial photography and ground surveying. The qualitative and quantitative plant cover of sites are listed and related to the topography and major soil characteristics of each site. The richest associations of macrolichens and bryophytes occurred on the metamorphic northern peninsulas. Species richness and frequency was generally reduced on the charnockitic southern peninsula and the islands which have been deglaciated longer. Salinity varied significantly throughout the region with the highest levels in the northern islands reflecting the presence of penguin colonies. In such sites bryophytes and lichens were virtually absent. Wind blown sea-spray contributed far less salts than direct excretion from penguins. On the peninsulas snow cover and site exposure appeared to delimit plant distribution. Higher salt levels from sea-spray on the northern aspects of the peninsulas seemed to have negligible impact on vegetation patterns with the possible exception ofBiatorella cerebriformis which was encountered only inland. The total phosphorus and nitrogen levels of the skeletal soils were generally low except in eutrophic sites adjacent to penguin colonies. The vegetation patterns are discussed in terms of the climate, topography and species autecology.  相似文献   

11.
Studies were conducted to determine the efficacy of the commercially available immuno-magnetic system by DynalTM to recover C. parvum oocysts from silty clay, sandy clay loam and clay soils. Each soil type was spiked with known numbers of oocysts and their recovery using percoll-sucrose gradient centrifugation in combination with immuno-magnetic separation system was evaluated. The recoveries varied significantly. The silty clay loam soil had the highest recovery ranging between 91% and 26%, while the sandy clay loam had the lowest recovery ranging between 30% and 2%. The results indicate that though the DynalTM IMS system is capable of recovering oocysts from soils, the recovery efficiencies can vary significantly.  相似文献   

12.
Feeding inhibition and mortality of Reticulitermes flavipes (Kollar) exposed to sand, sandy loam, loam, and silty clay loam soils treated with several concentrations of imidacloprid were studied using bioassay techniques under laboratory conditions. Termite workers stopped feeding after exposure to treated soils. Differences in feeding reduction varied among the soil types. Based on the magnitude of the F-statistics, the effect of imidacloprid on the reduction of termite feeding was greatest in sand followed by sandy loam, loam, and silty clay loam soils. Soil properties such as organic matter content, silt and clay proportions, pH, and cation exchange capacity were suggested to affect the bioavailability of imidacloprid. Similar soil effects on mortality were observed in termites continuously exposed to treated soil for 21 d. In three of four soils tested, susceptibility to imidacloprid was not affected by the source of the termites tested.  相似文献   

13.
Vegetated buffer strips were evaluated for their ability to remove waterborne Cryptosporidium parvum from surface and shallow subsurface flow during simulated rainfall rates of 15 or 40 mm/h for 4 h. Log(10) reductions for spiked C. parvum oocysts ranged from 1.0 to 3.1 per m of vegetated buffer, with buffers set at 5 to 20% slope, 85 to 99% fescue cover, soil textures of either silty clay (19:47:34 sand-silt-clay), loam (45:37:18), or sandy loam (70:25:5), and bulk densities of between 0.6 to 1.7 g/cm(3). Vegetated buffers constructed with sandy loam or higher soil bulk densities were less effective at removing waterborne C. parvum (1- to 2-log(10) reduction/m) compared to buffers constructed with silty clay or loam or at lower bulk densities (2- to 3-log(10) reduction/m). The effect of slope on filtration efficiency was conditional on soil texture and soil bulk density. Based on these results, a vegetated buffer strip comprised of similar soils at a slope of or=3 m should function to remove >or=99.9% of C. parvum oocysts from agricultural runoff generated during events involving mild to moderate precipitation.  相似文献   

14.
Rock barrens support rare plant species but may be threatened by forest expansion. We determined the extent of forest expansion onto open coastal barrens and identified environmental correlates of dynamic versus persistent barrens in Nova Scotia, Canada. We used aerial photos to quantify the amount of forest expansion over the last 70 years at five coastal barrens sites and GIS to derive topographic and other environmental predictors to differentiate persistent coastal barrens compared with persistent forests or barrens that succeed to forests. Linear discriminant and classification tree analyses identified the variables associated with each class of habitat. Coastal barrens decreased by an average of 7.9% (from 4.2 to 24.6% depending on the site) in the last 70 years due to forest expansion. The best predictors of persistent barrens were elevation and distance to coast. Environmental factors such as topographical heterogeneity and evidence of fire varied among sites. Climatic and edaphic conditions near the coast and in exposed inland areas may protect coastal barrens vegetation from forest expansion. Evidence of fire was not found at all barrens sites, thus at least some of the persistent open barrens are likely maintained by shallow soils, salt spray, and wind exposure. All three classes of habitat had distinct vegetation, and the only rare species was found in a persistent barren. Management of human activities in such landscapes should take into account the dynamic nature of barrens vegetation, while prioritizing conservation efforts in persistent barrens.  相似文献   

15.
Coastal barrens support rare plant species but may be threatened by forest encroachment. We determined whether trees spread into coastal barren habitat from forest patches and assessed plant species composition and soil properties across the forest–barren ecotone. We quantified tree age and height, soil properties, and vascular plant, bryophyte and lichen species composition along transects perpendicular to the edges of tree patches within the forest–barren ecotone in coastal Nova Scotia. Randomization tests assessed whether the vegetation and environmental characteristics were significantly different in the transition zone compared to one or both adjoining ecosystems. We used ordination to examine trends in species composition across the ecotone and the relationship to environmental variables. Tree age and height decreased continuously from the forest towards the edge of the forest patches. There were also trends in vegetation composition and structure from the forest into the open barrens. Many species were most abundant within the transition zone, although not always significantly. Soil properties were relatively uniform across the ecotone. The structure and vegetation of the forest–barren ecotone suggests that forest patches act as nuclei for forest expansion on barrens with a typical successional pathway where coastal barren vegetation is gradually replaced by forest species. This encroachment may pose a threat to rare barrens communities. While landscape factors such as salt spray and wind exposure may determine the general locations where forest can establish, biotic processes of growth and dispersal appear to govern the fine-scale expansion of tree patches.  相似文献   

16.
Changes to the primary successional environment caused by colonizing plants that present symbiotic associations with nitrogen-fixing bacteria were investigated at two areas on Mount St. Helens. One area was occupied by alder (Alnus viridis) thickets and old lupine (Lupinus lepidus) patches and the other area by young lupine patches and pumice barrens. Alder thicket soils had higher levels for a few soil nutrients and had greater cover by other pioneer species as compared to old lupine patches. Many soil nutrients, including nitrogen and soil organic matter, were below detection limits in old lupine patches but not in alder thicket soils. Young lupine patch soils were generally not different from barren site soils but had greater cover by other pioneer species. Below detection nitrogen and soil organic matter levels also occurred in many barren soil samples but not in young lupine patch soils. Barren soils were moister than were the other sites. The apparent increase in soil fertility has not led to invasion by later successional species, perhaps due to dry conditions or to other inhibitory factors. Seedbanks, composed of early successional species, appear to be developing in these areas.  相似文献   

17.
18.
A comparison of created and natural wetlands in Pennsylvania,USA   总被引:7,自引:0,他引:7  
Recent research suggests that created wetlands do not look, or function, like the natural systems they are intended to replace. Proper planning, construction, and the introduction of appropriate biotic material should initiate natural processes which continue indefinitely in a successful wetland creation project, with minimal human input. To determine if differences existed between created and natural wetlands, we compared soil matrix chroma, organic matter content, rock fragment content, bulk density, particle size distribution, vegetation species richness, total plant cover, and average wetland indicator status in created (n = 12) and natural (n = 14)wetlands in Pennsylvania (USA). Created wetlands ranged in age from two to 18 years. Soils in created wetlands had less organic matter content, greater bulk densities, higher matrix chroma, and more rock fragments than reference wetlands. Soils in reference wetlands had clay loam textures with high silt content, while sandy clay loam textures predominated in the created sites. Vegetation species richness and total cover were both greater in natural reference wetlands. Vegetation in created wetlands included a greater proportion of upland species than found in the reference wetlands. There were significant differences in soils and vegetation characteristics between younger and older created wetlands, though we could not say older created sites were trending towards the reference wetland condition. Updated site selection practices, more careful consideration of monitoring period lengths, and, especially, a stronger effort to recreate wetland types native to the region should result in increased similarity between created and natural wetlands.  相似文献   

19.
This study investigated variations in the concentration of nutrients, antinutrients and mineral content of Amaranthus caudatus harvested from different soil types at various stages of maturity. Four out the five soils namely; sandy clay loam, silty clay loam, clayey loam and loam were experimentally formulated from primary particles of silt, clay and sand in line with the United State Department of Agriculture’s (USDA) soil triangle protocol. The unfractionated soil was used as the control. After harvesting at pre-flowering (61 days after planting), flowering (71 days after planting) and post-flowering (91 days after planting) stages, nutrient and antinutrient analyses were carried out following Association of Official Analytical Chemists (AOAC) and other referenced methods while the Inductively Coupled Plasma- Optical Emission Spectrometer was used to determine mineral compositions of the plant samples. The results of the study revealed that particle size and physicochemical properties of the soil influenced the number of minerals deposited in plant tissues. It was further observed that the nutritional properties of the plant change as plant ages. For an optimal yield of vitamins A and E, clayey loam proved to be the best soil particularly when A. caudatus is harvested before flowering but for vitamin C, sandy clayey loam yielded the highest output at the same stage. Similarly, clayey loam and loam soils yielded the highest proximate compositions at flowering and pre-flowering; however, mineral elements (micro and macro) were highest in control and loam soils.  相似文献   

20.
Understanding the effects of reclamation treatments on plant community development is an important step in setting realistic indicators and targets for reclamation of upland oil sands sites to forest ecosystems. We examine trends in cover, richness, evenness, and community composition for four cover soil types (clay over overburden, clay over tailings sand, peat‐mineral mix over overburden, and peat‐mineral mix over tailings sand) and natural boreal forests over a 20 year period in the mineable oil sands region of northern Alberta, Canada. Tree, shrub, and nonvascular plant species cover showed similar increases over time for all reclamation treatments, with corresponding declines in forb and graminoid cover with time. These trends resemble those in the natural boreal forests of the region and the trajectory of community development for the reclamation treatments appears to follow typical early successional trends for boreal forests. Species richness and diversity of natural forest differed significantly from reclamation treatments. Nonmetric multidimensional scaling ordination and multi‐response permutation procedure revealed that species composition was not affected by reclamation treatment but clearly differed from natural forest. Analysis of species co‐occurrence indicated random plant community assembly following reclamation, in contrast to a higher proportion of nonrandom plant community assembly in natural forests. Thus, reclaimed plant communities appear to be unstructured through year 20 and assembly is still in progress on these reclaimed sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号