首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Larsson, M., Larsson, C.-M. and Guerrero, M. G. 1985. Photosyntheticnitrogen metabolism in high and low CO2-adapted Scenedesmus.I. Inorganic carbon-dependent O2 evolution, nitrate utilizationand nitrogen recycling.—J. exp Bot. 36: 1373–1386 Scenedesmus obtusiusculus Chod. was grown on an inorganic mediumflushed with either air or air supplemented with 3% CO2. Inair-grown cells, O2 evolution dependent on low, but not high,HCO3 concentrations was strongly inhibited by the carbonicanhydrase inhibitor acetazolamide. Cells grown with 3% CO2 exhibitedlow rates of O2 evolution at low external inorganic C; however,after 30 min in air O2 evolution rates at low inorganic C approachedthose of air-grown cells. These results are compatible withthe view that Scenedesmus develops a ‘CO2 concentratingmechanism’ in air, with carbonic anhydrase as an importantconstituent When 3% CO2-grown cells were subjected to air-level of CO2,just a transient decline in NO3 utilization was observed,but in the presence of acetazolamide the rate of the processdecreased drastically in response to the decrease in the CO2level. In CO2-free air NO3 was taken up at high ratesbut in a deregulated manner, leading to release of NH4+. A portionof the NO3 taken up in the absence of CO2 was apparentlyassimilated Cellular nitrate reductase (NR) activity initially decreasedbut subsequently recovered after a transition from 3% CO2 toair. In the presence of acetazolamide, a persistent decreasein NR activity was observed. Cellular glutamine synthetase (GS)activity increased after transition from 3% CO2 to air, theactivity increase being unaffected by acetazolamide. NH4+ releaseto the medium in the presence of L-methionine-D, L-sulphoximine(MSO) transiently increased in 3% CO2-grown cells in responseto a transfer to air. MSO-induced NH4+ release was in fact higherin air-grown cells than in 3% CO2-grown cells. Glycollate wasinitially released after transition from 3% CO2 to air, butthere was no difference in glycollate release between MSO-treatedand untreated cells. In air-adapted Scenedesmus, N recyclingseems to be of minor importance in comparison to primary N assimilation Key words: CO2-fixation, N recycling, nitrate uptake, Scenedesmus  相似文献   

2.
Mutants deficient in phosphoglycolate phosphatase (PGPase) requireelevated levels of CO2 for growth in the light and cannot growwhen photorespiration occurs. Revertants, namely, double mutantscapable of growth under air without restoration of the missingPGPase activity, might be expected to have secondary mutationsthat reduce or eliminate photorespiration. Nineteen revertantswere selected from a culture of a PGPase-deficient mutant ofChlamydomonas reinhardtii (pgp-1-18-7F) after a second mutagenesisthat involved treatment with 5-fluorodeoxyuridine and ethylmethanesulfonate. There were significant differences in thephotosynthetic affinity for CO2 among revertant cells grownunder 5% CO2. Eight revertants had five times higher photosyntheticaffinity for CO2 than that of wild type 2137 cells grown under5% CO2, resembling air-adapted wild-type cells, whereas fourrevertants had less than half the affinity for CO2 of the wildtype. In all of the revertant cells with higher affinity grownin 5% CO2, the rates of photosynthesis under levels of CO2 belowthose in air were apparently higher than that of the wild type,whereas the rates under CO2-saturating conditions were lowerthan that of wild type, indicating that the efficiency of photosynthesisunder air was significantly improved in these revertants. Inaddition, some revertants had a photosynthetic capacity anda growth rate higher than those of the wild type, without anyincreased photosynthetic affinity for CO2. (Received July 7, 1994; Accepted November 5, 1994)  相似文献   

3.
The photosynthetic characteristics (responses to CO2 and light),ribulose-1,5-bisphosphate carboxylase (Rubisco) properties,and the size and number of cells of the mesophyll of Nicotianatabacum L. leaves of genotypes selected for survival at lowatmospheric CO2 concentrations are described. When grown inthe greenhouse with nutrient solutions, the total dry matterproduction of the selected genotypes was 23% greater than thatof the parent genotype; this increase was related to a greaternumber of mesophyll cells of smaller size in the selected plantscompared to the parent. However, it was not related to changesin the photosynthetic characteristics nor to Rubisco properties.These results suggest that the increased dry matter accumulationof the selected genotypes is not due to a reduction in photorespirationnor an increase in the CO2 assimilation rates. Rather, the selectionof haploid tobacco plantlets in low CO2 has resulted in plantswith greater leaf area (shown in previous work), due to theproduction of more cells of smaller size and to lower respirationrates per unit of leaf dry mass (previous work), thus increasinglight capture, reducing the loss of assimilates and increasingtotal plant dry matter production. Key words: Photosynthesis, ribulose-1,5-bisphosphate carboxylase, leaf anatomy, tobacco, genotypes  相似文献   

4.
In Dunaliella tertiolecta, D. bioculata and D. viridis the activitiesof phosphoenolpyruvate carboxylase and carbonic anhydrase werehigher in the cells grown in ordinary air (low-CO2 cells) thanin those grown in air enriched with 1–5% CO2 (high-CO2cells), whereas in Porphyridium cruentum R-1 there was no differencein phosphoenolpyruvate carboxylase activity between these twotypes of cells. Apparent Km(NaHCO3) values for photosynthesisin low-CO2 cells of all species tested were smaller than thosein high-CO2 cells. Most of the 14C was incorporated into 3-phosphoglycerate,sugar mono- and di-phosphates during the initial periods ofphotosynthetic NaH14CO3 indicating that both types of cellsin D. tertiolecta are C3 plants. (Received May 27, 1985; Accepted June 25, 1985)  相似文献   

5.
Regulation of transport of dissolved inorganic carbon (DIC)in response to CO2 concentration in the external medium hasbeen compared in two closely-related green algae, Chlorellaellipsoidea and Chlorella saccharophila. C. ellipsoidea, whengrown in high CO2, had reduced activities of both CO2 and transport and DIC transport activitieswere increased after the cells had acclimated to air. However,high CO2-grown C. saccharophila had a comparable level of photosyntheticaffinity for DIC to that of air-grown C. ellipsoidea and thiswas accompanied by a capacity to accumulate high internal concentrationsof DIC. The high photosynthetic affinity and the high intracellularDIC accumulation did not change in cells grown in air exceptthat the occurrence of external carbonic anhydrase (CA) in air-grownC. saccharophila stimulated the intracellular DIC accumulationin the absence of added CA. These data indicate that activeDIC transport is constitutively expressed in C. saccharophila,presumably because this alga is insensitive to the repressiveeffect of high CO2 on DIC transport. This strongly supportsthe existence of a direct sensing mechanism for external CO2in Chlorella species, but also indicates that external CA isregulated independently of DIC transport in Chlorella species. Key words: Carbonic anhydrase, Chlorella, CO2-insensitive, DIC transport, wild type  相似文献   

6.
The affinity for NaHCO3 (CO2) in photosynthesis of Anabaenavariabilis ATCC 29413 was much higher in the cells grown underordinary air (low-CO2 cells) than in those grown in air enrichedwith 2–4% CO2 (high-CO2 cells) (pH 8.0, 25?C). Ethoxyzolamide(50 µM) increased the Km(NaHCO3 in low-CO2 cells aboutnine times (from 14.3 to 125), while the maximum rate of photosynthesisdecreased about 20%. When high-CO2 cells were transferred tolow-CO2 conditions, carbonic anhydrase (CA) activity increased,while Km(NaHCO3) in photosynthesis decreased from 140 to 30µM within about 5 h. The addition of CA to the suspensionof both high- and low-CO2 cells enhanced the rates of photosyntheticO2 evolution under CO2-limiting conditions. The rate of 14CO2fixation was much faster than that of H14CO3 fixation.The former reaction was greatly suppressed, while the latterwas enhanced by the addition of CA. These results indicate thatthe active species of inorganic carbon utilized for photosynthesiswas free CO2 irrespective of the CO2 concentration given duringgrowth. It is suggested that CA plays an active role in increasingthe affinity for CO2 in photosynthesis of low-CO2 cells of thisblue-green alga. (Received January 24, 1984; Accepted October 22, 1984)  相似文献   

7.
The maximum rate of photosynthetic 14CO2 fixation (Vmax) aswell as the concentration of CO2 at which the rate of photosynthetic14CO2 fixation attains one-half its maximum velocity (Km) inChlorella vulgaris 11h cells was strongly dependent on the concentrationof CO2 continuously provided during the algal growth. The Vmax (µmoles 14CO2 fixed/ml pcv?min) and Km (% CO2)of the algal cells which had been grown in air containing 4%CO2 (by volume) were ca. 10 and 0.15–0.17, while thosein the cells which had been grown in ordinary air (containing0.04% CO2) were 7 and 0.05–0.06, respectively. When the concentration of CO2 in the bubbling gas was loweredfrom 4 to 0.04% during the algal growth, their photosynthetickinetics attained the respective lower steady levels after 5–10hr. On the other hand, when the photosynthetic kinetics weredetermined 24 hr after raising the concentration of CO2 from0.04 to 4%, the Vmax and Km-values were found to have alreadyattained the respective higher levels. (Received October 15, 1976; )  相似文献   

8.
Carbonic anhydrase (EC 4.2.1.1 [EC] ; CA) was purified by affinitychromatography from cells of the unicellular green alga Chlamydomonasreinhardtii which had been grown photoautotrophically in ordinaryair. Antiserum raised in rabbit against this purified CA crossreactedwith Chlamydomonas CA but not with spinach leaf CA nor bovineerythrocyte CA. When the CO2 concentration provided to the algalcells was decreased from 4% to the ordinary air level (0.04%),CA activity and the content of CA protein determined by theimmunodiffusion test showed parallel increases. In contrast,when the CO2 concentration was raised from air level to 4% CO2CA activity and its content expressed on the basis of culturevolume remained rather constant. These results indicate thatsynthesis of the CA protein is induced when the CO2 concentrationis lowered from 4 to 0.04% during algal growth. On the otherhand, the synthesis of CA stops when CO2 concentration is raisedfrom air level to 4%. (Received June 30, 1984; Accepted October 8, 1984)  相似文献   

9.
Plants of Phaseolus vulgaris were grown from seed in open-topgrowth chambers at the present (P, 350 µmol mol–1)atmospheric CO2 concentration and at an elevated (E, 700 µmolmol–1) CO2 concentration, and at low (L, without additionalnutrient solution) and high (H, with additional nutrient solution)nutrient supply for 28 d The effects of CO2 and nutrient availabilitywere examined on growth, morphological and biochemical characteristics Leaf area and dry mass were significantly increased by CO2 enrichmentand by high nutrient supply Stomatal density, stomatal indexand epidermal cell density were not affected by elevated CO2concentration or by nutrient supply Leaf thickness respondedpositively to CO2 increasing particularly in mesophyll areaas a result of cell enlargement Intercellular air spaces inthe mesophyll decreased slightly in plants grown in elevatedCO2 Leaf chlorophyll content per unit area or dry mass was significantlylower in elevated CO2 grown plants and increased significantlywith increasing nutrient availability The content of reducingcarbohydrates of leaves, stem, and roots was not affected byCO2 but was significantly increased by nutrient addition inall plant parts Starch content in leaves and stem was significantlyincreased by elevated CO2 concentration and by high nutrientsupply Phaseolus vulgaris, elevated atmospheric CO2, CO2-nutrient interaction, stomatal density, leaf anatomy, chlorophyll, carbohydrates, starch  相似文献   

10.
To examine the effects of a doubled atmospheric CO2 concentrationand other aspects of global climate change on a common CAM speciesnative to the Sonoran Desert, Agave deserti was grown under370 and 750 µmol CO2 mol–1 air and gas exchangewas measured under various environmental conditions. Doublingthe CO2 concentration increased daily net CO2 uptake by 49%throughout the 17 months and decreased daily transpiration by24%, leading to a 110% increase in water-use efficiency. Underthe doubled CO2 concentration, the activity of ribulose-1,5-bisphosphatecarboxylase/oxygenase (Rubisco) was 11% lower, phosphoenolpyruvatecarboxylase was 34% lower, and the activated:total ratio forRubisco was 25% greater than under the current CO2 concentration.Less leaf epicuticular wax occurred on plants under the doubledCO2 concentration, which decreased the reflectance of photosyntheticphoton flux (PPF); the chlorophyll content per unit leaf areawas also less. The enhancement of daily net CO2 uptake by doublingthe CO2 concentration increased when the PPF was decreased below25 mol m–2 d–1 when water was withheld, and whenday/night temperatures were below 17/12 C. More leaves, eachwith a greater surface area, were produced per plant under thedoubled CO2 concentration. The combination of increased totalleaf surface area and increased daily net CO2 uptake led toan 88% stimulation of dry mass accumulation under the doubledCO2 concentration. A rising atmospheric CO2 concentration, togetherwith accompanying changes in temperature, precipitation, andPPF, should increase growth and productivity of native populationsof A. deserti. Key words: Crassulacean acid metabolism, gas exchange, global climate change, Sonoran Desert  相似文献   

11.
Agrostis capillaris L.4 Festuca vivipara L. and Poa alpinaL.were grown in outdoor open-top chambers at either ambient (340µmol mol–1) or elevated (680 µmol–1)CO2 for periods from 79 to 189 d. Under these conditions thereis increased growth of A. caplllarls and P. alpina, but reducedgrowth of F. vivipara. Nutrient use efficiency, nutrient productivity(total plant dry weight gain per unit of nutrient) and nutrientallocation of all three grass species were measured in an attemptto understand their individual growth responses further andto determine whether altered nutrient-use efficiencies and productivitiesenable plants exposed to an elevated atmospheric CO2 environmentto overcome potential limitations to growth imposed by soilfertility. Total uptake of nutrients was, in general, greater in plantsof A. capillaris and P. alpina (with the exception of N andK in the latter) when grown at 680 µmol mol–1 CO2.In F. vivipara, however, uptake was considerably reduced inplants grown at the higher CO2 concentration. Overall, a doubling of atmospheric CO2 concentration had littleeffect on the nutrient use efficiency or productivity of A.capillaris. Reductions in tissue nutrient content resulted fromincreased plant growth and not altered nutrient use efficiency.In P. alpina, potassium, magnesium and calcium productivitieswere significantly reduced and photosynthetic nitrogen and phosphorususe efficiencies were doubled at elevated CO2 with respect toplants grown at ambient CO2 F. vivipara grown for 189 d showedthe most marked changes in nutrient use efficiency and nutrientproductivity (on an extracted dry weight basis) when grown atelevated CO2, F. vivipara grown at elevated CO2 however, showedlarge increases in the ratio of non-structural carbohydrateto nitrogen content of leaves and reproductive tissues, indicatinga substantial imbalance between the production and utilizationof assimilate. Key words: Nutrient, allocation, nutrient use efficiency, grasses, nutrient productivity, elevated CO2, cliniate change  相似文献   

12.
The rate of photosynthetic 14CO2 fixation in Chlorella vulgaris11h cells in the presence of 0.55 mM NaH14CO3 at pH 8.0 (20?C)was greatly enhanced by the addition of carbonic anhydrase (CA).However, when air containing 400 ppm 14CO2 was bubbled throughthe algal suspension, the rate of 14CO2 fixation immediatelyafter the start of the bubbling was suppressed by CA. Theseeffects of CA were observed in cells which had been grown inair containing 2% CO2 (high-CO2 cells) as well as those grownin ordinary air (containing 0.04% CO2, low-CO2 cells). We thereforeconcluded that, irrespective of the CO2 concentration givento the algal cells during growth, the active species of inorganiccarbon absorbed by Chlorella cells is free CO2 and they cannotutilize bicarbonate. The effects observed in the high-CO2 cellswere much more pronounced than those in the high-CO2 cells.This difference was accounted for by the difference in the affinityfor CO2 in photosynthesis between the high- and low-CO2 cells. (Received May 19, 1978; )  相似文献   

13.
Affinity for inorganic carbon in photosynthesis of Euglena gracilisZ was higher in the cells grown in ordinary air than in thosegrown in 4% CO2. The cells grown in ordinary air accumulatedinorganic carbon in the cells to the level far in excess ofthat expected from passive diffusion due to pH gradient acrossthe cell surface membrane. (Received April 5, 1986; Accepted June 25, 1986)  相似文献   

14.
Chlorella vulgaris 11h cells grown in air enriched with 4% CO2(high-CO2 cells) had carbonic anhydrase (CA) activity whichwas 20 to 90 times lower than that of algal cells grown in ordinaryair (containing 0.04% CO2, low-CO2 cells). The CO2 concentrationduring growth did not affect either ribulose 1,5-bisphosphate(RuBP) carboxylase activity or its Km for CO2. When high-CO2 cells were transferred to low CO2 conditions,CA activity increased without a lag period, and this increasewas accompanied by an increase in the rate of photosynthetic14CO2 fixation under 14CO2-limiting conditions. On the otherhand, CA activity as well as the rate of photosynthetic 14CO2fixation at low 14CO2 concentrations decreased when low-CO2cells were transferred to high CO2 conditions. Diamox, an inhibitor of CA, at 0.1 mM did not affect photosynthesisof low-CO2 cells at high CO2 concentration (0.5%). Diamox inhibitedphotosynthesis only under low CO2 concentrations, and the lowerthe CO2 concentration, the greater was the inhibition. Consequently,the CO2 concentration at which the rate of photosynthesis attainedone-half its maximum rate (Km) greatly increased in the presenceof this inhibitor. When CO2 concentration was higher than 1%, the photosyntheticrate in low-CO2 cells decreased, while that in high-CO2 cellsincreased. Fractionation of the low-CO2 cells in non-aqueous medium bydensity showed that CA was fractionated in a manner similarto the distribution of chlorophyll and RuBP carboxylase. These observations indicate that CA enhances photosynthesisunder CO2-limiting conditions, but inhibits it at CO2 concentrationshigher than a certain level. The mechanism underlying the aboveregulatory functions of CA is discussed. 1This work was reported at the International Symposium on PhotosyntheticCO2-Assimilation and Photorespiration, Sofia, August, 1977 (18).Requests for reprints should be addressed to S. Miyachi, RadioisotopeCentre, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan. (Received December 11, 1978; )  相似文献   

15.
The cells of Dunaliella tertiolecta grown under ordinary air(low-CO2 cells) had a well developed pyrenoid with many morestarch granules than those grown under air enriched with CO2(high-CO2 cells). The chloroplast was located close to the plasmamembranein low-CO2 cells, while that in high-CO2 cells was located inthe inner area of the cells. Chloroplast envelope was electronicallydenser in low-CO2 cells than in high-CO2 cells, while the oppositeeffect of CO2 was observed for the plasmamembrane. 2On leave from Institute of Biology, University of Novi Sad,Novi Sad, Yugoslavia. (Received November 7, 1985; Accepted March 5, 1986)  相似文献   

16.
Photorespiration rates under air-equilibrated conditions (0.04%CO2 and 21% O2) were measured in Chlamydomonas reinhardtii wild-type2137, a phosphoglycolate-phosphatase-deficient (pgp1) mutantand a suppressor double mutant (7FR2N) derived from the pgp1mutant. In both cells grown under 5% CO2 and adapted air for24 h in the suppressor double mutant, the maximal rate of photorespiration(phosphoglycolate synthesis) was only about half of that ineither the wild type or the pgp1 mutant (18-7F) cells. In theprogeny, the reduced rate of photorespiration was accompaniedby increased photosynthetic affinity for inorganic carbon andthe capacity for growth under air whether accompanied by thepgp1 background or not. Tetrad analyses suggested that thesethree characteristics all resulted from a nuclear single-genemutation at a site unlinked to the pgp1 mutation. The decreasein photorespiration was, however, not due to an increase inthe CO2/O2 relative specificity of ribulose-1,5-bisphosphatecarboxylase/oxygenase of 7FR2N or of any other suppressor doublemutants tested. The relationship between the decrease in therate of photorespiration and the CO2-concentrating mechanismis discussed. 3 Current address: Institute of Botany, Academy of Sciences,Patamdar Shosse, 40, Baku, 370073, Azerbaijan. 4 Current address: Department of Management and InformationScience, Jobu University, 270-1, Shinmachi, Tano, Gunma, 370-1393Japan.  相似文献   

17.
Transfer of algal cells of Chlorella regularis from 3% CO2 inair into ordinary air in the light increased external carbonicanhydrase (CA) activity as well as photosynthetic affinity forCO2 by several-fold within 2 h. Since no noticeable differencewas observed in CA activity between intact cells and cell homogenates,CA seemed to be mainly localized on the cell surface. Changesin CA activity and K?(CO2) of photosynthesis were not observedin the dark. CA induction was 50%-inhibited by incubation with10 µM DCMU during adaptation of high-CO2 cells to air,whereas it was considerably suppressed when high-CO2 cells preincubatedwith DCMU in the light for 6 h or without DCMU in the dark for24 h were used. The change in K?(CO2) of photosynthesis wasonly slightly affected by DCMU. Uncoupler like carbonylcyanide-m-chlorophenyl-hydrazone(CCCP) and inhibitors of mitochondrial respiration (KCN plussalicylhydroxamic acid) suppressed CA induction during adaptationof high-CO2 cells to low CO2 conditions. These results suggest that photosynthesis is not essential forCA induction in Chlorella regularis when some amounts of photosyntheticproducts are previously stored in the cells and respirationis active. A decrease in K?(CO2) of photosynthesis during adaptationfrom high to low CO2 was mostly independent on photosynthesis.However, light is essential for both phenomena. (Received July 16, 1990; Accepted January 21, 1991)  相似文献   

18.
Cells of Dunaliella tertiolecta which had been grown in ordinaryair (low-CO2 cells) had high carbonic anhydrase (CA) activityon the cell surface and mainly utilized HCO3 for photosynthesis.When CA activity on the cell surface was inhibited by Diamoxor subtilisin, the cells utilized CO2. When bovine CA was added,the subtilisin-treated low-CO2 cells utilized mainly HCO3.When grown in air containing 2% CO2, the cells had low CA activityon the cell surface, and preferred CO2 to HCO3. Kineticanalysis of these results indicated that low-CO2 cells of D.tertiolecta absorb CO2 which was converted from HCO3via the CA located on the cell surface. (Received June 29, 1985; Accepted October 9, 1985)  相似文献   

19.
  1. The formation of phycobilin pigments in a blue-green alga Tolypothrixtenuis was investigated with special reference to the effectsof preillumination with colored lights.
  2. It was discoveredthat the algal cells are capable of formingphycobilin pigmentsin the dark, if they have been previouslyilluminated for severalhours in the presence of CO2.
  3. The color of light applied inthe later period of preillumination(chromatic illumination)was found to affect the ratio of phycoerythrinto phycocyaninformed in the subsequent dark period. A greenlight acceleratesthe dark-formation of phycoerythrin, a redlight that of phycocyanin,and the two lights counteractingwith each other in their effects.
  4. These directive effects of the "chromatic illumination" canbe accomplished within a very short period, for instance, in3 minutes if it is preceded by sufficient "preillumination"with an incandescent or day light fluorescent light. The reactionsoccurring during the period of chromatic illumination does notrequire the presence of CO2 and the aerobic condition.
  5. Thealga can be grown heterotrophically when supplied with casaminoacids and glucose. Under such a condition the alga forms phycocyanintogether with chlorophyll and carotenoids, but not phycoerythrin.
  6. On the basis of the results obtained, a tentative scheme forthe biosynthesis of phycobilin pigments in the alga was proposed,assuming the light-induced formation of unknown precursors whichare converted into phycocyanin and phycoerythrin in the subsequentdark period.
(Received July 4, 1960; )  相似文献   

20.
Two methods were used to estimate construction costs for leaves,stems, branches and woody roots of yellow-poplar (LiriodendrontulipiferaL.) trees grown at ambient (35 Pa) and elevated (65Pa) CO2for 2.7 years and trees of white oak (Quercus albaL.)grown at these same CO2partial pressures for 4 years. Samplecombustion in a bomb calorimeter combined with measurementsof ash and nitrogen content provided the primary method of estimatingtissue construction costs (WG; g glucose g-1dry mass). Thesevalues were compared with a second, simpler method in whichcost estimates were derived from tissue ash, carbon and nitrogencontent (VG). Estimates of WGwere lower for leaves, branchesand roots of yellow-poplar and for leaves of white oak grownat elevated compared with ambient CO2partial pressures. TheseCO2-induced differences in WGranged from 3.7% in yellow-poplarroots to 2.1% in white oak leaves. Only in the case of yellow-poplarleaves, however, were differences in VGobserved between CO2treatments.Leaf VGwas 1.46 g glucose g-1dry mass in ambient-grown treescompared with 1.41 g glucose g-1dry mass for CO2-enriched trees.Although paired-estimates of WGand VGclustered about a 1:1 linefor leaves and branches, estimates of VGwere consistently lowerthan WGfor stems and roots. Construction costs per unit leafarea were 95 g glucose m-2for yellow-poplar trees grown at ambientCO2and 106 g glucose m-2for trees grown at elevated CO2partialpressures. No differences in area-based construction costs wereobserved for white oak. Whole-plant energy content was 1220g glucose per tree in ambient-grown white oak compared with2840 g glucose per tree for those grown at elevated CO2partialpressures. These differences were driven largely by CO2-inducedchanges in total biomass. We conclude that while constructioncosts were lower at elevated CO2partial pressures, the magnitudeof this response argues against an increased efficiency of carbonuse in the growth processes of trees exposed to CO2enrichment. Bomb calorimeter; construction costs; elevated CO2; energy allocation; global change; growth respiration; heat of combustion; respiration; Liriodendron tulipifera; Quercus alba  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号