首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Direct injection of sodium-[1-14C]acetate into growing fruits of horse chestnut provides a convenient route to [14C]labelled epicatechin and procyanidins.  相似文献   

2.
N-Ethylmaleimide (MalNEt) binds covalently and without specificity to accessible sulfhydryl residues in proteins. In some cases specificity has been imposed on this reaction by manipulating reaction conditions, yielding information concerning both enzyme mechanism and the identity of specific proteins (for example C.F. Fox and E.P. Kennedy (1965) Proc. Natl. Acad. Sci. U.S. 54, 891–899) and R.E. McCarty and J. Fagan (1973) Biochemistry 12, 1503–1507). We have examined the effects of MalNEt on the active accumulation of nine amino acids by Escherichia coli strains ML 308-225 and DL 54. Whole cells have been used in order that transport systems both dependent on and independent of periplasmic binding proteins could be studied under various conditions of energy supply for transport. Our results suggest that the systems transporting ornithine, phenylalanine and proline are those most likely to undergo inactivation by direct reaction of MalNEt with the transport apparatus, rather than merely via side effects such as interruption of their energy supply. The inhibition of proline transport is specifically enhanced by the presence of proline, competitive inhibitors of proline transport, or carbonylcyanide p-trifluoromethoxyphenylhydrazone during MalNEt treatment. The other eight systems tested showed no analogous effects.  相似文献   

3.
Escherichia coli strain AN710 possesses only the PIT system for phosphate transport. Membrane vesicles from this strain, which contain phosphate internally, perform exchange and active transport of phosphate. The energy for active transport is supplied by the respiratory chain with ascorbate-phenazine methosulphate as electron donor. To a lesser extent also the oxidation of d-lactate energizes phosphate transport; the oxidation of succinate is only marginally effective. Phosphate transport is driven by the proton-motive force and in particular by the pH gradient across the membrane. This view is supported by the observation that phosphate transport is stimulated by valinomycin, inhibited by nigericin and abolished by the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Neither inhibitor affects phosphate exchange. The phosphate analogue arsenate inhibits both the exchange reaction and active transport. Both processes are stimulated by K+ and Mg2+, the highest activities being observed with both ions present.Membrane vesicles have also been isolated from Escherichia coli K10, a strain which possesses only a functional PST phosphate transport system. These vesicles perform neither exchange nor active transport of phosphate, although active transport of amino acids is observed in the presence of ascorbate-phenazine methosulphate or d-lactate.  相似文献   

4.
U-14C-phenylalanine and 3-14C-cinnamic acid were fed to detached Polygonum leaves through the cut petioles and to the bases of detached wheat leaves. After feeding, the leaves were divided into basal, middle and terminal segments; for each treatment of each plant more than 80% of the total radioactivity incorporated remained in the basal segment. The distribution of radioactivity between ethanol-soluble and insoluble fractions in each segment was examined. The basal segments contained more insoluble radioactivity than the terminal ones; the differences were far more marked for both plants when cinnamate rather than phenylalanine was administered. In view of the gross differences in distribution of radioactivity between the basal and terminal segments of each leaf, it is concluded that basal infusion of precursors is not the most suitable technique for studies of phenolic biosynthesis.  相似文献   

5.
Active transport of thiamin (vitamin B1) into Escherichia coli occurs through a member of the superfamily of transporters known as ATP-binding cassette (ABC) transporters. Although it was demonstrated that the sulfhydryl-specific modifier N-ethylmaleimide (NEM) inhibited thiamin transport, the exact mechanism of this inhibition is unknown. Therefore, we have carried out a kinetic analysis of thiamin transport to determine the mechanism of inhibition by NEM. Thiamin transport in vivo exhibits Michaelis-Menten kinetics with KM=15 nM and Vmax=46 U mg−1. Treatment of intact E. coli KG33 with saturating NEM exhibited apparent noncompetitive inhibition, decreasing Vmax by approximately 50% without effecting KM or the apparent first-order rate constant (kobsd). Apparent noncompetitive inhibition is consistent with an irreversible covalent modification of a cysteine(s) that is critical for the transport process. A primary amino acid analysis of the subunits of the thiamin permease combined with our kinetic analysis suggests that inhibition of thiamin transport by NEM is different from other ABC transporters and occurs at the level of protein-protein interactions between the membrane-bound carrier protein and the ATPase subunit.  相似文献   

6.
J.R. Hanson  J. Hawker 《Phytochemistry》1973,12(5):1073-1075
A combination of a chemical and a microbiological method is described for the preparation of [14C]-gibberellic acid.  相似文献   

7.
Incorporation of leucine and changes in different protein fractions have been studied during Sorghum grain development. Most of the label from the injected leucine-[14C] was found in glutelin and residue fraction towards later stages of maturity. The label in albumin, globulin and prolamin decreased with a concomitant increase in label in glutelin and residue proteins. The concentration of lysine, aspartic acid and glycine decreased while that of leucine, proline, alanine, tyrosine, phenylalanine, and cystine increased during grain development. Increase in serine, methionine, valine and isoleucine was only marginal. The proportion of glutamic acid was high at all stages of grain development. Glutelin fraction resolved into two peaks on gel chromatography, only one of which with higher MW was labelled, while in albumin both the peaks were found to be labelled. Tannin content also increased during grain development.  相似文献   

8.
Rat anterior hemipituitaries incubated in vitro rapidly take up and incorporate into protein D-[6-3H]-glucosamine · HCl, D-[1-14C]mannose and L-[G-3H]fucose. The newly labeled protein was only slowly released into a Krebs-Ringer bicarbonate incubation medium. Glucosamine- or mannose-labeled protein was barely detectable in the medium after a 30–60 min incubation whereas about 4% of all fucose-labeled protein had already been released into the incubation medium by 30 min. Puromycin · 2HCl (1 mM) inhibited incorporation of glucosamine or mannose into protein to 40% or less of control values within 30 min; fucose incorporation was not significantly inhibited before 45 min. Acid hydrolysis followed by amino acid analysis of glucosamine-labeled protein yielded significant amounts of label in glucosamine, galactosamine and apparent glucosamine-degradation products but no significant amount of label in any amino acid.  相似文献   

9.
The transport of [14C]Gly-Pro was examined using a mutant of Salmonella typhimurium (strain TN87) deficient in an X-Pro dipeptidase and an X-Pro-Y iminopeptidase. The dipeptide was taken up by one saturable transport system having a Km of 5.3 · 10?7M and a V of 1.4 nmol/mg dry wt cell per min. The uptake of Gly-Pro was not inhibited by amino acids or tripeptides and the transport system exhibited a rather broad side chain specificity for dipeptides. Dipeptides containing hydrophobic residues were the most potent inhibitors of this dipeptide transport system exhibiting Ki values between 10?8 and 10?7 M. In contrast, dipeptides containing glycine residues were particularly weak inhibitors. Finally, Gly-Pro was found to be in the intact form inside the cell and was concentrated more than 1000-fold.  相似文献   

10.
The [14C]deoxyglucose [Sokoloff et al., J. Neurochem. 28, 897-916 (1977)] and [6-14C]glucose [Hawkins et al., Am. J. Physiol. 248, C170-C176 (1985)] quantitative autoradiographic methods were used to measure regional brain glucose utilization in awake rats. The spatial resolution and qualitative appearance of the autoradiograms were similar. In resting animals, there was no significant difference between the two methods among 18 gray and three white matter structures over a fourfold range in glucose utilization rates (coefficient of correlation = 0.97). In rats given increasing frequencies of photoflash visual stimulation, the two methods gave different results for glucose utilization within visual pathways. The linearity of the metabolic response was studied in the superior colliculus using an on-off checkerboard stimulus between 0 and 33 Hz. The greatest increment in activity occurred between 0 and 4 Hz stimulation with both methods, probably representing recruitment of neuronal elements into activity. Above 4 Hz, there was a progressive increase in labeling with [14C]deoxyglucose up to 1.7 times control at 33 Hz. With [6-14C]-glucose, there was no further increment in change above a 30% increase seen at 4 Hz. Measurement of tissue glucose revealed no drop in the visually stimulated structures compared to control. We interpret these results to indicate that, with increasing rates of physiological activity, the products of deoxyglucose metabolism accumulate progressively, but the products of glucose metabolism are removed from brain in 10 min.  相似文献   

11.
12.
Etiolated barley leaves when exposed to light desaturate oleate-[14C] to linoleate. The production of substantial amounts of radioactive linolenate was found only in very young, tightly rolled leaves. In oleate-[14C] pulse experiments, radioactive linolenate first appeared in phosphatidylcholine (PC) and only after a lag period did it begin to accumulate in monogalactosyldiacylglycerol (MGDG). The results indicate that in young, immature barley leaves linolenate is synthesized from oleate on the parent lipid, PC, and is then transferred to MGDG.  相似文献   

13.
14.
Abstract: Production of [14C]acetylcholine and 14CO2 was examined by using tissue prisms from neocortex, hippocampus, and striatum from rats aged approximately 5 months, 13 months, and 27 months. [14C]Acetylcholine synthesis in the striatum showed highly significant decreases with age for measurements in the presence of both 5 m m - and 31 m m -K+, contrasting with the lack of significant change in 14CO2 production in this region. The neocortex and hippocampus showed only small changes, especially when comparison was made between 13-month and senescent animals. Measurements of the release of [14C]acetylcholine and influence of atropine on this release confirmed the relative stability with age of the cholinergic system in the neocortex.  相似文献   

15.
16.
Rats were intravenously injected with 10μCi of [U-14C]deoxyglucose (DG) or [U-14C]fluorodeoxyglucose (FDG) and sacrificed by microwave irradiation 4, 45 and 240 min later. Fluorodeoxyglucose phosphate (FDGP) accumulated at a significantly greater rate than did deoxyglucose phosphate (DGP) in brain. Loss of the phosphorylated compounds from brain between 45 and 240 min after administration was similar. The per cent of radioactivity in non-phosphorylated compounds was lower with FDG as tracer at all times after injection. The probable basis for the difference in rate of phosphorylation of the two compounds is a difference in the kinetic properties of rat brain hexokinase with FDG and DG as substrates.The principal use of these isotopes is for studies of regional glucose utilization in brain. In the rat, our data indicate that FDG has two advantages over DG for such studies. Since FDGP accumulates in brain at about 150% the rate of DGP, the amounts (and costs) of isotope can be reduced by up to one third with FDG as tracer. The more rapid decrease in background of non-phosphorylated FDG potentially allows the study of shorter periods of time in autoradiographic work. These considerations apply to both qualitative and quantitative studies of glucose utilization by rat brain. For quantitative work, however, the constants necessary to convert rates of FDG phosphorylation to rates of glucose phosphorylation by rat brain have yet to be determined.  相似文献   

17.
Tylophora indica plants have been shown to contain phenanthroindolizidine alkaloids of the tylophorine type. Cinnamic acid-[2-14C]was incorporated efficiently into these alkaloids supporting the hypothesis that ring A and C-10 and C-6$?of tylophorine are derived from phenylalanine.  相似文献   

18.
19.
The radioactive precursor, [3?3H]oleanolic acid-3-O-mono-[14C]glucoside was administrated to isolated cells obtained from the leaves of Calendula officinalis. The radioactivity of the precursor was incorporated into fractions containing free oleanolic acid, individual glucosides, glucuronide F and other glucuronides. The ratio of 3H: 14C radioactivity in these fractions indicated that glucosides were formed in a process involving direct glycosylation of the precursor, whereas the glucuronides were formed from oleanolic acid released by hydrolysis of the precursor. Dynamics curves showed that glucoside II formed by direct glycosylation of the precursor was intensively transformed to other derivatives.  相似文献   

20.
To gain insight into secondary structure and backbone dynamics, we have recorded 13C NMR spectra of [3-13C]Ala-, [1-13C]Val-labeled Escherichia coli diacylglycerol kinase (DGK), using cross-polarization-magic angle spinning (CP-MAS) and single-pulse excitation with dipolar decoupled-magic angle spinning (DD-MAS) methods. DGK was either solubilized in n-decyl-β-maltoside (DM) micelle or integrated into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers. Surprisingly, the 13C NMR spectra were broadened to yield rather featureless peaks at physiological temperatures, both in DM solution or lipid bilayers at liquid crystalline phase, due to interference of motional frequencies of DGK with frequencies of magic angle spinning (MAS) or proton decoupling (104 or 105 Hz, respectively). In gel phase lipids, however, up to six distinct 13C NMR peaks were well-resolved due to lowered fluctuation frequencies (<105 Hz) for the transmembrane region, the amphipathic α-helices and loops. While DGK can be tightly packed in gel phase lipids, DGK is less tightly packed at physiological temperatures, where it becomes more mobile. The fact that the enzymatic activity is low under conditions where motion is restricted and high when conformational fluctuations can occur suggests that acquisition of low frequency backbone motions, on the microsecond to millisecond time scale, may facilitate the efficient enzymatic activity of DGK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号