首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Summary Six newSalmonella types isolated in Ghana are described.S. volta, 11: 4: 1,z13, z28 was isolated from a swine;S.agona 4,12: fgs:—,S.wa, 16: b: 1,5S.technimani, 28: c: z6 andS.tafo, 1, 4 12, 27: z35: 1,7 were isolated from cattle;S.mampong, 13,22: z35: 1,6, was isolated from a lizzard.  相似文献   

7.
8.
Salmonella enterica subsp. enterica comprises a number of serovars, many of which pose an epidemiological threat to humans and are a worldwide cause of morbidity and mortality. Most reported food infection outbreaks involve the serovars Salmonella Enteritidis and Salmonella Typhimurium. Rapid identification to determine the primary sources of the bacterial contamination is important to the improvement of public health. In recent years, many DNA-based techniques have been applied to genotype Salmonella. Herein, we report the use of a manual TRS-PCR approach for the differentiation of the Salmonella enterica subspecies enterica serovars in a single-tube assay. One hundred seventy Salmonella strains were examined in this work. These consisted of serovars S. Enteritidis, S. Typhimurium, S. Infantis, S. Virchow, S. Hadar, S. Newport and S. Anatum. Five of the TRS-primers, N6(GTG)4, N6(CAC)4, N6(CGG)4, N6(CCG)4 and N6(CTG)4, perfectly distinguished the S. Enteritidis and S. Typhimurium serovars, and the N6(GTG)4 primer additionally grouped the other five frequently isolated serovars. In our opinion, the TRS-PCR methodology could be recommended for a quick and simple DNA-based test for inter-serovar discrimination of Salmonella strains.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
The ascomycetes Candida albicans, Saccharomyces cerevisiae and Scheffersomyces stipitis metabolize the pentose sugar xylose very differently. S. cerevisiae fails to grow on xylose, while C. albicans can grow, and S. stipitis can both grow and ferment xylose to ethanol. However, all three species contain highly similar genes that encode potential xylose reductases and xylitol dehydrogenases required to convert xylose to xylulose, and xylulose supports the growth of all three fungi. We have created C. albicans strains deleted for the xylose reductase gene GRE3, the xylitol dehydrogenase gene XYL2, as well as the gre3 xyl2 double mutant. As expected, all the mutant strains cannot grow on xylose, while the single gre3 mutant can grow on xylitol. The gre3 and xyl2 mutants are efficiently complemented by the XYL1 and XYL2 from S. stipitis. Intriguingly, the S. cerevisiae GRE3 gene can complement the Cagre3 mutant, while the ScSOR1 gene can complement the Caxyl2 mutant, showing that S. cerevisiae contains the enzymatic capacity for converting xylose to xylulose. In addition, the gre3 xyl2 double mutant of C. albicans is effectively rescued by the xylose isomerase (XI) gene of either Piromyces or Orpinomyces, suggesting that the XI provides an alternative to the missing oxido-reductase functions in the mutant required for the xylose-xylulose conversion. Overall this work suggests that C. albicans strains engineered to lack essential steps for xylose metabolism can provide a platform for the analysis of xylose metabolism enzymes from a variety of species, and confirms that S. cerevisiae has the genetic potential to convert xylose to xylulose, although non-engineered strains cannot proliferate on xylose as the sole carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号