首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Among our transfer RNA-dependent growth mutants, one, HAK88, was found that carries an altered elongation factor Ts. The activity of mutant EFTs to bind GDP to EFTu, or to form the ternary complex (aminoacyl-tRNA-EFTu-GTP) is thermolabile. The effect of magnesium on the formation of EFTu-GDP from the EFTu-EFTs complex of HAK8 shows that a four to fivefold increase of the duplex formation occurs when the magnesium concentration is increased from 10?6m to 10?2m at 0 °C and at 41 °C. However, at higher temperatures, formation of the binary EFTu-GDP from the EFTu-EFTs complex of HAK88 is depressed, even at 10?3m to 10?2m-magnesium. The binding of GDP to the wild-type or mutant EFTu-EFTs complex at 0 °C and 42 °C indicates that the formation of EFTu-GDP is inhibited at 42 °C only when mutant complex is used for the assay. Binding of GTP to complete bacteriophage Qβ replicase (which is known to contain EFTs) formed in phage-infected HAK88 is also inhibited at 42 °C.  相似文献   

2.
Three-dimensional cryomaps have been reconstructed for tRNA-ribosome complexes in pre- and posttranslocational states at 17-A resolution. The positions of tRNAs in the A and P sites in the pretranslocational complexes and in the P and E sites in the posttranslocational complexes have been determined. Of these, the P-site tRNA position is the same as seen earlier in the initiation-like fMet-tRNA(f)(Met)-ribosome complex, where it was visualized with high accuracy. Now, the positions of the A- and E-site tRNAs are determined with similar accuracy. The positions of the CCA end of the tRNAs at the A site are different before and after peptide bond formation. The relative positions of anticodons of P- and E-site tRNAs in the posttranslocational state are such that a codon-anticodon interaction at the E site appears feasible.  相似文献   

3.
In Escherichia coli cultures maximally inhibited with chloramphenicol, formation of polypeptides still continued at a slow, constant rate for at least 90 min. The rate of leucine incorporation was reduced to 0.5%, but methionine was only reduced to 2%, suggesting that chains are normally initiated with methionine but are prematurely released at a short chain length. Consistent with this possibility was the distribution of the products on Sephadex columns: a range of peptides longer than 4 and shorter than 60 to 70 residues was seen. Less than 10% of the peptides broke down during a chase with cold amino acids, and during continuous labeling they accumulated progressively. On the average, one peptide was formed per ribosome every 5 min. Peptide synthesis in the presence of chloramphenicol was still dependent on ribosome translocation; it stopped in a mutant with an inactivated temperature-sensitive elongation factor G. But even in the absence of translocation, new messenger ribonucleic acid (mRNA) chains were found joined to one or a few ribosomes. The chains had a size distribution comparable to that of mRNA from polyribosomes of growing cells. They were stabilized for an average time of about 5 min, but were more rapidly degraded after puromycin was added to the cells. This suggests that stabilization may be related to the average time spent by a ribosome on an mRNA chain, with or without polypeptide formation.  相似文献   

4.
5.
Clustering of tRNA cistrons in Escherichia coli DNA   总被引:1,自引:0,他引:1  
Characterization of tRNA:DNA hybrids reveals that many, perhaps most, of the tRNA genes in E. coli DNA are clustered. Density and double-isotope measurements show that 3–4 molecules of tRNA can hybridize with DNA fragments that are only 4–5 times larger than a mature tRNA. Treatment of the hybrids with a single-strand-specific endonuclease results in the solubilization of 30–35% of the DNA and the formation of monocistronic hybrids.  相似文献   

6.
Two types of aspartyl-tRNA synthetase exist: the discriminating enzyme (D-AspRS) forms only Asp-tRNA(Asp), while the nondiscriminating one (ND-AspRS) also synthesizes Asp-tRNA(Asn), a required intermediate in protein synthesis in many organisms (but not in Escherichia coli). On the basis of the E. coli trpA34 missense mutant transformed with heterologous ND-aspS genes, we developed a system with which to measure the in vivo formation of Asp-tRNA(Asn) and its acceptance by elongation factor EF-Tu. While large amounts of Asp-tRNA(Asn) are detrimental to E. coli, smaller amounts support protein synthesis and allow the formation of up to 38% of the wild-type level of missense-suppressed tryptophan synthetase.  相似文献   

7.
Cell elongation in strains of Escherichia coli.   总被引:1,自引:2,他引:1  
  相似文献   

8.
Glutathione (GSH) plays an important role in bacterial cells, participating in maintenance of redox balance in the cytoplasm and in defense against many toxic compounds and stresses. In this study we demonstrate that in aerobic, exponentially growing Escherichia coli culture endogenous reduced glutathione undergoes continuous transmembrane cycling between the cells and medium. As a result of an establishment of a dynamic balance between GSH efflux and uptake, a constant extracellular concentration of GSH counting per biomass unit is maintained. The magnitude of this concentration strictly depends on external pH. GSH cycling is carried out in respiring cells and disturbed by influences, which change the level of ΔμH(+) and ATP. Export of GSH is modified by phosphate deficiency in the medium.  相似文献   

9.
10.
11.
12.
This report shows the results of the reinvestigation of tRNA phosphorylation in E. coli. The phosphorylation did not occur on suppressor seryl-tRNA but occurred on other tRNA species. The activity of tRNA phosphorylation was found in E. coli extracts and partially purified. On DEAE-Sephadex A50 and PAGE gel, the phosphorylated-tRNA showed a pattern different from that the natural suppressor serine tRNA.  相似文献   

13.
14.
Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase (DMAPP-tRNA transferase) catalyzes the first step in the biosynthesis of the hypermodified A37 residue in tRNAs that read codons beginning with uridine. The mechanism of the enzyme-catalyzed reaction was studied by isotope trapping, pre-steady-state rapid quench, and single turnover experiments. Isotope trapping indicated that the enzyme.tRNA complex is catalytically competent, whereas the enzyme.DMAPP complex is not. The results are consistent with an ordered sequential mechanism for substrate binding where tRNA binds first. The association and dissociation rate constants for the enzyme.tRNA binary complex are 1. 15+/-0.33x10(7) M(-1) s(-1) and 0.06+/-0.01 s(-1), respectively. Addition of DMAPP gives an enzyme.tRNA.DMAPP ternary complex in rapid equilibrium with the binary complex and DMAPP. Rapid quench studies yielded a linear profile (k(cat)=0.36+/-0.01 s(-1)) with no evidence for buildup of enzyme-bound product. Product release from DMAPP-tRNA transferase is therefore not rate-limiting. The Michaelis constant for tRNA and the equilibrium dissociation constant for DMAPP calculated from the individual rate constants determined here are consistent with values obtained from a steady-state kinetic analysis.  相似文献   

15.
16.
Here we demonstrate a new regulatory mechanism for tRNA processing in Escherichia coli whereby RNase T and RNase PH, the two primary 3′ → 5′ exonucleases involved in the final step of 3′-end maturation, compete with poly(A) polymerase I (PAP I) for tRNA precursors in wild-type cells. In the absence of both RNase T and RNase PH, there is a >30-fold increase of PAP I-dependent poly(A) tails that are ≤10 nt in length coupled with a 2.3- to 4.2-fold decrease in the level of aminoacylated tRNAs and a >2-fold decrease in growth rate. Only 7 out of 86 tRNAs are not regulated by this mechanism and are also not substrates for RNase T, RNase PH or PAP I. Surprisingly, neither PNPase nor RNase II has any effect on tRNA poly(A) tail length. Our data suggest that the polyadenylation of tRNAs by PAP I likely proceeds in a distributive fashion unlike what is observed with mRNAs.  相似文献   

17.
Polypeptide binding of Escherichia coli FtsH (HflB)   总被引:3,自引:0,他引:3  
The Escherichia coli FtsH protein is a membrane-bound and ATP-dependent protease. In this study, we describe ATP-dependent conformational changes in FtsH as well as a polypeptide binding ability of this protein. A 33 kDa segment of FtsH became trypsin resistant in the presence of ATP. ATP and ATPγS prevented self-aggregation of detergent-solubilized FtsH-His6-Myc at 37°C, again suggesting that the binding of ATP induces a conformational change in FtsH. Affinity chromatography showed that FtsH-His6-Myc can associate with denatured alkaline phosphatase (PhoA) but not with the native enzyme. Denatured PhoA also prevented the aggregation of FtsH, and these two proteins co-sedimented through a sucrose gradient. Binding between FtsH-His6-Myc and detergent-solubilized SecY was also demonstrated. Although FtsH-bound SecY was processed further for ATP-dependent proteolysis, FtsH-bound PhoA was not. Thus, FtsH association with denatured PhoA is uncoupled from proteolysis. Overproduction of FtsH significantly increased the cytoplasmic localization of the PhoA moiety of a MalF–PhoA hybrid protein, in which a charged residue had been introduced into a transmembrane segment. Thus, denatured PhoA binding of FtsH may also occur in vivo .  相似文献   

18.
tRNA binding sites of ribosomes from Escherichia coli   总被引:6,自引:0,他引:6  
70S tight-couple ribosomes from Escherichia coli were studied with respect to activity and number of tRNA binding sites. The nitrocellulose filtration and puromycin assays were used both in a direct manner and in the form of a competition binding assay, the latter allowing an unambiguous determination of the fraction of ribosomes being active in tRNA binding. It was found that, in the presence of poly(U), the active ribosomes bound two molecules of N-AcPhe-tRNAPhe, one in the P and the other in the A site, at Mg2+ concentrations between 6 and 20 mM. A third binding site in addition to P and A sites was observed for deacylated tRNAPhe. At Mg2+ concentrations of 10 mM and below, the occupancy of the additional site was very low. Dissociation of tRNA from this site was found to be rather fast, as compared to both P and A sites. These results suggest that the additional site during translocation functions as an exit site, to which deacylated tRNA is transiently bound before leaving the ribosome. Since tRNA binding to this site did not require the presence of poly(U), a function of exit site bound tRNA in the fixation of the mRNA appears unlikely. Both the affinity and stability of binding to the additional site were found lower for the heterologous tRNAPhe from yeast as compared to the homologous one. This difference possibly indicates some specificity of the E. coli ribosome for tRNAs from the same organism.  相似文献   

19.
tRNA recognition site of Escherichia coli methionyl-tRNA synthetase   总被引:5,自引:0,他引:5  
O Leon  L H Schulman 《Biochemistry》1987,26(17):5416-5422
We have previously shown that anticodon bases are essential for specific recognition of tRNA substrates by Escherichia coli methionyl-tRNA synthetase (MetRS) [Schulman, L. H., & Pelka, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6755-6759] and that the enzyme tightly binds to C34 at the wobble position of E. coli initiator methionine tRNA (tRNAfMet) [Pelka, H., & Schulman, L. H. (1986) Biochemistry 25, 4450-4456]. We have also previously demonstrated that an affinity labeling derivative of tRNAfMet can be quantitatively cross-linked to the tRNA binding site of MetRS [Valenzuela, D., & Schulman, L. H. (1986) Biochemistry 25, 4555-4561]. Here, we have determined the site in MetRS which is cross-linked to the anticodon of tRNAfMet, as well as the location of four additional cross-links. Only a single peptide, containing Lys465, is covalently coupled to C34, indicating that the recognition site for the anticodon is close to this sequence in the three-dimensional structure of MetRS. The D loop at one corner of the tRNA molecule is cross-linked to three peptides, containing Lys402, Lys439, and Lys596. The 5' terminus of the tRNA is cross-linked to Lys640, near the carboxy terminus of the enzyme. Since the 3' end of tRNAfMet is positioned close to the active site in the N-terminal domain [Hountondji, C., Blanquet, S., & Lederer, F. (1985) Biochemistry 24, 1175-1180], this result indicates that the carboxy ends of the two polypeptide chains of native dimeric MetRS are folded back toward the N-terminal domain of each subunit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号