首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The catalytically competent active-site structure of a true acylenzyme reaction intermediate of TEM-1 beta-lactamase formed with the kinetically specific spin-labeled substrate 6-N-(2,2,5,5-tetramethyl-1-oxypyrrolinyl-3-carboxyl)-penicillanic acid isolated under cryoenzymologic conditions has been determined by angle-selected electron nuclear double resonance (ENDOR) spectroscopy. Cryoenzymologic experiments with use of the chromophoric substrate 6-N-[3-(2-furanyl)-propen-2-oyl]-penicillanic acid showed that the acylenzyme reaction intermediate could be stabilized in the -35 to -75 degrees C range with a half-life suitably long to allow freeze-quenching of the reaction species for ENDOR studies while a noncovalent Michaelis complex could be optically identified at temperatures only below -70 degrees C. The wild-type, Glu166Asn, Glu240Cys, and Met272Cys mutant forms of the mature enzyme were overexpressed in perdeuterated minimal medium to allow detection and assignment of proton resonances specific for the substrate and chemically modified amino acid residues in the active site. From analysis of the dependence of the ENDOR spectra on the setting of the static laboratory magnetic field H0, the dipolar contributions to the principal hyperfine coupling components were estimated to calculate the separations between the unpaired electron of the nitroxyl group and isotopically identified nuclei. These electron-nucleus distances were applied as constraints to assign the conformation of the substrate in the active site and of amino acid side chains by molecular modeling. Of special interest was that the ENDOR spectra revealed a water molecule sequestered in the active site of the acylenzyme of the wild-type protein that was not detected in the deacylation impaired Glu166Asn mutant. On the basis of the X-ray structure of the enzyme, the ENDOR distance constraints placed this water molecule within hydrogen-bonding distance to the carboxylate side chain of glutamate-166 as if it were poised for nucleophilic attack of the scissile ester bond. The ENDOR results provide experimental evidence of glutamate-166 in its functional role as the general base catalyst in the wild-type enzyme for hydrolytic breakdown of the acylenzyme reaction intermediate of TEM-1 beta-lactamase.  相似文献   

2.
Anderson DE  Peters RJ  Wilk B  Agard DA 《Biochemistry》1999,38(15):4728-4735
The bacterial alpha-lytic protease (alphaLP) is synthesized as a precursor containing a large N-terminal pro region (Pro) transiently required for correct folding of the protease [Silen, J. L., and Agard, D. A. (1989) Nature 341, 462-464]. Upon folding, the precursor is autocatalyticly cleaved to yield a tight-binding inhibitory complex of the pro region and the fully folded protease (Pro/alphaLP). An in vitro purification and refolding protocol has been developed for production of the disulfide-bonded precursor. A combination of spectroscopic approaches have been used to compare the structure and stability of the precursor with either the Pro/alphaLP complex or isolated Pro. The precursor and complex have significant similarities in secondary structure but some differences in tertiary structure, as well as a dramatic difference in stability. Correlations with isolated Pro suggest that the pro region part of the precursor is fully folded and acts to stabilize and structure the alphaLP region. Precursor folding is shown to be biphasic with the fast phase matching the rate of pro region folding. Further, the rate-limiting step in oxidative folding is formation of the disulfide bonds and autocatalytic processing occurs rapidly thereafter. These studies suggests a model in which the pro region folds first and catalyzes folding of the protease domain, forming the active site and finally causing autocatalytic cleavage of the bond separating pro region and protease. This last processing step is critical as it allows the protease N-terminus to rearrange, providing the majority of net stabilization of the product Pro/alphaLP complex.  相似文献   

3.
Recombinant wild-type protease of human immunodeficiency virus, type [(HIV-1) expressed in E. coli was purified by pepstatin A affinity chromatography. An 88-fold purification was achieved giving a protease preparation with a specific enzymatic activity of approximately 3700 pmol/min/μg. Two proteolytically inactive HIV-1 mutant proteases (Arg-87 → Lys; Asn-88 → Glu) were found to bind to pepstatin A agarose, and they were purified as the wild-type protease. A third mutant protease (Arg-87 → Glu) was apparently unable to bind to pepstatin A under similar conditions. Binding to pepstatin A indicates the binding ability of the substrate binding site and the ability to form dimers. These features may be used to purify and to characterize other mutated HIV-1 proteases.  相似文献   

4.
A method is described to purify recombinant HIV-1 protease from soluble extracts of Escherichia coli. The isolation involves QAE-Sepharose anion exchange chromatography, hexyl agarose hydrophobic interaction chromatography, MonoS cation exchange chromatography, and Superose 6 size exclusion chromatography. Approximately 100 micrograms of protease was obtained from 18 g E. coli paste. The protein was judged to be homogeneous due to the presence of a single band on a silver-stained SDS polyacrylamide gel.  相似文献   

5.
Molecular dynamics simulations have been carried out based on the GROMOS force field on the aspartyl protease (PR) of the human immunodeficiency virus HIV-1. The principal simulation treats the HIV-1 PR dimer and 6990 water molecules in a hexagonal prism cell under periodic boundary conditions and was carried out for a trajectory of 100 psec. Corresponding in vacuo simulations, i.e., treating the isolated protein without solvent, were carried out to study the influence of solvent on the simulation. The results indicate that including waters explicitly in the simulation results in a model considerably closer to the crystal structure than when solvent is neglected. Detailed conformational and helicoidal analysis was performed on the solvated form to determine the exact nature of the dynamical model and the exact points of agreement and disagreement with the crystal structure. The calculated dynamical model was further elucidated by means of studies of the time evolution of the cross-correlation coefficients for atomic displacements of the atoms comprising the protein backbone. The cross-correlation analysis revealed significant aspects of structure originating uniquely in the dynamical motions of the molecule. In particular, an unanticipated through-space, domain-domain correlation was found between the mobile flap region covering the active site and a remote regions of the structure, which collectively act somewhat like a molecular cantilever. The significance of these results is discussed with respect to the inactivation of the protease by site-specific mutagenesis, and in the design of inhibitors.  相似文献   

6.
Many anaerobic bacteria fix CO2 via the acetyl-CoA pathway. Carbon monoxide dehydrogenase (CODH), a key enzyme in the pathway, condenses a methyl group, a carbonyl group from CO, CO2, or the carboxyl group of pyruvate, and CoA to form acetyl-CoA. When treated with CO, CODH exhibits an EPR signal which results from an organometallic complex containing nickel, at least 3 iron, and CO and has been referred to as the NiFeC signal. Although this EPR signal has been presumed to be the spectroscopic signature of the enzyme-bound C-1 precursor of the carbonyl group of acetyl-CoA, its catalytic relevance had not been rigorously studied. We have demonstrated the catalytic competence of this NiFeC species by showing that the rate of formation of the NiFeC EPR signal is faster than the rate of an isotope exchange reaction between CO and acetyl-CoA, a partial reaction in the overall synthesis. Generation of the NiFeC signal in the absence of CO by acetyl-CoA has been demonstrated and requires a one-electron reduction at a midpoint potential of -541 mV versus the standard hydrogen electrode. In addition, we have observed and characterized an isotope exchange reaction between the carbonyl group of acetyl-CoA and the carbonyl group of the NiFeC complex, indicating that the C in the NiFeC complex is in the form of CO. These combined results demonstrate that the NiFeCO complex exhibits the characteristics expected of the precursor of the carbonyl group of acetyl-CoA.  相似文献   

7.
8.
Even though more than 200 three-dimensional structures of HIV-1 protease complexed to a variety of inhibitors are available in the Protein Data Bank; very few structures of unliganded protein have been determined. We have recently solved structures of unliganded HIV-1 protease tethered dimer mutants to resolutions of 1.9 A and 2.1 A, and have found that the flaps assume closed-flap conformation even in the absence of any bound ligand. We report comparison of the unliganded closed-flap structure with structures of HIV-1 protease inhibitor complexes with a view to accurately identifying structural changes that the ligand can induce on binding to HIV-1 protease in the crystal. These studies reveal that the least flexible region present in the active site of HIV-1 protease need not also be the least adaptable to external stress, thus highlighting the conceptual difference between flexibility and adaptability of proteins in general.  相似文献   

9.
CtpA, which is classified as a novel type of serine protease with a Ser/Lys catalytic dyad, is responsible for the C-terminal processing of precursor D1 protein (pD1) of the photosystem II reaction center, a process that is indispensable for the integration of water-splitting machinery in photosynthesis. In this study, overexpression in Escherichia coli and one-step purification of spinach CtpA were carried out to analyze the characteristics of this new type of protease and to elucidate the molecular interactions in the C-terminal processing of pD1 on the thylakoid membrane. The successful accumulation of functional CtpA in E. coli may argue against the possibility, based on homology to E. coli Tsp, that the enzyme is involved in the degradation of incomplete proteins in chloroplasts, e.g. by utilizing the ssrA-tagging system. Analysis using a synthetic pD1 oligopeptide demonstrated that the enzymatic properties (including substrate recognition) of overexpressed CtpA with an extra sequence of GSHMLE at the N terminus were indistinguishable from those of the native enzyme. CtpA was insensitive to penem, which has been shown to inhibit some Ser/Lys-type proteases, suggesting that the catalytic center of CtpA is quite unique. By using the substrate in different molecular environments (i.e. synthetic pD1 oligopeptide in solution and pD1 in photosystem II-enriched thylakoid membrane), we observed a dramatic difference in the pH profile and affinity for the substrate, suggesting the presence of a specific interaction of CtpA with a factor(s) that modulates the pH dependence of proteolytic action in response to physiological conditions.  相似文献   

10.
A computational geometry technique based on Delaunay tessellation of protein structure, represented by C(alpha) atoms, is used to study effects of single residue mutations on sequence-structure compatibility in HIV-1 protease. Profiles of residue scores derived from the four-body statistical potential are constructed for all 1881 mutants of the HIV-1 protease monomer and compared with the profile of the wild-type protein. The profiles for an isolated monomer of HIV-1 protease and the identical monomer in a dimeric state with an inhibitor are analyzed to elucidate changes to structural stability. Protease residues shown to undergo the greatest impact are those forming the dimer interface and flap region, as well as those known to be involved in inhibitor binding.  相似文献   

11.
Ziegler-Nicoli et al. [Ziegler-Nicoli, M., Meighen, E. A., & Hastings, J. W. (1974) J. Biol. Chem. 249, 2385-2392] reported that a highly reactive cysteinyl residue on the alpha subunit of bacterial luciferase resides in or near the flavin binding site such that the enzyme-flavin complex is protected from inactivation by alkylating reagents. These authors also observed that injection of reduced flavin mononucleotide (FMNH2) into an air-equilibrated solution of enzyme protected the enzyme from alkylation for much longer than the lifetime of the 4a-peroxydihydroflavin intermediate resulting from reaction of enzyme-bound FMNH2 with O2. Two related explanations were offered: either the product flavin mononucleotide dissociated from the enzyme much more slowly following a catalytic cycle than would be predicted from the Kd measured by equilibrium binding or the enzyme itself, without bound flavin, was in an altered conformational state in which the thiol was less reactive following a catalytic cycle. Either explanation involves a slow return of the enzyme to its initial state following a catalytic cycle. We have investigated this phenomenon in more detail and found that rapid removal of the flavin from the enzyme by chromatography following catalytic turnover did not return the enzyme to its original state of susceptibility to either alkylating reagents or proteolytic enzymes. The flavin-free enzyme returned to the susceptible conformation with a half-time of ca. 25 min at 0 degree C. Inactivation of the enzyme at intermediate times of relaxation by either a proteolytic enzyme or an alkylating reagent showed biphasic kinetics, indicative of a mixture of the protected and susceptible forms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
In AIDS therapy, attempts have been made to inhibit the virus-encoded enzymes, e.g. HIV-1 protease, using active site-directed inhibitors. This approach is questionable, however, due to virus mutations and the high toxicity of the drugs. An alternative method to inhibit the dimeric HIV protease is the targeting of the interface region of the protease subunits in order to prevent subunit dimerization and enzyme activity. This approach should be less prone to inactivation by mutation. A list of improved 'dimerization inhibitors' of HIV-1 protease is presented. The main structural features are a short 'interface' peptide segment, including non-natural amino acids, and an aliphatic N-terminal blocking group. The high inhibitory power of some of the lipopeptides [e.g. palmitoyl-Tyr-Glu-Leu-OH, palmitoyl-Tyr-Glu-(L-thyronine)-OH, palmitoyl-Tyr-Glu-(L-biphenyl-alanine)-OH] with low nanomolar Ki values in the enzyme test suggests that mimetics with good bio-availability can be derived for AIDS therapy.  相似文献   

14.
P K Sehajpal  A Basu  J S Ogiste  H M Lander 《Biochemistry》1999,38(40):13407-13413
Nitric oxide (*NO) is a short-lived free radical with many functions including vasoregulation, synaptic plasticity, and immune modulation and has recently been associated with AIDS pathology. Various pathophysiological conditions, such as viral infection, trigger inducible nitric oxide synthase (iNOS) to synthesize NO in the cell. NO-derived species can react with thiols of proteins and form nitrosothiol adducts. HIV-1 protease (HIV-PR) contains two cysteine residues, Cys67 and Cys95, which are believed to serve a regulatory function. We have found that HIV-PR is inactivated by nitric oxide produced in vitro by NO donors and by iNOS. Sodium nitroprusside inhibited HIV-PR by 70%, and S-nitroso-N-acetylpenicillamine completely inhibited the enzyme. Furthermore, iNOS generated sufficient NO to inhibit HIV-PR activity by almost 90%. This inactivation was reversed by the addition of reducing agents. Treatment of HIV-PR with NO donors and ritonavir (a competitive peptide inhibitor) indicates that NO exerts its effect through a site independent of the active site of HIV-PR. Using electrospray ionization mass spectrometry, we found that NO forms S-nitrosothiols on Cys67 and Cys95 of HIV-PR which directly correlate with a loss of activity. These data indicate that NO may suppress HIV-1 replication by directly inhibiting HIV-PR.  相似文献   

15.
The mature human immunodeficiency virus type 1 protease rapidly folds into an enzymatically active stable dimer, exhibiting an intricate interplay between structure formation and dimerization. We now show by NMR and sedimentation equilibrium studies that a mutant protease containing the R87K substitution (PR(R87K)) within the highly conserved Gly(86)-Arg(87)-Asn(88) sequence forms a monomer with a fold similar to a single subunit of the dimer. However, binding of the inhibitor DMP323 to PR(R87K) produces a stable dimer complex. Based on the crystal structure and our NMR results, we postulate that loss of specific interactions involving the side chain of Arg(87) destabilizes PR(R87K) by perturbing the inner C-terminal beta-sheet (residues 96-99 from each monomer), a region that is sandwiched between the two beta-strands formed by the N-terminal residues (residues 1-4) in the mature protease. We systematically examined the folding, dimerization, and catalytic activities of mutant proteases comprising deletions of either one of the terminal regions (residues 1-4 or 96-99) or both. Although both N- and C-terminal beta-strands were found to contribute to dimer stability, our results indicate that the inner C-terminal strands are absolutely essential for dimer formation. Knowledge of the monomer fold and regions critical for dimerization may aid in the rational design of novel inhibitors of the protease to overcome the problem of drug resistance.  相似文献   

16.
Dimerization inhibitors of HIV-1 protease   总被引:2,自引:0,他引:2  
By targeting the highly conserved antiparallel beta-sheet formed by the interdigitation of the N- and C-terminal strands of each monomer, dimerization inhibitors of HIV-1 protease may be useful to overcome the drug resistance observed with current active-site directed antiproteases. Sequestration of the monomer by the inhibitor (or disruption of the dimer interface) prevents the correct assembly of the inactive monomers to active enzyme. Strategies for the design of drugs targeting the dimer interface are described. Various dimerization inhibitors are reported including N- and C-terminal mimetics, lipopeptides and cross-linked interface peptides.  相似文献   

17.
West Nile Virus (WNV) is a mosquito-borne flavivirus with a rapidly expanding global distribution. Infection causes severe neurological disease and fatalities in both human and animal hosts. The West Nile viral protease (NS2B-NS3) is essential for post-translational processing in host-infected cells of a viral polypeptide precursor into structural and functional viral proteins, and its inhibition could represent a potential treatment for viral infections. This article describes the design, expression, and enzymatic characterization of a catalytically active recombinant WNV protease, consisting of a 40-residue component of cofactor NS2B tethered via a noncleavable nonapeptide (G4SG4) to the N-terminal 184 residues of NS3. A chromogenic assay using synthetic para-nitroanilide (pNA) hexapeptide substrates was used to identify optimal enzyme-processing conditions (pH 9.5, I <0.1 m, 30% glycerol, 1 mm CHAPS), preferred substrate cleavage sites, and the first competitive inhibitor (Ac-FASGKR-H, IC50 approximately 1 microm). A putative three-dimensional structure of WNV protease, created through homology modeling based on the crystal structures of Dengue-2 and Hepatitis C NS3 viral proteases, provides some valuable insights for structure-based design of potent and selective inhibitors of WNV protease.  相似文献   

18.
Each catalytic turnover by aerobic ribonucleotide reductase requires the assembly of the two proteins, R1 (alpha(2)) and R2 (beta(2)), to produce deoxyribonucleotides for DNA synthesis. The R2 protein forms a tight dimer, whereas the strength of the R1 dimer differs between organisms, being monomeric in mouse R1 and dimeric in Escherichia coli. We have used the known E. coli R1 structure as a framework for design of eight different mutations that affect the helices and proximal loops that comprise the dimer interaction area. Mutations in loop residues did not affect dimerization, whereas mutations in the helices had very drastic effects on the interaction resulting in monomeric proteins with very low or no activity. The monomeric N238A protein formed an interesting exception, because it unexpectedly was able to reduce ribonucleotides with a comparatively high capacity. Gel filtration studies revealed that N238A was able to dimerize when bound by both substrate and effector, a result in accordance with the monomeric R1 protein from mouse. The effects of the N238A mutation, fit well with the notion that E. coli protein R1 has a comparatively small dimer interaction surface in relation to its size, and the results illustrate the stabilization effects of substrates and effectors in the dimerization process. The identification of key residues in the dimerization process and the fact that there is little sequence identity between the interaction areas of the mammalian and the prokaryotic enzymes may be of importance in drug design, similar to the strategy used in treatment of HSV infection.  相似文献   

19.
The human immunodeficiency virus protease (HIV-1 PR) was expressed both in the yeast Saccharomyces cerevisiae and in mammalian cells. Inducible expression of HIV-1 PR arrested yeast growth, which was followed by cell lysis. The lytic phenotype included loss of plasma membrane integrity and cell wall breakage leading to the release of cell content to the medium. Given that neither poliovirus 2A protease nor 2BC protein, both being highly toxic for S. cerevisiae, were able to produce similar effects, it seems that this lytic phenotype is specific of HIV-1 PR. Drastic alterations in membrane permeability preceded the lysis in yeast expressing HIV-1 PR. Cell killing and lysis provoked by HIV-1 PR were also observed in mammalian cells. Thus, COS7 cells expressing the protease showed increased plasma membrane permeability and underwent lysis by necrosis with no signs of apoptosis. Strikingly, the morphological alterations induced by HIV-1 PR in yeast and mammalian cells were similar in many aspects. To our knowledge, this is the first report of a viral protein with such an activity. These findings contribute to the present knowledge on HIV-1-induced cytopathogenesis.  相似文献   

20.
Affinity purification of the HIV-1 protease   总被引:5,自引:0,他引:5  
An inhibitor of the HIV-1 protease has been employed in the generation of a resin which allows the rapid purification of this enzyme. A peptide substrate analogue, H2N-Ser-Gln-Asn-(Phe-psi[CH2N]-Pro)-Ile-Val-Gln-OH, was coupled to agarose resin. The HIV-1 protease was expressed in E. coli and the supernatant from lysed cells was passed through the affinity resin. Active HIV-1 protease was then eluted with a buffer change to pH 10 and 2 M NaCl. Final purification to a homogeneous preparation, capable of crystallization, was achieved with hydrophobic interaction chromatography. Solutions containing HIV-1 protease bound to competitive inhibitors do not bind to the column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号