首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of landscape zones and grass species by roan antelope, a species threatened with local extirpation within South Africa's Kruger National Park, were investigated. Plant‐based observations of grazing were made within a 300 ha enclosure in the roan range, where 40 roan antelope were confined at high density in the absence of other grazers. The study spanned the dry seasons of two years, one with average rainfall and one with low rainfall. We recorded changes in the extent of grazing of different grass species, height differences between grazed and ungrazed tillers and intensity of cropping per tuft. In the average year, the grazing pressure in the bottomland grassland was twice that in the upland savanna, with two tall grass species bearing the brunt of the grazing through the dry season. Two highly palatable upland grasses were also extensively grazed by the mid dry season. In the dry year, the extent of grazing in the upland exceeded that in the bottomland, and several upland grass species little used the previous year became heavily grazed. Roan antelope appeared to be separated ecologically from more common grazers by their selective use of tall grasses growing in the drainage line grassland during the critical dry season months. However, their grazing expansion into the upland savanna during the dry year potentially brought them into competition with these grazers. Nevertheless, their population performance did not suffer despite the high‐density conditions. Heightened predation pressure following an influx of these grazers, rather than resource limitation, appeared to be primarily responsible for the drastic decline of this species in the park.  相似文献   

2.
The stress‐gradient hypothesis predicts a higher frequency of facilitative interactions as resource limitation increases. Under severe resource limitation, it has been suggested that facilitation may revert to competition, and identifying the presence as well as determining the magnitude of this shift is important for predicting the effect of climate change on biodiversity and plant community dynamics. In this study, we perform a meta‐analysis to compare temporal differences of species diversity and productivity under a nurse plant (Retama sphaerocarpa) with varying annual rainfall quantity to test the effect of water limitation on facilitation. Furthermore, we assess spatial differences in the herbaceous community under nurse plants in situ during a year with below‐average rainfall. We found evidence that severe rainfall deficit reduced species diversity and plant productivity under nurse plants relative to open areas. Our results indicate that the switch from facilitation to competition in response to rainfall quantity is nonlinear. The magnitude of this switch depended on the aspect around the nurse plant. Hotter south aspects under nurse plants resulted in negative effects on beneficiary species, while the north aspect still showed facilitation. Combined, these results emphasize the importance of spatial heterogeneity under nurse plants for mediating species loss under reduced precipitation, as predicted by future climate change scenarios. However, the decreased water availability expected under climate change will likely reduce overall facilitation and limit the role of nurse plants as refugia, amplifying biodiversity loss.  相似文献   

3.
Pamela Graff  Martín R. Aguiar 《Oikos》2011,120(7):1023-1030
Since many arid ecosystems are overstocked with domestic herbivores, biotic stress could have a stronger influence in modulating the balance of species interactions than expected from the stress gradient hypothesis (SGH). Here we tested a priori predictions about the effect of grazing on species interactions and fine scale spatial structure of grasses in water‐limited ecosystems. We used detailed vegetation mapping and spatial analysis, and performed a field experiment where the direct and indirect components of positive interactions were disentangled to provide evidence of links between process and pattern. We found associational resistance (biotic refuge) to be the dominant process in grazing situations, while competition, instead of direct facilitation, seemed to govern grass spatial patterns when herbivore pressure was relaxed. These results suggest that facilitation between grasses in arid communities may be related to herbivory rather than nurse plant effects. Associational resistance tends to have the strongest effect on spatial aggregation of species at intermediate grazing pressure. Results suggest that contrary to SGH, this physical clustering of species decreased when grazing pressure reached their maximum levels. Positive associations remained significant only when palatability differences between neighbours is large, suggesting that managing stocking rate is a key factor determining the persistence of herbivory refuges. These refuges are potential foci to initiate population recovery of high quality forage species in arid degraded areas.  相似文献   

4.
Outcrops in the southeastern Democratic Republic of the Congo (DRC) are recognized as some of the largest copper–cobalt orebodies in the world. They support a unique vegetation with nearly 600 metallophytes that include rare and endemic species. Mineral exploitation has increased considerably in the region since the 1900s, affecting both environmental and public health. Phytostabilisation of polluted areas represents an opportunity to decrease the bioavailability of heavy metals in the highly polluted soils that result from ore extraction. Such a technique has been successfully implemented near Lubumbashi with the grass Microchloa altera. However, long-term maintenance requires a good understanding of interspecific relationships, such as competition and facilitation. This study tested the establishment success of four herbaceous species from the Katangan Copperbelt by assessing the potential role of Microchloa altera as a nurse species. Two annual and two perennial species were sown in an experiment designed to study the influence of soil amendment and vegetation cover on seedling emergence, growth, and survival. These variables were monitored during the vegetation growing season as well as resprouting success for perennials. Microchloa altera showed a distinct effect on the emergence and survival of annual and perennial species and negatively affected the growth of individuals belonging to both groups of species.  相似文献   

5.
The simultaneous study of the temporal dynamics of foraging behaviour, diet and seed abundance is essential to assess the way in which resources affect the behaviour and ecology of harvester ants. Here, we evaluate how fluctuations in grass seed abundance during three consecutive growing seasons influenced the foraging behaviour and diet of the harvester ants Pogonomyrmex rastratus, P. mendozanus and P. inermis in the central Monte desert, Argentina. Seed abundance of the most consumed grasses varied greatly through ant activity season, and ants altered their foraging behaviour in response to those changes. Foragers spent more time travelling and searching for food, and their foraging trips took longer during the low seed availability season. Foraging distance was very similar among species and, contrary to our expectations, did not vary between seasons. Foraging success of P. rastratus and P. inermis increased during the high availability season. This matched the seasonal pattern of foraging activity, suggesting that colonies may detect seed abundance and regulate their foraging effort with the rate of forager success. Although grass seeds were the main item in the diet of the three species, P. mendozanus, and to a lesser extent P. rastratus, turned more generalist when grass seeds were scarce. In contrast, P. inermis showed a very narrow diet breadth, only harvesting grass seeds in both seasons. Our results indicate the relevance of seed availability on foraging behaviour of harvester ants, which should be taken into account when predicting and evaluating the effect of ants on seed resources as well as numerical responses of harvester ant populations to the temporal and spatial variations in grass seed abundance.  相似文献   

6.
Competitive relationships among mobile animals may be expressed through dynamically changing spatial relationships over different time frames. Less common species that are apparently inferior competitors may be able to coexist with more abundant species by concentrating in regions of the landscape little utilized by the former at spatio‐temporal scales from annual or seasonal ranges to the specific foraging localities exploited at different stages of the annual cycle. Spatial relationships may be influenced further by dependencies on other resources, predation risks and facilitatory interactions under certain conditions. Our study aimed to determine whether competition with more abundant zebra and buffalo restricted the abundance of sable antelope in a region where these three tall‐grass grazers overlapped in their herd distributions. We tracked the simultaneous movements of animals representing herds of these species over two dry seasons and one wet season using GPS‐GSM collars, and estimated seasonal or monthly range extents and their overlap. We also compared daily separation distances between these animals against the null pattern expected if their movements had been independent, and assessed how prior grazing by buffalo influenced the subsequent use of these localities by sable. The range of the sable herd was mostly separated from the seasonal range of the buffalo herd during the late dry season of 2006 and throughout the dry season of 2007. Seasonal home ranges of zebra herds overlapped partially with the range of the sable herd during most of the year. Even during times when their ranges overlapped, sable were rarely recorded within <1 km of the buffalo herd. Prior grazing by buffalo beyond a threshold level inhibited later use of these localities by sable, but the sable were nevertheless able to exploit places that were little utilized by buffalo at that time. Sable were less able to evade overlap with the small, mobile zebra herds, and hence more vulnerable to competitive exclusion by zebra than by buffalo. Our findings demonstrate how less abundant species can restrict competition from more abundant competitors through dynamic spatial partitioning in regions where their home ranges overlap.  相似文献   

7.
Competition and facilitation between tree individuals are two kinds of non-random processes influencing the structure and functioning of forest communities, but how these two plant-plant interactions change along gradient of resources or environments remains very much a matter of debate. We developed a null model to test the size-distance regression, and assessed the effects of competition and facilitation (including interspecific interactions, intraspecific interactions and overall species interactions) on each adult tree species assemblage [diameter at breast height (dbh) ≥5 cm] across two types of tropical cloud forest with different environmental and resource regimes. The null model test revealed that 17% to 27% tree species had positive dbh-distance correlations while 11% to 19% tree species showed negative dbh-distance correlations within these two forest types, indicating that both competition and facilitation processes existed during the community assembly. The importance of competition for heterospecific species, and the intensity of competition for both heterospecific and overall species increased from high to low resources for all the shared species spanning the two forests. The importance of facilitation for conspecific and overall species, as well as that the intensity of facilitation for both heterospecific and conspecific species increased with increasing low air temperature stress for all the shared species spanning the two forests. Our results show that both competition and facilitation processes simultaneously affect parts of species assemblage in the tropical cloud forests. Moreover, the fact that nearly 50% species assemblage is not detected with our approaches suggest that tree species in these tropical forest systems are assembled with multiple ecological processes, and that there is a need to explore the processes other than the two biotic interactions in further researches.  相似文献   

8.
Positive interactions among plants   总被引:3,自引:0,他引:3  
Experimental evidence for positive interactions, or facilitation, among plants has increased markedly during the last 10 years. Experiments documenting facilitation have been conducted in many diverse ecological systems, which suggests that positive interactions may be fundamental processes in plant communities. Here, I review the evidence for facilitation, the mechanisms by which facilitation operates, and the effects facilitation has on community structure. Facilitative mechanisms may act simultaneously with resource competition or allelopathy, and the overall effect of one species on another may be the product of multiple, complex interactions. Positive interactions may also determine community spatial patterns, permit coexistence, enhance diversity and productivity, and drive community dynamics. Once viewed as anecdotal and idiosyncratic, facilitation is now contributing to a more complete understanding of community structure and dynamics.  相似文献   

9.
Competition, herbivory and their interaction play a significant role in determining the competitive ability and survival of individual plant species. Understanding these processes and interactions can improve the efficacy of biocontrol programs against invasive weeds. Senecio madagascariensis (fireweed) is an invasive weed of South African origin that reduces pastoral productivity and poisons livestock in several countries, notably Australia. Although competitive pastures can suppress the weed’s growth in Australia, its competitive nature is poorly understood in relation to its invasion success. This greenhouse study assessed the growth and reproductive yield of fireweed growing in competition with six native and introduced grasses present in both South Africa and Australia. Since fireweed is a target for biocontrol in Australia, we examined whether its response to grass competition changed with herbivory (simulated by 40% leaf removal). The effect of grass competition and herbivory on the weed’s biomass and floral productivity was examined during a 12‐week pot trial in South Africa. Floral numbers were unaffected by both grass competition and herbivory. Biomass was used to calculate Relative Interaction Indices (RII) to quantify the weed’s competitive or facilitative response. This index compares a specific measurable trait, such as biomass, of fireweed growing alone, to fireweed growing with grass to determine the level of competitive suppression or facilitation resulting from the interaction. Despite the lack of species‐specific effects of grass competition, the presence of grass suppressed fireweed’s foliar, root and whole plant biomass the most when herbivory was absent. With herbivory, fireweed did not suffer from any measurable competitive suppression. This lack of competitive suppression may be due to an induced allelopathic response, given the levels of pyrrolizidine alkaloids common in many Senecio species. Since this result may weaken the case for biocontrol, the weed’s competitive responses should be verified in relation to actual insect herbivory.  相似文献   

10.
Abstract The spatial pattern of dry rainforest and savanna tree species was analysed in a 1.56‐ha plot within an unburnt eucalypt savanna woodland in north Queensland, Australia. Rainforest colonization constituted only 1.3% of the basal area and mostly consisted of individuals less than 3 m high. The distribution of rainforest trees was highly clumped around the large savanna eucalypt trees. Ecological mechanisms generating the clumped distribution are discussed in light of evidence from this study and the literature. Herbaceous biomass was not reduced under trees, suggesting that relief from grass competition has not favoured rainforest colonization under tree crowns. Edaphic facilitation through nutrient enrichment under savanna tree crowns appears to be only minor on the moderate fertility soils of the area. The highly clumped pattern of colonizing dry rainforest may be a consequence of seeds dropped from birds roosting in savanna trees.  相似文献   

11.
Disentangling short- and long-term neighbour effects, using both removal and observational methods within a single experiment, has strongly improved our understanding of the driving mechanisms of plant–plant interactions. However, there has been no attempt to assess two important underlying processes of their changes along gradients, either environmental-severity (changes in target performance without neighbours) or neighbour-traits (changes in performance with neighbours) effects, the former previously shown in alpine communities to be involved in competition and the latter in facilitation. We addressed this goal in an experiment conducted in continental saline depressions (sebkhas) from the Mediterranean arid climate of central Tunisia. We quantified short- and long-term effects of dominant shrubs, transplanting three target grass species in open, nurse and removed-nurse microhabitats of two habitats of different salinity levels in height sebkhas. The design extended greographically from central Tunisia to the Libyan border, 500 km southeastward. We used the relative interaction index to calculate short- and long-term effects before and after the dry summer seasons and environmental-severity and neighbour-trait effects. Short-term effects were slightly negative and long-term effects strongly positive before the dry summer season in the two habitats. Short-term effects switched to positive with increasing drought stress, due to an environmental-severity effect, whereas long-term effects decreased due to a neighbour-trait effect. Salinity did not affect neither short- nor long-term shrub effects. Soil moisture measurements showed that both changes were due to vanishing shrub soil engineering-effects during the summer drought. We conclude that an increase in short-term facilitation with increasing drought stress through time, apparently supporting the stress gradient hypothesis, might be due to a decrease in long-term facilitation. Thus, we recommend using, as much as possible, both the removal and observational methods in experiments assessing changes in plant–plant interactions along stress gradients to avoid wrong conclusions.  相似文献   

12.
Grazing and competition are two main factors shaping range plant communities; however, few studies have investigated their interaction. The current study aimed to investigate the effects of defoliation, competition and their interaction on production of annual grasses in semiarid Mediterranean areas. Competition treatments (absence/presence of neighbors) were combined with three defoliation intensities (0%, 30% and 60%) in a complete factorial design. Competition significantly reduced grass biomass. However, the role of competition was eliminated under heavy defoliation or under dry growth conditions. Defoliation showed variable results on final biomass (FB) and cumulative biomass (CB). While heavy defoliation (60% clipping intensity) reduced grass FB down to 80% during the two growing seasons, light defoliation (30%) significantly increased CB. Results showed that competition may limit the direct effect of defoliation on dominant grass species. Further, the relationship between site productivity and competition effect was best explained by a negative linear model. This hypothesized model may suggest that facilitation and competition alternatively affect grassland communities along a productivity gradient. The results suggest that light grazing may sustain or even enhance grassland productivity. The results also indicated the suitability of annual grass species to re-vegetate degraded rangeland in semi-arid climate. Further, optimum grazing practices to conserve biodiversity of Avena grassland may involve moderate stocking rate.  相似文献   

13.

Backgrounds and aims

Interactions between plants can be both positive and negative, denoting facilitation and competition. Although facilitative effects of having legume neighbours (focus on yield productivity) are well studied, a better mechanistic understanding of how legumes interact with non-legumes in terms of root distribution is needed. We tested the effects of neighbour identity, its spatial location, as well as the effects of plant order of arrival on above and belowground traits and root distribution.

Methods

We performed a rhizotron experiment (4 weeks duration) in which we grew maize alone, with only a legume, only another grass, or with both species and tracked roots of the plant species using green and red fluorescent markers.

Results

Maize grew differently when it had a neighbour, with reduced development when growing with wheat compared to alone. Growing with a legume generally equated to the same outcome as not having a neighbour. Roots grew towards the legume species and away from the wheat. Order of arrival affected aboveground traits to a certain extent, but its effects on maize roots were dependent on spatial location.

Conclusions

Our study provides evidence of facilitation, showing the importance of the identity of the neighbours, together with their spatial location, and how order of arrival can modulate the outcome of these initial interactions.
  相似文献   

14.
Recent years have seen a growing body of evidence showing that plant competition and facilitation usually operate simultaneously to drive population dynamics, community structure and ecosystem functions. However, the potential role of facilitation in spatial patterning of plant populations has rarely been explicitly examined. We used a ‘zone‐of‐influence’ model to explore how facilitation interacts with competition and abiotic stress to determine the spatial patterning of populations during density‐dependent mortality. Model simulations revealed that started with the same clustered pattern, the final pattern of simulated populations depended strongly on the interaction among facilitation, stress level and size‐symmetry of competition. Asymmetric competition consistently led to immediate and non‐random mortality towards regularity, thus rapidly decayed the initially clustered pattern to final patterns of small‐scale regularity and large‐scale randomness. The role of symmetric competition in decaying the clustered pattern increased with abiotic stress because stress‐induced reductions in plants’ growth rates can make individuals in high‐density clusters more likely to die even from symmetric competition. Facilitation played a clear role in counteracting the effect of stress, thus tended to maintain the degree of clustering of the pattern during density‐dependent mortality. This is because the amelioration of harsh conditions by neighboring plants relieved the reductions in plant growth due to competition, thus slowed down and reduced the mortality inside clusters (relative to that outside clusters). Moreover, the effect of facilitation appeared to increase with abiotic stress. Our results indicate that facilitation among neighboring plants should partially be responsible for clustered population spatial patterns observed in stressful environments, even though its contribution relative to other factors (e.g. local dispersal and environmental heterogeneity) remains to be evaluated. In addition, the potential influence of facilitation on self‐thinning trajectory should be explicitly examined in future modeling and experimental studies considering its effects on density‐dependent mortality.  相似文献   

15.
The role of facilitation in the structuring of plant communities has been often demonstrated in environments under high abiotic stress, especially in semi‐arid and arid ecosystems and high elevations. Few studies, however, analysed facilitation in systems that are highly productive and rich in species, which are thought to be theoretically unlikely to demonstrate strong effects of facilitation. Here, we investigate the importance of Eryngium horridum, a rosette species, on the maintenance of plant diversity in subtropical grasslands in southern Brazil. We evaluated facilitation in areas under two different types of management: abandonment and grazing. Plots were established in areas with and without individuals of E. horridum and all species were identified and had their cover estimated. The Relative Neighbour Effect index was calculated in order to verify the presence of competition or facilitation. Our results indicated facilitation in both abandoned and in grazed grasslands, but apparently through different mechanisms. In the first case, the plant's architecture opens the canopy and allows more light to reach small forbs in the grass matrix. In the second case, E. horridum appears to protect more palatable species from herbivores. Otherwise considered an obnoxious species, E. horridum plays an important ecological role in subtropical grasslands in southern Brazil by facilitating other species and consequently, increasing local richness. Areas with this rosette species are important sources of diaspores, which are able to colonize new open sites and thus, maintain biodiversity.  相似文献   

16.
A popular hypothesis for tree and grass coexistence in savannas is that tree seedlings are limited by competition from grasses. However, competition may be important in favourable climatic conditions when abiotic stress is low, whereas facilitation may be more important under stressful conditions. Seasonal and inter-annual fluctuations in abiotic conditions may alter the outcome of tree–grass interactions in savanna systems and contribute to coexistence. We investigated interactions between coolibah (Eucalyptus coolabah) tree seedlings and perennial C4 grasses in semi-arid savannas in eastern Australia in contrasting seasonal conditions. In glasshouse and field experiments, we measured survival and growth of tree seedlings with different densities of C4 grasses across seasons. In warm glasshouse conditions, where water was not limiting, competition from grasses reduced tree seedling growth but did not affect tree survival. In the field, all tree seedlings died in hot dry summer conditions irrespective of grass or shade cover, whereas in winter, facilitation from grasses significantly increased tree seedling survival by ameliorating heat stress and protecting seedlings from herbivory. We demonstrated that interactions between tree seedlings and perennial grasses vary seasonally, and timing of tree germination may determine the importance of facilitation or competition in structuring savanna vegetation because of fluctuations in abiotic stress. Our finding that trees can grow and survive in a dense C4 grass sward contrasts with the common perception that grass competition limits woody plant recruitment in savannas.  相似文献   

17.
Warming increases competition among plant species in alpine communities by ameliorating harsh environmental conditions, such as low temperatures. Grazing, as the main human activity, may mitigate the effect of warming, as previously reported. However, it is critical to refine the effects of warming on biotic interactions among species, for example, by taking the competitive ability of species into consideration. Based on a 10-year warming and grazing experiment in a Tibetan alpine meadow, we evaluated interspecific biotic interactions of dominant and subordinate species, using the approach of interspecific spatial associations. Warming significantly increased competition between subordinate and dominant species as well as among subordinate species, but not among dominant species. Moreover, facilitation of dominant-subordinate species also increased under warming. Simulated rotational grazing had similar effects to warming, with increasing interspecific competition. Our results show that, when studying the effects of warming on biotic interactions among species, it is necessary to characterize different species pairs relative to their competitive ability, and that simulated rotational grazing does not mitigate the effects of warming in the long term. Our results also provide evidence that the spatial pattern of species is a critical mechanism in species coexistence.  相似文献   

18.
Ecosystems provide multiple services upon which humans depend. Understanding the drivers of the ecosystem functions that support these services is therefore important. Much research has investigated how species richness influences functioning, but we lack knowledge of how other community attributes affect ecosystem functioning. Species evenness, species spatial arrangement, and the identity of dominant species are three attributes that could affect ecosystem functioning, by altering the relative abundance of functional traits and the probability of synergistic species interactions such as facilitation and complementary resource use. We tested the effect of these three community attributes and their interactions on ecosystem functions over a growing season, using model grassland communities consisting of three plant species from three functional groups: a grass (Anthoxanthum odoratum), a forb (Plantago lanceolata), and a N-fixing forb (Lotus corniculatus). We measured multiple ecosystem functions that support ecosystem services, including ecosystem gas exchange, water retention, C and N loss in leachates, and plant biomass production. Species evenness and dominant species identity strongly influenced the ecosystem functions measured, but spatial arrangement had few effects. By the end of the growing season, evenness consistently enhanced ecosystem functioning and this effect occurred regardless of dominant species identity. The identity of the dominant species under which the highest level of functioning was attained varied across the growing season. Spatial arrangement had the weakest effect on functioning, but interacted with dominant species identity to affect some functions. Our results highlight the importance of understanding the role of multiple community attributes in driving ecosystem functioning.  相似文献   

19.
Trends in grass pollen season in southern Spain   总被引:2,自引:0,他引:2  
The main characteristics of Poaceae pollen season at 8 sites in Andalusia were studied. Special attention was paid in the trends of grass pollen-season start and peak dates. Moreover, we analyse the intensity of the grass pollen season over the study period as well as potential temporal and spatial patterns in these data. Statistical analysis was performed to determine the possible influence of weather-related parameters on variations in the grass pollen season. Main results show an advance in the start and peak of grass pollen season and an increase in the annual Pollen Index and in the severity of the season (days > 25 pollen grains/m3). The future consequences of these changes in grass phenology could be related with changes in land use and also in pollinosis symptoms due to the higher concentrations recorded but also to the variations on pollen season dates.  相似文献   

20.
The effects of irrigation, nitrogen fertilization, grass competition and clipping were investigated for one growing season at the research farm of the University of Fort Hare in the Eastern Cape Province of South Africa. The aim of the experiment was to assess the short‐term performance of Acacia karroo seedlings under different environmental conditions and the implications of such factors on the long‐term recruitment of plant species in savanna rangelands. There were no significant treatment effects on the survival of A. karroo seedlings. Using stem length and basal diameter as growth parameters, it was observed that irrigation enhanced both variables, while nitrogen fertilization did not have any significant effects. Clipping, grass competition and their interaction greatly suppressed the growth of the seedlings. Clipping increased the mean stem length when they were irrigated and fertilized. Control and fertilized plants had the highest stem length in the absence of grass competition, while grass competition combined with clipping resulted in the lowest stem length in both irrigated and nonirrigated plants. It was concluded that in the presence of grass competition, controlled browsing could be a viable solution to the problem of bush encroachment in savanna rangelands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号