首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Inorganic pyrophosphate:D-fructose-6-phosphate 1-phosphotransferase from mung beans (Phaseolusaureus Roxb.) was activated markedly by D-fructose 2,6-bisphosphate, with a KA of about 50 nM. The enzyme exhibited hyperbolic kinetics both in the absence and presence of the activator. D-Fructose 2,6-bisphosphate (1 μM) decreased the Km for D-fructose 6-phosphate 67-fold (from 20 mM to 0.3 mM) and increased the Vmax 15-fold; these two effects combined to give a 500-fold activation at 0.3 mM D-fructose 6-phosphate. In contrast, ATP:D-fructose 6-phosphate 1-phosphotransferase from the same source was found not to be affected by D-fructose 2,6-bisphosphate.A natural activator for inorganic pyrophosphate:D-fructose 6-phosphate 1-phosphotransferase was isolated from mung-bean extracts and identified as D-fructose 2,6-bisphosphate.  相似文献   

2.
Transformation of tobacco with the potato gene encoding the subunit of pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) in the antisense orientation under the control of the constitutive CaMV 35S promoter, followed by selfing and crossing of the transformants, generated a line of tobacco (5–37) with up to an 85% reduction in PFP activity in the shoot. Transformants containing a sense construct (4-40-91) contained only 1–3% of wild-type PFP, presumably due to co-suppression. Rates of photosynthesis and partitioning between sucrose and starch in source leaves were identical in 4-40-91 transformants and the wild type. In the dark in sink leaves of 4-40-91 transformants, levels of hexose phosphates were up to 50% higher, glycerate-3-phosphate 30% lower and fructose-2,6-bisphosphate threefold higher than in the wild type; inorganic pyrophosphate, pyruvate and the ATP/ADP ratio were unaltered. Low -PFP and wild-type plants did not differ significantly in their rate of growth at 25° C and 200 mol quanta · m–2 · s–1 on full nutrient medium. Growth on limiting phosphate and limiting nitrogen was inhibited identically in the wild type and transformants, and transformants adjusted their shoot/root ratio in an identical manner to the wild type. Differences in fructose-2,6-bisphosphate and glycolytic metabolites between the wild type and transformants were no larger in these suboptimal nutrient conditions, than in optimal conditions. Growth of the wild type and 4-40-91 transformants was inhibited identically at 12° C compared to 25° C. Differences in fructose-2,6-bisphosphate were smaller when the genotypes were compared at 12° C than at 25° C. We conclude that PFP does not play an essential role in photosynthate partitioning in source leaves. During respiratory metabolism in sink leaves it catalyzes a net glycolytic flux, as in potato tubers. However, tobacco seedlings are able to compensate for a large decrease in expression of PFP without loss of growth, or the ability to cope with suboptimal phosphate, nitrogen or temperature.Abbreviations F2,6BP fructose-2,6-bisphosphate - F6P fructose-6-phosphate - G6P glucose-6-phosphate - PFK phosphofructokinase - PFP pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase - 3-PGA glycerate-3-phosphate - PPi inorganic pyrophosphate - PEP phosphoenolpyruvate This work was supported by the Bundesministerium für Forschung and Technologie (M.S, U.S.) and the Canadian Research Council (S.C., D.D). M.P. was supported by a Royal Society Fellowship.  相似文献   

3.
F. D. Macdonald  J. Preiss 《Planta》1986,167(2):240-245
The cytoplasm was identified as the probable location of pyrophosphate-fructose-6-phosphate 1-phosphotransferase (EC 2.7.1.90) in suspension-cultured cells of soybean (Glycine max L.). The characteristics of the partially purified enzyme were investigated. The activity was strongly dependent on the presence of fructose 2,6-bisphosphate and this activator exerted its effects through a dramatic increase in the affinity of the enzyme for its substrates, fructose 6-phosphate and inorganic pyrophosphate. Saturation curves for all substrates were hyperbolic. The apparent molecular weight of the partially purified enzyme was 183000 by gel filtration chromatography and 128000 by sucrose-density-gradient centrifugation. The activation by fructose 2,6-bisphosphate was not accompanied by any measurable change in molecular weight. The possible role of this enzyme in the metabolism of non-photosynthetic sink tissues is discussed.Abbreviations PFP pyrophosphate-fructose-6-phosphate 1-phosphotransferase - Pi phosphate - PPi pyrophosphate  相似文献   

4.
The catalytic direction of pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP; EC 2.7.1.90) in coleoptiles of rice ( Oryza sativa L.) seedlings subjected to anoxia stress is discussed. The stress greatly induced ethanol synthesis and increased activities of alcohol dehydrogenase (ADH; EC 1.1.1.1) and pyruvate decarboxylase (PDC; EC 4.1.1.1) in the coleoptiles, whereas the elevated PDC activity was much lower than the elevated ADH activity, suggesting that PDC may be one of the limiting factors for ethanolic fermentation in rice coleoptiles. Anoxic stress decreased concentrations of fructose 6-phosphate (Fru-6-P) and glucose 6-phosphate, and increased concentration of fructose 1,6-bisphosphate (Fru-1,6-bisP) in the coleoptiles. PFP activity in rice coleoptiles was low in an aerobic condition and increased during the stress, whereas no significant increase was found in ATP:fructose-6-phosphate 1-phosphotransferase (PFK; EC 2.7.1.11) activity in stressed coleoptiles. Fructose 2,6-bisphosphate concentration in rice coleoptiles was increased by the stress and pyrophosphate concentration was above the Km for the forward direction of PFP and was sufficient to inhibit the reverse direction of PFP. Under stress conditions the potential of carbon flux from Fru-6-P toward ethanol through PFK may be much lower than the potential of carbon flux from pyruvate toward ethanol through PDC. These results suggest that PFP may play an important role in maintaining active glycolysis and ethanolic fermentation in rice coleoptiles in anoxia.  相似文献   

5.
The presence of the glycolytic enzymes from hexokinase to pyruvate kinase in plastids of seedling pea (Pisum sativum L.) roots was investigated. The recoveries, latencies and specific activities of each enzyme in different fractions was compared with those of organelle marker enzymes. Tryptic-digestion experiments were performed on each enzyme to determine whether activities were bound within membranes. The results indicate that hexokinase (EC 2.7.1.2) and phosphoglyceromutase (EC 5.4.2.1) are absent from pea root plastids. The possible function of the remaining enzymes is considered.Abbreviations GADPH glyceraldehyde 3-phosphate dehydrogenase - PFK phosphofructokinase - PFP pyrophosphate: fructose 6-phosphate 1-phosphotransferase Bronwen A. Trimming gratefully acknowledges the award of a studentship from the Science and Engineering Research Council  相似文献   

6.
Sulphite at concentrations from 0.5 to 5.0 mM was supplied to illuminated, detached poplar (Populus deltoides Bartr. ex Marsh) leaves via the transpiration stream. Chlorophyll a fluorescence parameters, the contents of fructose-2,6-bisphosphate (Fru2,6BP) and starch, and extractable specific activity of sucrose-phosphate synthase (SPS), sucrose synthase (SuSy), acid invertase (AI), neutral invertase (NI), ATP-dependent fructose-6-phosphate 1-phosphotransferase (PFK) and pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase (PFP) were measured. Chlorophyll fluorescence parameters appeared to be unaffected by sulphite. Application of ≥ 1.0 mM sulphite led to an increase in the content of Fru2,6BP and starch. There was also a decline in the activity of SPS, NI and PFK. On the other hand, the influence of sulphite on the activity of AI and PFP was negligible. Specific activity of SuSy was inhibited by 1.0 and 2.5 mM but activated by 5.0 mM of sulphite. On the basis of the results obtained in the present study, we postulate that sulphite at concentrations ≥ 1.0 mM inhibits primarily sucrose synthesis, favours starch accumulation and has an indirect effect on the sucrolytic activities in poplar leaves.  相似文献   

7.
In the assay of phosphofructokinase (PFK) from endosperm of germinating castor bean (Ricinus communis L.) there is a transient stimulation of initial activity by fructose 2,6-bisphosphate. This activation is due to metabolism of a limited amount of pyrophosphate (a contaminant of commercial ATP) by PPi:fructose 6-phosphate phosphotransferase (PFP), which is present in the extract. Both this activity and the amount of pyrophosphate contamination are sufficient to account for the initial increase in apparent PFK activity. The transient burst of activity is dependent on both of the above factors. Based on studies of a similar hyperactive PFK, others have proposed that PFK and PFP may be interconverted (Balogh et al. 1984 FEBS Lett 169: 287-292). The evidence for such conversions is reinterpreted in the context of the current results.  相似文献   

8.
The distribution of pyrophosphate: fructose 6-phosphate phosphotransferase (PFP) and ATP: fructose-6-phosphate 1-phosphotransferase (PFK) was studied in germinating bean (Phaseolus vulgaris cv Top Crop) seeds. In the cotyledons the PFP activity was comparable with that of PFK. However, in the plumule and radicle plus hypocotyl, PFP activity exceeds that of PFK. Approximately 70 to 90%, depending on the stage of germination, of the total PFP and PFK activities were present in the cotyledons. Highest specific activity of both enzymes, however, occurred in the radicle plus hypocotyl (64-90 nanomoles·min·milligram protein). Fractionation studies indicate that 40% of the total PFK activity was associated with the plastids while PFP is apparently confined to the cytoplasm. The cytosolic isozyme of PFK exhibits hyperbolic kinetics with respect to fructose 6-P and ATP with Km values of 320 and 46 micromolar, respectively. PFP also exhibits hyperbolic kinetics both in the presence and absence of the activator fructose-2,6-P2. The activation is caused by lowering the Km for fructose 6-P from 18 to 1.1 millimolar and that for pyrophosphate (PPi) from 40 to 25 micromolar, respectively. Levels of fructose 2,6-P2 and PPi in the seeds are sufficient to activate PFP and thereby enable a glycolytic role for PFP during germination. However, the fructose 6-P content appears to be well below the Km of PFP for this compound and would therefore preferentially bind to the catalytic site of PFK, which has a lower Km for fructose 6-P. The ATP content appears to be at saturating levels for PFK.  相似文献   

9.
Rice (Oryza sativa) seeds were imbibed for 3 days and the seedlings were further incubated for 8 days in the presence of either air or nitrogen. In aerobiosis, the specific activity of pyrophosphate:fructose 6-phosphate 1-phosphotransferase and that of the ATP-dependent phosphofructokinase increased about fourfold. In anaerobiosis, the specific activity of ATP-dependent phosphofructokinase remained stable, whereas that of pyrophosphate:fructose 6-phosphate 1-phosphotransferase increased as much as in the presence of oxygen and there was also a fourfold increase in the concentration of fructose 2,6-bisphosphate, a potent stimulator of that enzyme. These data suggest a preferential involvement of pyrophosphate:fructose 6-phosphate 1-phosphotransferase rather than of ATP-dependent phosphofructokinase in glycolysis during anaerobiosis.  相似文献   

10.
Three forms of pyrophosphate fructose-6-phosphate 1-phosphotransferase (PFP) were purified from both green and red tomato (Lycopersicon esculentum) fruit: (a) a classical form (designated Q2) containing α- (66 kilodalton) and β- (60 kilodalton) subunits; (b) a form (Q1) containing a β-doublet subunit; and (c) a form (Q0) that appeared to contain a β-singlet subunit. Several lines of evidence suggested that the different forms occur under physiological conditions. Q2 was purified to apparent electrophoretic homogeneity; Q1 and Q0 were highly purified, but not to homogeneity. The distribution of the PFP forms from red (versus green) tomato was: Q2, 29% (90%); Q1, 47% (6%); and Q0, 24% (4%). The major difference distinguishing the red from the green tomato enzymes was the fructose-2,6-bisphosphate (Fru-2,6-P2)-induced change in Km for fructose-6-phosphate (Fru-6-P), the `green forms' showing markedly enhanced affinity on activation (Km decrease of 7-9-fold) and the `red forms' showing either little change (Q0, Q1) or a relatively small (2.5-fold) affinity increase (Q2). The results extend our earlier findings with carrot root to another tissue and indicate that forms of PFP showing low or no affinity increase for Fru 6-P on activation by Fru-2,6-P2 (here Q1 and Q0) are associated with sugar storage, whereas the classical form (Q2), which shows a pronounced affinity increase, is more important for starch storage.  相似文献   

11.
Inorganic pyrophosphate: D-fructose-6-phosphate 1-phosphotransferase was detected in extracts of mung bean sprouts, the first such detection in C3 plants. The enzyme had an absolute requirement for a divalent metal (Mg++) as well as for D-fructose 6-phosphate and inorganic pyrophosphate. An examination of anomalous kinetics revealed that the enzyme was activated by a product of the reaction, D-fructose 1,6-bisphosphate; micromolar concentrations of this effector increased the activity of the enzyme about 20-fold. D-Glucose 1,6-bisphosphate at higher concentrations could substitute for D-fructose 1,6-bisphosphate as an activator, but not as a substrate in the reverse reaction. The enzyme was fully active under conditions wherein ATP: D-fructose-6-phosphate 1-phosphotransferase from the same source was inhibited >99% (e.g., in the presence of 10 μM phosphoenolpyruvate).  相似文献   

12.
Metabolite levels and carbohydrates were investigated in the leaves of tobacco (Nicotiana tabacum L.) and leaves and tubers of potato (Solanum tuberosum L.) plants which had been transformed with pyrophosphatase from Escherichia coli. In tobacco the leaves contained two- to threefold less pyrophosphate than controls and showed a large increase in UDP-glucose, relative to hexose phosphate. There was a large accumulation of sucrose, hexoses and starch, but the soluble sugars increased more than starch. Growth of the stem and roots was inhibited and starch, sucrose and hexoses accumulated. In potato, the leaves contained two- to threefold less pyrophosphate and an increased UDP-glucose/ hexose-phosphate ratio. Sucrose increased and starch decreased. The plants produced a larger number of smaller tubers which contained more sucrose and less starch. The tubers contained threefold higher UDP-glucose, threefold lower hexose-phosphates, glycerate-3-phosphate and phosphoenolpyruvate, and up to sixfold more fructose-2,6-bisphosphatase than the wild-type tubers. It is concluded that removal of pyrophosphate from the cytosol inhibits plant growth. It is discussed how these results provide evidence that sucrose mobilisation via sucrose synthase provides one key site at which pyrophosphate is needed for plant growth, but is certainly not the only site at which pyrophosphate plays a crucial role.Abbreviations Fru2,6bisP fructose-2,6-bisphosphate - Fru6P fructose 6-phosphate - FW fresh weight - Glc1P glucose-1-phosphate - Glc6P glucose-6-phosphate - PEP phosphoenolpyruvate - 3PGA glycerate-3-phosphate - PFK phosphofructokinase - PFP pyrophosphate: fructose-6-phosphate phosphotransferase - Pi inorganic phosphate - PPi inorganic pyrophosphate - UDPGlc UDP-glucose This research was supported by the Deutsche Forschungsgemein-Schaft (SFB 137) and Sandoz AG (T.J., M.H., M.S.) and by the Bundesminister für Forschung und Technologie (U.S., L.W.).  相似文献   

13.
Summary A quantative cytochemical assay for PPi-PFK activity in the presence of Fru-2,6-P2 is described along with its application to determine levels of activity in embryos of Pisum sativum and Avena sativa. The activity of ATP-PFK has also been studied in parallel as have PFK activities during the switch from dormant to non-dormant embryos in Avena sativa. PPi-PFK activity, has been demonstrated in all tissues of Pisum sativum embryos and of Avena sativa embryos including the scutellum and the aleurone layers. The PPi-PFK activity was greater than that of ATP-PFK in both dormant and non-dormant seeds though with only marginally more activity in the dormant as opposed to the non-dormant state.Abbreviations AMP adenosine monophosphate - ATP adenosine triphosphate - Fru-1,6-P2 fructose 1,6-bisphosphate - Fru-2,6-P2 fructose 2,6-bisphosphate - Fru-6-P fructose 6-phosphate - FB Pase 2 fructose 2,6-bisphosphatase (EC 3.1.3.46) - Gl-3-PD glyceraldehyde-3-phosphate dehydrogenase - NAD nicotinamide adenine dinucleotide - NBT nitroblue tetrazolium - PEP phosphoenolpyruvate - PFK 6-phosphofructokinase (EC 2.7.1.11) - PFK2 6-phosphofructo-2-kinase (EC 2.7.1.105) - PPi pyrophosphate - PPi-PFK pyrophosphate: fructose 6-phosphate 1-phosphotransferase (EC 2.7.1.90) - PVA polyvinyl alcohol (G04/140 Wacke Chemical Company)  相似文献   

14.
Turner WL  Plaxton WC 《Planta》2003,217(1):113-121
Pyrophosphate-dependent phosphofructokinase (PFP; EC 2.7.1.90) and two isoforms of ATP-dependent phosphofructokinase (PFK I and PFK II; EC 2.7.1.11) from ripened banana ( Musa cavendishii L. cv. Cavendish) fruits were resolved via hydrophobic interaction fast protein liquid chromatography (FPLC), and further purified using anion-exchange and gel filtration FPLC. PFP was purified 1,158-fold to a final specific activity of 13.9 micromol fructose 1,6-bisphosphate produced (mg protein)(-1) x min(-1). Gel filtration FPLC and immunoblot analyses indicated that this PFP exists as a 490-kDa heterooctomer composed of equal amounts of 66- (alpha) and 60-kDa (beta) subunits. PFP displayed hyperbolic saturation kinetics for fructose 6-phosphate (Fru 6-P), PPi, fructose 1,6-bisphosphate, and Pi ( K(m) values = 32, 9.7, 25, and 410 microM, respectively) in the presence of saturating (5 microM) fructose 2,6-bisphosphate, which elicited a 24-fold enhancement of glycolytic PFP activity ( K(a)=8 nM). PFK I and PFK II were each purified about 350-fold to final specific activities of 5.5-6.0 micromol fructose 1,6-bisphosphate produced (mg protein)(-1) x min(-1). Analytical gel filtration yielded respective native molecular masses of 210 and 160 kDa for PFK I and PFK II. Several properties of PFK I and PFK II were consistent with their respective designation as plastid and cytosolic PFK isozymes. PFK I and PFK II exhibited: (i) pH optima of 8.0 and 7.3, respectively; (ii) hyperbolic saturation kinetics for ATP ( K(m)=34 and 21 microM, respectively); and (iii) sigmoidal saturation kinetics for Fru 6-P ( S0.5=540 and 90 microM, respectively). Allosteric effects of phospho enolpyruvate (PEP) and Pi on the activities of PFP, PFK I, and PFK II were characterized. Increasing concentrations of PEP or Pi progressively disrupted fructose 2,6-bisphosphate binding by PFP. PEP potently inhibited PFK I and to a lesser extent PFK II ( I50=2.3 and 900 microM, respectively), while Pi activated PFK I by reducing its sensitivity to PEP inhibition. Our results are consistent with: (i) the respiratory climacteric being regulated by fine (allosteric) control of pre-existing enzymes; and (ii) primary and secondary glycolytic flux control being exerted at the levels of PEP and Fru 6-P metabolism, respectively.  相似文献   

15.
The glycolytic flux and the regulation of phosphofructokinase (PFK) activity by fructose 2,6-bisphosphate and covalent modification was investigated in isolated ventricles of land snail Helix lucorum perfused with or without serotonin. Serotonin evoked a significant increase in the level of glycolytic intermediates and a threefold increase of glycolytic flux. Studies of saturation curves of PFK for the substrate fructose 6-phosphate at pH similar to intracellular pH of heart muscle showed that serotonin increases enzyme sensitivity to activation by fructose 6-phosphate. Moreover, PFK preparations from ventricles perfused with serotonin exhibited lower K a values for the activators AMP and fructose 2,6-bisphosphate, compared with the enzyme preparations from serotonin-untreated ventricles. The results suggest that PFK was converted to a more active form when exposed to serotonin. In vitro experiments of PFK phosphorylation showed that the conversion of the enzyme to a more active form was possibly due to its phosphorylation by an endogenous cyclic-AMP-dependent protein kinase. The concentration of fructose 2,6-bisphosphate increased in serotonin-treated ventricles and it exerted a synergistic effect with AMP on the activation of PFK. The bound fraction of glycolytic enzymes increased in the serotonin-treated ventricles only after the 4th min of perfusion. The results suggest that the stimulation of glycolytic flux in the ventricles of H. lucorum in the first minutes of perfusion with serotonin was partly due to the activation of PFK via enzyme molecule covalent modification and to increase of fructose 2,6-bisphosphate. Accepted: 8 April 1997  相似文献   

16.
The aim of this work was to discover whether genetic manipulation of 6-phosphofructokinase [EC 2.7.1.11; PFK(ATP)] influenced the rate of respiration of tuber tissue of Solanum tuberosum L. Transgenic plants were produced that contained the coding sequence of the Escherichia coli pfkA gene linked to a patatin promoter. Expression of this chimaeric gene in tubers resulted in a 14to 21-fold increase in the maximum catalytic activity of PFK(ATP) without affecting the activities of the other glycolytic enzymes. Tubers, and aged disks of tuber tissue, from transformed plants showed no more than a 30% fall in the content of hexose 6-monophosphates; the other intermediates of glycolysis increased threeto eightfold. Fructose-2,6-bisphosphate was barely detectable in aged disks of transformed tubers. The relative rates of 14CO2 production from [1-14C]-and [6-14C]-glucose supplied to disks of transformed and control tubers were similar. Oxygen uptake and CO2 production by aged disks of transformed tubers did not differ significantly from those from control tubers. The same was true of CO2 production, in air, and in nitrogen, for tuber tissue. It is concluded that PFK(ATP) does not dominate the control of respiration in potato tubers.Abbreviations Fru2,6bisP fructose-2,6-bisphosphate - FW freshweight - GUS -glucuronidase - PFK(ATP) 6-phosphofructokinase - PFK(PPi) pyrophosphate: fructose-6-phosphate 1-phosphotransferase  相似文献   

17.
Summary The involvement of phosphofructokinase (PFK) in glycolytic control was investigated in the marine peanut worm Sipunculus nudus. Different glycolytic rates prevailed at rest and during functional and environmental anaerobiosis: in active animals glycogen depletion was enhanced by a factor of 120; during hypoxic exposure the glycolytic flux increased only slightly. Determination of the mass action ratio (MAR) revealed PFK as a non-equilibrium enzyme in all three physiological situations. Duirng muscular activity the PFK reaction was shifted towards equilibrium; this might account for the observed increase in glycolytic rate under these conditions. PFK was purified from the body wall muscle of S. nudus. The enzyme was inhibited by physiological ATP concentrations and an acidic pH; adenosine monophosphate (AMP), inorganic phosphate (Pi), and fructose-2,6-bisphosphate (F-2,6-P2) served as activators. PFK activity, determined under simulated cellular conditions of rest and muscular work, agreed well with the glycolytic flux in the respective situations. However, under hypoxia PFK activity surpassed the glycolytic rate, indicating that PFK may not be rate-limiting under these conditions. The results suggest that glycolytic rate in S. nudus is mainly regulated by PFK during rest and activity. Under hypoxic conditions the regulatory function of PFK is less pronounced.Abbreviations ATP, ADP, AMP adenosine tri-, di-, monophosphate - DTT dithiothreitol - EDTA ethylene diaminetetra-acetic acid - F-6-P fructose-6-phosphate - F-1,6-P2 fructose-1,6-bisphosphate - F-2,6-P2 fructose-2,6-bisphosphate; bwm, body wall muscle; fresh mass, total body weight - G-6-P glucose-6-phosphate - H enthalpy change - K a activation constant - K eq equilibrium constant - K i inhibition constant - K m Michaelis constant - MAR mass action ratio - NMR nuclear magnetic resonance - PFK phosphofructokinase - Pi inorganic phosphate - PLA phospho-l-arginine - SD standard deviation - TRIS, TRIS (hydroxymethyl) aminomethane - TRA triethanolamine hydrochloride - V max maximal velocity  相似文献   

18.
The aim of this work was to compare the molecular properties of pyrophosphate:fructose 6-phosphate 1-phosphotransferase (PFP) and ATP:fructose 6-phosphate 1-phosphotransferase (PFK). Both enzymes were purified to apparent homogeneity from potato tubers (Solanum tuberosum cv Record). Neither PFP nor PFK preparations contained detectable activity of the other enzyme. PFP was composed of two polypeptides of apparent molecular weight 58,000 and 55,700 whereas PFK contained four polypeptides of apparent molecular weight between 46,300 and 53,300. Chemical cleavage of individual PFP and PFK polypeptides gave a different set of fragments for each polypeptide. On Western blots antisera against PFP failed to cross-react with any of the four PFK polypeptides, and antibodies against PFK failed to bind to either of the PFP polypeptides. Antibodies that immunoprecipitate PFP activity had no effect on PFK activity. Conversely, antibodies against the four PFK polypeptides precipitated the activity of PFK, but not that of PFP. This work shows that potato tuber PFP and PFK are composed of distinct, unrelated polypeptides and indicate that interconversion between PFP and PFK is unlikely.  相似文献   

19.
The activity of pyrophosphate:fructose-6-phosphate 1-phosphotransferase [PFK (PPi); EC 2.7.1.90] in extracts of the storage tissues of leek (Allium porrum), beetroot (Beta vulgaris) and roots of darnel (Lolium temulentum) exceeded 0.15 mumol/min per g fresh wt. As net flux from fructose 1,6-bisphosphate to fructose 6-phosphate in these tissues is unlikely, it is suggested that PFK (PPi) does not contribute to gluconeogenesis or starch synthesis. The maximum catalytic activities of PFK (PPi) in apex, stele and cortex of the root of pea (Pisum sativum) and in the developing and the thermogenic club of the spadix of cuckoo-pint (Arum maculatum) were measured and compared with those of phosphofructokinase, and to estimates of the rates of carbohydrate oxidation. PPi and fructose 2,6-bisphosphate in Arum clubs were measured. The above measurements are consistent with a glycolytic role for PFK (PPi) in tissues where there is marked biosynthesis, but not in the thermogenic club of Arum. The possibility that PFK (PPi) is a means of synthesizing pyrophosphate is discussed.  相似文献   

20.
It has been suggested that in spinach leaves an enzyme able to catalyze the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate can exist in two different interconvertible forms which use ATP and pyrophosphate respectively as phosphoryl donors [FEBS Letters 169 (1984) 287-292]. However, the data presented to support this suggestion could also be interpreted without assuming such an unusual type of interconversion. This reinterpretation considers that PFK and PFP are two distinct enzymes which are differentially activated by incubation with various effectors such as UDPG, pyrophosphate, ATP, fructose 6-phosphate and fructose 2,6-bisphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号