首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydroxylation of lysine and glycosylations of hydroxylysine were studied in isolated chick-embryo tendon and cartilage cells under conditions in which collagen triple-helix formation was either inhibited or accelerated. The former situation was obtained by incubating the tendon cells with 0.6mm-dithiothreitol, thus decreasing their proline hydroxylase activity by about 99%. After labelling with [(14)C]proline, the formation of hydroxy[(14)C]proline was found to have declined by about 95%. Since the hydroxylation of a relatively large number of proline residues is required for triple-helix formation at 37 degrees C, the pro-alpha-chains synthesized under these conditions apparently cannot form triple-helical molecules. Labelling experiments with [(14)C]lysine indicated that the degree of hydroxylation of the lysine residues in the collagen synthesized was slightly increased and the degree of the glycosylations of the hydroxylysine residues more than doubled, the largest increase being in the content of glucosylgalactosylhydroxylysine. Recovery of chick-embryo cartilage cells from temporary anoxia was used to obtain accelerated triple-helix formation. A marked decrease was found in the extent of hydroxylation of the lysine residues in the collagen synthesized under these conditions, and an even larger decrease occurred in the glycosylations of the hydroxylysine residues. The results support the previous suggestion that the triple-helix formation of the pro-alpha-chains prevents further hydroxylation of lysine residues and glycosylations of hydroxylysine residues during collagen biosynthesis.  相似文献   

2.
Concomitant hydroxylation of proline and lysine residues in protocollagen was studied using purified enzymes. The data suggest that prolyl 4-hydroxylase (prolyl-glycyl-peptide, 2-oxoglutarate: oxygen oxidoreductase (4-hydroxylating), EC 1.14.11.2) and lysyl hydroxylase (peptidyllysine, 2-oxoglutarate; oxygen 5-oxidoreductase, EC 1.14.11.4) are competing for the protocollagen substrate, this competition resulting in an inhibition of the lysyl hydroxylase but not of the prolyl 4-hydroxylase reaction. When the same protocollagen was used for these hydroxylases, the affinity of prolyl 4-hydroxylase to the protocollagen substrate was about 2-fold higher than that of lysyl hydroxylase. Hydroxylation of lysine residues in protocollagen had no effect on the affinity of prolyl 4-hydroxylase, whereas hydroxylation of proline residues decreased the affinity of lysyl hydroxylase to one-half of the value determined before the hydroxylation. When enzyme preparations containing different ratios of lysyl hydroxylase activity to prolyl 4-hydroxylase activity were used to hydroxylase protocollagen substrate, it was found that in the case of a low ratio the hydroxylation of lysine residues seemed to proceed only after a short lag period. Accordingly, it seems probable that most proline residues are hydroxylated to 4-hydroxyproline residues before hydroxylation of lysine residues if the prolyl 4-hydroxylase and lysyl hydroxylase are present as free enzymes competing for the same protocollagen substrate.  相似文献   

3.
A relatively crude enzyme preparation derived from the subcuticular epithelium of earthworms catalyzed the formation of 4-hydroxyproline from prolyl residues in unhydroxylated natural collagens and in several synthetic collagen-like polypeptides. The specificity of hydroxylation differed from that of all vertebrate polyl hydroxylases in that (Gly-Pro-Ala)n was a much better substrate than (Gly-Ala-Pro)n. In contrast, however, only the so-called Y position proline (Gly-X-Y) was hydroxylated in Gly-Pro-Pro sequences derived either from natural collagen or from synthetic polypeptides; specificity of hydroxylation for the latter sequence is identical with that of the vertebrate enzymes. Little or no formation of 3-hydroxyproline could be demonstrated in preparations of the enzyme active as a 4-hydroxylase. In contrast with an earlier report from another laboratory, using a crude extract of earthworm body wall, we were unable to demonstrate either significant 3-hydroxyproline formation or efficient 4-hydroxylation of X position prolyl residues in synthetic polypeptides with the internal sequence Gly-Pro-Pro.  相似文献   

4.
BackgroundThis study aimed to investigate the prolyl and lysine hydroxylation in elastin from different species and tissues.MethodsEnzymatic digests of elastin samples from human, cattle, pig and chicken were analyzed using mass spectrometry and bioinformatics tools.ResultsIt was confirmed at the protein level that elastin does not contain hydroxylated lysine residues regardless of the species. In contrast, prolyl hydroxylation sites were identified in all elastin samples. Moreover, the analysis of the residues adjacent to prolines allowed the determination of the substrate site preferences of prolyl 4-hydroxylase. It was found that elastins from all analyzed species contain hydroxyproline and that at least 20%–24% of all proline residues were partially hydroxylated. Determination of the hydroxylation degrees of specific proline residues revealed that prolyl hydroxylation depends on both the species and the tissue, however, is independent of age. The fact that the highest hydroxylation degrees of proline residues were found for elastin from the intervertebral disc and knowledge of elastin arrangement in this tissue suggest that hydroxylation plays a biomechanical role. Interestingly, a proline-rich domain of tropoelastin (domain 24), which contains several repeats of bioactive motifs, does not show any hydroxyproline residues in the mammals studied.ConclusionsThe results show that prolyl hydroxylation is not a coincidental feature and may contribute to the adaptation of the properties of elastin to meet the functional requirements of different tissues.General significanceThe study for the first time shows that prolyl hydroxylation is highly regulated in elastin.  相似文献   

5.
The biosynthesis of collagen on polysomes has been studied by using a newly devised method for obtaining polysomes in high yield from stationary-phase mouse fibroblast (line 3T6; Goldberg &, Green, 1967). These polysomes were completely disaggregated to monosomes by brief exposure to ribonuclease and they lost most of their radioactivity to the top of the sucrose gradients as a result of a 30-minute chase with unlabeled proline. After a ten-minute pulse with [3H]proline, nascent collagen peptides could be identified in these polysomes on sucrose gradients. Most of the proline residues susceptible to hydroxylation by collagen proline hydroxylase were found, in most cases, to be already hydroxylated in these nascent peptides. The nascent nature of these peptides was confirmed by the observation that treatment of the polysomes with RNase transferred the radioactive collagen peptides to the monosome area and these peptides could subsequently be removed to the soluble material at the top of the gradient upon treatment with puromycin. These findings therefore, show clearly that the hydroxylation of proline residues is occurring, in vivo under normal conditions, on nascent collagen chains. In no case was the degree of hydroxylation of the released collagen chains higher than that on the nascent collagen peptides. It seems likely, therefore, that the major site of proline hydroxylation is the nascent collagen peptide.  相似文献   

6.
The effects in vivo of dichloromethanediphosphonate and 1-hydroxyethane 1,1-diphosphonate on collagen solubility, hydroxylation of lysine and proline and on the formation of collagen intermolecular cross-links were studied by using rat bone, cartilage and skin tissues. Dichloromethanediphosphonate decreased bone collagen solubility both in acetic acid and after pepsin treatment. Although none of the diphosphonates had any effect on the hydroxylation of proline, dichloromethane-diphosphonate, but not 1-hydroxyethane-1,1-diphosphonate, increased the number of hydroxylysine residues in the alpha-chains of bone, skin and cartilage collagen. The stimulatory effect was dose-dependent. The dichloromethanediphosphonate-mediated increase in hydroxylysine residues in bone and cartilage was manifested in an increase of dihydroxylysinonorleucine, the cross-link that is formed by the condensation of two hydroxylysine residues. The cross-link hydroxylysinonorleucine, a condensation product of hydroxylysine and lysine, on the other hand, was decreased. The total number of intermolecular cross-links was not changed by the diphosphonate.  相似文献   

7.
[3H]Proline-labeled nascent procollagen chains were isolated from chick tendon polysome preparations as peptidyl-tRNA complexes by ion exchange chromatography. Proline hydroxylation of the nascent chains was at least 40% complete, based on radioactive hydroxyproline/proline ratios. These data provide the first direct evidence that hydroxylation of procollagen proline residues does occur on nascent chains. The electrophoretic profiles of [3H]proline-labeled nascent chains and of unlabeled nascent chains visualized by Western blotting with 35S-labeled monoclonal antibodies to the alpha 1(I) N-propeptide or the C-propeptides indicate that there are pauses in the translation of procollagen alpha-chains in the intact cells. Approximately 25% of the radioactivity associated with [3H]proline-labeled polysomes was in fully elongated but underhydroxylated (relative to secreted procollagen) pro-alpha-chains. The association of these completely elongated but only partially modified procollagen chains with the polysome complex may facilitate the carboxyl-terminal interactions which lead to triple helix formation.  相似文献   

8.
The effect of age on the extent of hydroxylation of lysine and proline both generally and at certain specific sites in collagens from bone, skin and tendon was examined in the chick from the 14-day embryo to the 18-month-old adult. For all collagens there was a marked fall in the overall extent of hydroxylation of lysine with increasing age in both alpha(1) and alpha(2) chains, this fall occurring mostly in a relatively short period immediately after hatching. Hydroxylation of lysine declined to a constant value which, as expected, differed appreciably for each collagen and was considered to be characteristic of the collagen according to its tissue of origin. Hydroxylation of lysine in the N-terminal, non-helical telopeptide region of both alpha(1) and alpha(2) chains, which is important with regard to cross-linking, was relatively high in embryonic collagens. There was, however, a rapid loss of hydroxylation at these sites in skin collagen, occurring both during development of the embryo and in the period immediately after hatching. In contrast some hydroxylation at these sites persisted in bone and tendon collagens and, as judged by examination of peptide alpha(1)-CB1, appeared to reach a constant value in time of about 33% in bone and about 15% in tendon collagen. The actual extent of hydroxylation of lysine in the N-terminal telopeptides and the size of the changes in these values with age appeared to be unrelated to the corresponding whole-chain values, and it is suggested therefore that hydroxylation of telopeptidyl lysine may be under separate enzymic control. The increased hydroxylation of lysine in the embryo was accompanied by only minimal changes in proline hydroxylation, which was very slightly increased in embryonic bone and tendon collagens. Increased hydroxylation of proline in the embryo was, however, readily observed in peptide alpha(1)-CB2 from the helical region of tendon collagen. This hydroxylation was close to the theoretical maximum, in contrast with that observed in post-embryonic tendon, where hydroxylation was incomplete, as in rat tendon (Bornstein, 1967), only four on average, of the six susceptible proline residues being hydroxylated.  相似文献   

9.
Many secretory and several vacuolar proteins in higher plants contain hydroxylated proline residues. In many cases, hydroxyprolines in proteins are glycosylated with either arabinogalactan or oligoarabinose. We have previously shown that a sporamin precursor is O-glycosylated at the hydroxylated proline 36 residue with an arabinogalactan-type glycan when this protein is expressed in tobacco BY-2 cells (Matsuoka et al., 1995). Taking advantage of the fact that this is the only site of proline hydroxylation and glycosylation in sporamin, we analyzed the amino acid requirement for proline hydroxylation and arabinogalactosylation. We expressed several deletion constructs and many amino acid substitution mutants in tobacco cells and analyzed glycosylation and proline hydroxylation of the expressed sporamins. Hydroxylation of a proline residue requires the five amino acid sequence [AVSTG]-Pro-[AVSTGA]-[GAVPSTC]-[APS or acidic] (where Pro is the modification site) and glycosylation of hydroxyproline (Hyp) requires the seven amino acid sequence [not basic]-[not T]-[neither P, T, nor amide]-Hyp-[neither amide nor P]-[not amide]-[APST], although charged amino acids at the -2 position and basic amide residues at the +1 position relative to the modification site seem to inhibit the elongation of the arabinogalactan side chain. Based on the combination of these two requirements, we concluded that the sequence motif for efficient arabinogalactosylation, including the elongation of the glycan side chain, is [not basic]-[not T]-[AVSG]-Pro-[AVST]-[GAVPSTC]-[APS].  相似文献   

10.
T Kimura  D J Prockop 《Biochemistry》1982,21(22):5482-5488
[14C]Proline-labeled protocollagen, the unhydroxylated form of procollagen, was isolated from cartilage cells incubated with alpha, alpha'-dipyridyl. For examination of the initial steps in the hydroxylation of the protein, it was incubated in vitro with prolyl hydroxylase so that an average of 1.3-2.7 prolyl residues per chain was hydroxylated. The partially hydroxylated alpha chain were cleaved with cyanogen bromide, and the fragments were separated by polyacrylamide gel electrophoresis or column chromatography. The cyanogen bromide fragments were hydroxylated to the same degree. The results indicated, therefore, that in the initial hydroxylation of alpha chains in vitro, there was no preferential hydroxylation of any specific regions of the protein. In a second series of experiments, cartilage cells were incubated with [14C]proline and alpha, alpha'-dipyridyl so that prolyl hydroxylase in the cells was extensively, but not completely, inhibited. Partially hydroxylated alpha chains were isolated, and cyanogen bromide fragments of the alpha chains from the cells were assayed for hydroxy[14C]proline. The alpha chains contained an average of two residues of hydroxyproline per chain, and the cyanogen bromide fragments were hydroxylated to about the same degree. The results indicated, therefore, that when prolyl hydroxylase activity in cells is low relative to the rate at which pro alpha chains are synthesized, hydroxylation of prolyl residues occurs as it does in vitro, and there is no preferential hydroxylation of a specific region of the protein.  相似文献   

11.
12.
Iron (II)/2-oxoglutarate (2-OG)-dependent oxygenases catalyse oxidative reactions in a range of metabolic processes including the hydroxylation of proline and lysine residues during the post-translational modification of collagen. 2-OG oxygenases commonly require ascorbate for full activity. In the vitamin C deficient disease, scurvy, reduced activity of 2-OG oxygenases results in impaired formation of collagen. Here we report the crystal structure of bacterial proline 3-hydroxylase from Streptomyces sp., an enzyme which hydroxylates proline at position 3, the first of a 2-OG oxygenase catalysing oxidation of a free alpha-amino acid. Structures were obtained for the enzyme in the absence of iron (to 2.3A resolution, R=20.2%, Rfree=25.3%) and that complexed to iron (II) (to 2.4A resolution, R=19.8%, Rfree=22.6%). The structure contains conserved motifs present in other 2-OG oxygenases including a 'jelly roll' beta strand core and residues binding iron and 2-oxoglutarate, consistent with divergent evolution within the extended family. The structure differs significantly from many other 2-OG oxygenases in possessing a discrete C-terminal helical domain. Analysis of the structure suggests a model for proline binding and a mechanism for uncoupling of proline and 2-OG turnover.  相似文献   

13.
Ascorbate was linked to protein folding a long time ago. At the first level of this connection, it had been shown that ascorbate functions as an essential cofactor in the hydroxylation enzymes involved in collagen synthesis. Although the hydroxylation reactions catalyzed by the members of the prolyl 4-hydroxylase family are considered to be ascorbate dependent, the hydroxylation of proline alone does not need ascorbate. Prolyl 4-hydroxylases participate in two catalytic reactions: one in which proline residues are hydroxylated, while 2-oxoglutarate is decarboxylated and molecular oxygen is consumed. This reaction is ascorbate independent. However, in another reaction, prolyl 4-hydroxylases catalyze the decarboxylation of 2-oxoglutarate uncoupled from proline hydroxylation but still needing molecular oxygen. At this time, ferrous iron is oxidized and the protein is rendered catalytically inactive until reduced by ascorbate. At the second level of the connection, the oxidation and the oxidized form of ascorbate, dehydroascorbate, is involved in the formation of disulfide bonds of secretory proteins. The significance of the dehydroascorbate reductase activity of protein disulfide isomerase was debated because protein disulfide isomerase as a dehydroascorbate reductase was found to be too slow to be the major route for the reduction of dehydroascorbate (and formation of disulfides) in the endoplasmic reticulum lumen. However, very recently, low tissue ascorbate levels and a noncanonical scurvy were observed in endoplasmic reticulum thiol oxidase- and peroxiredoxin 4-compromised mice. This novel observation implies that ascorbate may be involved in oxidative protein folding and creates a link between the disulfide bond formation (oxidative protein folding) and hydroxylation.  相似文献   

14.
Human skin fibroblasts were cultured under conditions optimized for collagen synthesis, and the effects of ascorbic acid on procollagen production, proline hydroxylation and the activity of prolyl hydroxylase were examined in cultures. the results indicated that addition of ascorbic acid to confluent monolayer cultures of adult human skin fibroblasts markedly increased the amount of [3H]hydroxyproline synthesized. Ascorbic acid, however, did not increase the synthesis of 3H-labeled collagenous polypeptides assayed independently of hydroxylation of proline residues, nor did it affect the amount of prolyl hydroxylase detectable by an in vitro enzyme assay. Also long-term cultures of the cells or initiation of fibroblast cultures in the presence of ascorbic acid did not lead to an apparent selection of a cell population which might be abnormally responsive to ascorbic acid. Thus, ascorbic acid appears to have one primary action on the synthesis of procollagen by cultured human skin fibroblasts: it is necessary for synthesis of hydroxyproline, and consequently for proper triple helix formation and secretion of procollagen.  相似文献   

15.
Collagen secretion by chick embryo fibroblasts was measured by incorporating [14C]proline into proteins and then analyzing the amount of collagen in the cell and medium separately by using purified bacterial collagenase. In order to produce varying levels of hydroxylation, cells were incubated with varying concentrations of ascorbate or with varying concentrations of α,α′-dipyridyl in the presence of saturating ascorbate. Ascorbate stimulated both the hydroxylation of proline in collagen and the secretion of collagen; the concentration of ascorbate required for half-maximal stimulation of both proesses was approximately 4.5 × 10?7, m. Since the cells could concentrate ascorbate 10-fold, this KM for proline hydroxylation is 100-fold lower than values reported for purified prolyl hydroxylase (Abbot, M. T., and Udenfriend, S. (1974) in Molecular Mechanisms of Oxygen Activation (Hayaishi, O., ed.), p. 173, Academic Press New York; Kivirikko K. I., et al. (1968) Biochim. Biophys. Acta, 151, 558–567). Conversely, α,ga′-dipyridyl inhibited both proline hydroxylation and collagen secretion; half-maximal inhibition of both processes was observed at 7 × 10?5, m. The results of the two types of experiments show that the secretion of collagen becomes directly proportional to proline hydroxylation when approximately 30% of the proline residues in collagen have been hydroxylated compared to maximal hydroxylation of 50%. Since the stability of triple-helical collagen at 37 °C has been shown to be dependent on the hydroxyproline content of the molecule (Rosenbloom, J., et al. (1973) Arch. Biochem. Biophys., 158, 478–484), we suggest that the observed proportionality between secretion and hydroxylation is a reflection of the increased amount of stable triple helical collagen at 37 °C. When the cells were incubated with a concentration of ascorbate that was saturating for secretion and hydroxylation, there was no significant activation of prolyl hydroxylase as measured in a cell-free extract. These experiments suggest that ascorbate effects collagen secretion by acting at the site of proline hydroxylation but not by increasing the activity of prolyl hydroxylase.  相似文献   

16.
Hydroxylation of proline residue occurs in specific peptides and proteins derived from plants and animals, but the functional role of this modification has been characterized primarily in collagen. Marine cone snails produce disulfide-rich peptides that have undergone a plethora of posttranslational modifications, including proline hydroxylation. Although Conus snails extensively utilize proline hydroxylation, the consequences of this modification remain largely unexplored. In this work, we investigated the function of 4-hydroxyproline (Hyp) in conotoxins from three distinct gene families: mu-, omega-, and alpha-conotoxins. Analogues of mu-GIIIA, omega-MVIIC, alpha-GI, and alpha-ImI were synthesized with either Pro or Hyp, and their in vitro oxidative folding and biological activity were characterized. For GIIIA, which naturally contains three Hyp residues, the modifications improved the ability to block NaV1.4 sodium channels but did not affect folding. In contrast, the presence of Hyp in MVIIC had a significant impact on the oxidative folding but not on the biological activity. The folding yields for the MVIIC[Pro7Hyp] analogue were approximately 2-fold higher than for MVIIC under a variety of optimized oxidation conditions. For alpha-conotoxins ImI and GI, the hydroxylation of the conserved Pro residue improved their folding but impaired their activities against target receptors. Since prolyl-4-hydroxylase and protein disulfide isomerase coexist as a heterotetramer in the ER, we discuss the effects of Hyp on the folding of conotoxins in the context of cis-trans isomerization of Pro and Hyp. Taken together, our data suggest that proline hydroxylation is important for both in vitro oxidative folding and the bioactivity of conotoxins.  相似文献   

17.
18.
Human skin fibroblasts were cultured under conditions optimized for collagen synthesis, and the effects of ascorbic acid on procollagen production, proline hydroxylation and the activity of prolyl hydroxylase were examined in cultures. The results indicated that addition of ascorbic acid to confluent monolayer cultures of adult human skin fibroblasts markedly increased tha amount of [3H]hydroxyproline syntehsized. Ascorbic acid, however, did not increase the synthesis of 3H-labeled collagenous polypeptides assayed independently of hydroxylation of proline residues, nor did it affect the amount of prolyl hydroxylase detectable by an in vitro enzyme assay. Also long-term cultures of the cells or initiation of fibroblast cultures in the presence of ascorbic acid did not lead to an apparent selection of a cell population which might be abnormally responsive to ascorbic acid. Thus, ascorbic acid appears to have one primary action on the synthesis of procollagen by cultured human skin fibroblasts: it is necessary for synthesis of hydroxyproline, and consequently for proper triple helix formation and selection of procollagen.  相似文献   

19.
The occurrence of hydroxyproline (Hyp) in collagen, C1q and acetylcholineesterase (AChE) raises important questions concerning the role of this unusual imino acid in the structure and function of these proteins. Available data on collagen indicate that Hyp is necessary for the normal secretion of the protein after its synthesis and for the integrity of the triple-helical conformation. Studies from our laboratory have dealt with the structural aspects of the posttranslational conversion of proline to hydroxyproline in collagen mediated by prolyl hydroxylase. We proposed that the beta-turn conformation at the Pro-Gly segments in the nascent procollagen molecule are the sites of the enzymatic hydroxylation and that this conformation changes over to the collagen-like helix as a result of the hydroxylation process. Recently, we have provided additional experimental support to our proposal by a) synthesizing specific beta-turn oligopeptides containing the Pro-Gly as well as Pro-Ala and Pro-DAla sequences and showing that these act as inhibitors of the enzymatic hydroxylation of a synthetic substrate and b) demonstrating, by circular dichroism spectroscopy, the occurrence of a conformational change leading to the triple-helix as a direct consequence of proline hydroxylation in a non-helical polypeptide substrate. We have also observed that the acquisition of hydroxylation results in a significant enhancement of the rate of folding of the polypeptide chain from the unfolded to the triple-helical conformation. We believe that our observations on proline hydroxylation in collagen should also be applicable to C1q and acetylcholineesterase both of which share the general structural and functional properties of collagen in their "tail" regions. Using the techniques employed in collagen studies, one should be able to assess the role of hydroxyproline in the folding, structural stabilities and functions of C1q and AChE. This would also involve the study of the unhydroxylated and hydroxylated precursors of these proteins which may share common structural features with their collagen counterparts. Finally, a systematic study of hydroxyproline-containing peptides and polypeptides has been initiated by us so as to understand the exact manner in which Hyp participates in the formation and stability of the triple-helical conformation in the proteins in which it occurs.  相似文献   

20.
Abstract

The occurrence of hydroxyproline (Hyp) in collagen, Clq and acetylcholinesterase (AChE) raises important questions concerning the role of this unusual imino acid in the structure and function of these proteins. Available data on collagen indicate that Hyp is necessary for the normal secretion of the protein after its synthesis and for the integrity of the triple-helical conformation. Studies from our laboratory have dealt with the structural aspects of the posttranslational conversion of proline to hydroxyproline in collagen mediated by prolyl hydroxylase. We proposed that the β-turn conformation at the Pro-Gly segments in the nascent procollagen molecule are the sites of the enzymatic hydroxylation and that this conformation changes over to the collagen-like helix as a result of the hydroxylation process. Recently, we have provided additional experimental support to our proposal by a) synthesizing specific β-turn oligopeptides containing the Pro-Gly as well as Pro-Ala and Pro-DAla sequences and showing that these act as inhibitors of the enzymatic hydroxylation of a synthetic substrate and b) demonstrating, by circular dichroism spectroscopy, the occurrence of a conformational change leading to the triple-helix as a direct consequence of proline hydroxylation in a non-helical polypeptide substrate. We have also observed that the acquisition of hydroxylation results in a significant enhancement of the rate of folding of the polypeptide chain from the unfolded to the triple-helical conformation. We believe that our observations on proline hydroxylation in collagen should also be applicable to Clq and acetylcholineesterase both of which share the general structural and functional properties of collagen in their “tail” regions. Using the techniques employed in collagen studies, one should be able to assess the role of hydroxyproline in the folding, structural stabilities and functions of Clq and AChE. This would also involve the study of the unhydroxylated and hydroxylated precursors of these proteins which may share common structural features with their collagen counterparts. Finally, a systematic study of hydroxyproline-containing peptides and polypeptides has been initiated by us so as to understand the exact manner in which Hyp participates in the formation and stability of the triple-helical conformation in the proteins in which it occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号