首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Senescence of vascular endothelial cells is the major risk of vascular dysfunction and disease among elderly people. Parishin, which is a phenolic glucoside derived from Gastrodia elata, significantly prolonged yeast lifespan. However, the action of parishin in vascular ageing remains poorly understood. Here, we treated human coronary artery endothelial cells (HCAEC) and naturally aged mice by parishin. Parishin alleviated HCAEC senescence and general age-related features in vascular tissue in naturally aged mice. Network pharmacology approach was applied to determine the compound-target networks of parishin. Our analysis indicated that parishin had a strong binding affinity for Klotho. Expression of Klotho, a protein of age-related declines, was upregulated by parishin in serum and vascular tissue in naturally aged mice. Furthermore, FoxO1, on Klotho/FoxO1 signalling pathway, was increased in the parishin-intervened group, accompanied by the downregulated phosphorylated FoxO1. Taken together, parishin can increase Klotho expression to alleviate vascular endothelial cell senescence and vascular ageing.  相似文献   

2.
Retinitis Pigmentosa involves a hereditary degeneration of photoreceptors by as yet unresolved mechanisms. The secretable protein α‐Klotho has a function related to ageing processes, and α‐Klotho‐deficient mice have reduced lifespan and declining functions in several tissues. Here, we studied Klotho in connection with inherited photoreceptor degeneration. Increased nuclear immunostaining for α‐Klotho protein was seen in degenerating photoreceptors in four different Retinitis Pigmentosa models (rd1, rd2 mice; P23H, S334ter rhodopsin mutant rats). Correspondingly, in rd1 retina α‐Klotho mRNA expression was significantly up‐regulated. Moreover, immunostaining for another Klotho family protein, β‐Klotho, also co‐localized with degenerating rd1 photoreceptors. The rd1 retina displayed reduced levels of fibroblast growth factor 15, a member of the fibroblast growth factor subfamily for which Klotho acts as a co‐receptor. Exogenous α‐Klotho protein added to retinal explant cultures did not affect cell death in rd1 retinae, but caused a severe layer disordering in wild‐type retinae. Our study suggests Klotho as a novel player in the retina, with a clear connection to photoreceptor cell death as well as with an influence on retinal organization.  相似文献   

3.
Chronic kidney disease (CKD) is regarded as a state of Klotho deficiency and FGF23 excess. In patients with CKD a strong association has been found between increased serum FGF23 and mortality risk, possibly via enhanced atherosclerosis, vascular stiffness, and vascular calcification. The aim of this study was to examine the hypothesis that soluble Klotho and FGF23 exert direct, rapid effects on the vessel wall. We used three in vitro models: mouse aorta rings, human umbilical vein endothelial cells, and human vascular smooth muscle cells (HVSMC). Increasing medium concentrations of soluble Klotho and FGF23 both stimulated aorta contractions and increased ROS production in HVSMC. Klotho partially reverted FGF23 induced vasoconstriction, induced relaxation on phosphate preconstricted aorta and enhanced endothelial NO production in HUVEC. Thus Klotho increased both ROS production in HVSMC and NO production in endothelium. FGF23 induced contraction in phosphate preconstricted vessels and increased ROS production. Phosphate, Klotho and FGF23 together induced no change in vascular tone despite increased ROS production. Moreover, the three compounds combined inhibited relaxation despite increased NO production, probably owing to the concomitant increase in ROS production. In conclusion, although phosphate, soluble Klotho and FGF23 separately stimulate aorta contraction, Klotho mitigates the effects of phosphate and FGF23 on contractility via increased NO production, thereby protecting the vessel to some extent against potentially noxious effects of high phosphate or FGF23 concentrations. This novel observation is in line with the theory that Klotho deficiency is deleterious whereas Klotho sufficiency is protective against the negative effects of phosphate and FGF23 which are additive.  相似文献   

4.
de Oliveira RM 《FEBS letters》2006,580(24):5753-5758
Klotho has recently emerged as a regulator of aging. To investigate the role of Klotho in the regulation of cellular senescence, we generated stable MRC-5 human primary fibroblast cells knockdown for Klotho expression by RNAi. Downregulation of Klotho dramatically induces premature senescence with a concomitant upregulation of p21. The upregulation of p21 is associated with cell cycle arrest at G1/S boundary. Knockdown of p53 in the Klotho attenuated MRC-5 cells restores normal growth and replicative potential. These results demonstrate that Klotho normally regulates cellular senescence by repressing the p53/p21 pathway. Our findings implicate Klotho as a regulator of aging in primary human fibroblasts.  相似文献   

5.
Research on ageing made a big leap forward when genes regulating lifespan were discovered about a decade ago. First isolated by screening the genome of the nematode Caenorhabditis elegans, most of these genes belong to an essential signalling pathway that is highly conserved during animal evolution. Orthologous genes in vertebrate species are the families of genes coding for insulin, insulin-like growth factors (IGF) and related proteins. Intensively studied and well-known for their pivotal roles in proliferation, differentiation, survival and metabolism of most cells, we now discover their multiples functions with respect to the control of longevity and their ability to modulate the cell's responses to oxidative stress, a major cause of cellular and organismal ageing. The activity of IGF signalling in mammals depends on a complex interplay of endocrine signals that together constitute the somatotropic axis. Accordingly, several components of this hormone axis, like growth hormone or growth hormone releasing hormone receptors, regulate efficiently animal longevity, which has been elegantly demonstrated by studies performed in genetically modified mouse models. From this and other work, it becomes increasingly clear that the control of ageing is a question of hormonal regulations. We here present several of these models and discuss the respective contributions of insulin and IGF signalling to the regulation of lifespan. We review data on the Klotho gene that acts on lifespan via surprising and not yet fully understood molecular mechanisms, connecting this new, hormone-like substance to IGF and insulin signalling. We further report recent evidence showing that human lifespan might be controlled in similar ways. Finally, we shed some light on clinical GH treatment in humans, from an endocrinologist's point of view.  相似文献   

6.
BackgroundWe aimed to investigate the expression of Klotho gene in peripheral blood of patients with cerebral infarction (CI) and the association of its polymorphisms with the occurrence of CI.MethodsA total of 60 CI patients (CI group) and 20 healthy people receiving physical examination (control group) were enrolled as the research subjects. The expression of Klotho gene in CI group and control group was determined using enzyme-linked immunosorbent assay kit. Single nucleotide polymorphisms (rs192031, rs200131 and rs102312) in the promoter region of the Klotho gene were typed via conformational difference gel electrophoresis. Besides, whether the distribution frequencies of Klotho genotypes conformed to Hardy-Weinberg equilibrium was evaluated by chi-square test. Meanwhile, the associations of Klotho alleles and gene polymorphisms with CI occurrence were analyzed.ResultsThe protein expression level of Klotho in the peripheral blood was remarkably lower in patients in CI group than that in control group (P<0.05).HardyWeinberg equilibrium analysis revealed that Klotho gene polymorphisms (rs192031, rs200131 and rs102312) conformed to the genetic equilibrium distribution (P>0.05). Gene-based association analysis manifested that only rs192031 polymorphism and alleles were correlated with CI occurrence (P<0.05). Systolic blood pressure and highdensity lipoprotein cholesterol were notably higher in CI patients with TT genotype of Klotho gene polymorphism rs192031 than those in control group (P<0.05). Furthermore, there were no associations of rs200131 and rs102312 polymorphisms and alleles with the occurrence of CI (P>0.05).ConclusionsThe expression level of Klotho is evidently reduced in the peripheral blood of CI patients. Rs192031 in the promoter region of the Klotho gene is associated with the occurrence of CI, while rs200131 and rs102312 have no relations with CI.  相似文献   

7.
Genetic variants of Klotho have been reported to be associated with human longevity and atherosclerotic vascular events and risk factors. However, very few studies have explored their association with ischemic stroke. We hypothesized that the functional KL-VS and the exonic C1818T variants of Klotho gene may be associated with ischemic stroke in Indian population. We enrolled a total of 460 patients with ischemic stroke and 574 age- and gender-matched controls for the study. Genotyping was done by polymerase chain reaction and restriction fragment length polymorphism. Contrary to other Asian reports, KL-VS variant was polymorphic in our population, with a frequency distribution similar to that of Caucasians. The frequency distribution of the C1818T variant was similar to previously reports in Asians. A differential effect of age on association of Klotho KL-VS variant with ischemic stroke was observed. In subjects aged ≤40 years, the KL-VS homozygotes, 352FF and 352VV, had ~1.5-fold (OR=1.57; 95% CI: 1.02-2.40, p=0.038) and ~3-fold (OR=3.29; 95%CI: 1.02-10.56, p=0.046) higher risk of stroke compared to heterozygotes, whereas in the older group (aged >40 years) no significant association was observed. The C1818T variant was not associated with ischemic stroke. We conclude that KL-VS homozygosity could contribute to early-onset stroke in India. Larger studies in other ethnic populations are warranted to determine the role of these gene variants in the etiology of stroke occurring in the young.  相似文献   

8.
9.
We propose that ageing is linked to colonic carcinogenesis through crosstalk between Wnt activity and signalling pathways related to ageing and senescence: progerin, klotho and mTOR. Mutations in the Wnt signalling pathway are responsible for the majority of colorectal cancers (CRCs); however, hyperactivation of Wnt signalling by butyrate, a breakdown product of dietary fibre, induces CRC cell apoptosis. This effect of butyrate may in part explain the protective action of fibre against CRC. Hutchinson–Gilford progeria syndrome is a premature ageing disorder caused by accumulation of the progerin protein; however, healthy individuals also produce progerin in the course of their normal ageing. Progerin activates expression of the Wnt inhibitors HES1 and TLE1. Thus, we hypothesize that with age, the increasing expression of progerin suppresses butyrate‐mediated Wnt hyperactivation and apoptosis, leading to increased CRC risk. Wild‐type klotho contributes to a significantly increased lifespan; however, Klotho gene variants differ significantly between newborns and elderly. Klotho inhibits basal Wnt signalling activity; thus, the protein may function as a tumour suppressor for CRC. However, similar to progerin, klotho variants associated with lifespan differences may repress butyrate‐mediated Wnt hyperactivation, and thus increase the risk of CRC. Finally, mTOR signalling has also been linked to human ageing, and crosstalk between Wnt and mTOR signalling may influence colonic tumourigenesis. Understanding how progerin, klotho and mTOR link ageing with colonic neoplastic development may lead to novel preventive and therapeutic strategies against CRC associated with age.  相似文献   

10.
Deranged calcium-phosphate metabolism contributes to the burden of morbidity and mortality in dialysis patients. This study aimed to assess the association of the phosphaturic hormone fibroblast growth factor 23 (FGF23) and soluble Klotho with all-cause mortality. We measured soluble Klotho and FGF23 levels at enrolment and two weeks later in 239 prevalent hemodialysis patients. The primary hypothesis was that low Klotho and high FGF23 are associated with increased mortality. The association between Klotho and atrial fibrillation (AF) at baseline was explored as secondary outcome. AF was defined as presence of paroxysmal, persistent or permanent AF. During a median follow-up of 924 days, 59 (25%) patients died from any cause. Lower Klotho levels were not associated with mortality in a multivariable adjusted analysis when examined either on a continuous scale (HR 1.25 per SD increase, 95% CI 0.84–1.86) or in tertiles, with tertile 1 as the reference category (HR for tertile two 0.65, 95% CI 0.26–1.64; HR for tertile three 2.18, 95% CI 0.91–2.23). Higher Klotho levels were associated with the absence of AF in a muItivariable logistic regression analysis (OR 0.66 per SD increase, 95% CI 0.41–1.00). Higher FGF23 levels were associated with mortality risk in a multivariable adjusted analysis when examined either on a continuous scale (HR 1.45 per SD increase, 95% CI 1.05–1.99) or in tertiles, with the tertile 1 as the reference category (HR for tertile two 1.63, 95% CI 0.64–4.14; HR for tertile three 3.91, 95% CI 1.28–12.20). FGF23 but not Klotho levels are associated with mortality in hemodialysis patients. Klotho may be protective against AF.  相似文献   

11.
We measured angiotensin I-converting enzyme (ACE) activity in a human endothelial cell to characterize the intracellular signal pathways of Klotho. COS-1 cells transfected with naked mouse membrane-form klotho plasmid DNA (pCAGGS-klotho) translated proper Klotho protein. This translated Klotho protein was secreted into the culture medium. Furthermore, ACE activity in human umbilical vein endothelial cells (HUVEC) was upregulated when HUVEC were co-cultured with COS-1 cells that were pre-transfected with pCAGGS-klotho. The conditioned medium from COS-1 cells pre-transfected with pCAGGS-klotho also dose-dependently upregulated ACE in HUVEC. In addition, the conditioned medium induced time- and dose-dependent enhancement of cAMP production in HUVEC. Rp-cAMP, an inhibitor of cAMP-dependent protein kinase A (PKA), inhibited the upregulation of ACE by Klotho protein. Our results suggest that mouse membrane-form Klotho protein acts as a humoral factor to increase ACE activity in HUVEC via a cAMP-PKA-dependent pathway. These findings may provide a new insight into the mechanism of Klotho protein.  相似文献   

12.
13.
14.
Klotho is a transmembrane protein expressed primarily in kidney, parathyroid gland, and choroid plexus. The extracellular domain could be cleaved off and released into the systemic circulation. Klotho is in part effective as β-glucuronidase regulating protein stability in the cell membrane. Klotho is a major determinant of aging and life span. Overexpression of Klotho increases and Klotho deficiency decreases life span. Klotho deficiency may further result in hearing loss and cardiac arrhythmia. The present study explored whether Klotho modifies activity and protein abundance of KCNQ1/KCNE1, a K+ channel required for proper hearing and cardiac repolarization. To this end, cRNA encoding KCNQ1/KCNE1 was injected in Xenopus oocytes with or without additional injection of cRNA encoding Klotho. KCNQ1/KCNE1 expressing oocytes were treated with human recombinant Klotho protein (30 ng/ml) for 24 h. Moreover, oocytes which express both KCNQ1/KCNE1 and Klotho were treated with 10 µM DSAL (D-saccharic acid-1,4-lactone), a β-glucuronidase inhibitor. The KCNQ1/KCNE1 depolarization-induced current (IKs) was determined utilizing dual electrode voltage clamp, while KCNQ1/KCNE1 protein abundance in the cell membrane was visualized utilizing specific antibody binding and quantified by chemiluminescence. KCNQ1/KCNE1 channel activity and KCNQ1/KCNE1 protein abundance were upregulated by coexpression of Klotho. The effect was mimicked by treatment with human recombinant Klotho protein (30 ng/ml) and inhibited by DSAL (10 µM). In conclusion, Klotho upregulates KCNQ1/KCNE1 channel activity by 'mainly' enhancing channel protein abundance in the plasma cell membrane, an effect at least partially mediated through the β-glucuronidase activity of Klotho protein.  相似文献   

15.
16.
Klotho is a transmembrane protein expressed primarily in kidney, parathyroid gland, and choroid plexus. The extracellular domain could be cleaved off and released into the systemic circulation. Klotho is in part effective as β-glucuronidase regulating protein stability in the cell membrane. Klotho is a major determinant of aging and life span. Overexpression of Klotho increases and Klotho deficiency decreases life span. Klotho deficiency may further result in hearing loss and cardiac arrhythmia. The present study explored whether Klotho modifies activity and protein abundance of KCNQ1/KCNE1, a K+ channel required for proper hearing and cardiac repolarization. To this end, cRNA encoding KCNQ1/KCNE1 was injected in Xenopus oocytes with or without additional injection of cRNA encoding Klotho. KCNQ1/KCNE1 expressing oocytes were treated with human recombinant Klotho protein (30 ng/ml) for 24 h. Moreover, oocytes which express both KCNQ1/KCNE1 and Klotho were treated with 10 µM DSAL (D-saccharic acid-1,4-lactone), a β-glucuronidase inhibitor. The KCNQ1/KCNE1 depolarization-induced current (IKs) was determined utilizing dual electrode voltage clamp, while KCNQ1/KCNE1 protein abundance in the cell membrane was visualized utilizing specific antibody binding and quantified by chemiluminescence. KCNQ1/KCNE1 channel activity and KCNQ1/KCNE1 protein abundance were upregulated by coexpression of Klotho. The effect was mimicked by treatment with human recombinant Klotho protein (30 ng/ml) and inhibited by DSAL (10 µM). In conclusion, Klotho upregulates KCNQ1/KCNE1 channel activity by 'mainly' enhancing channel protein abundance in the plasma cell membrane, an effect at least partially mediated through the β-glucuronidase activity of Klotho protein.  相似文献   

17.
βKlotho is a regulator in multiple metabolic processes, while its role in cancer remains unclear. We found the expression of βKlotho was down-regulated in human hepatocellular carcinoma tissues compared with that in paired adjacent non-tumourous liver tissues. Hepatoma cells also showed decreased expression of βKlotho compared with normal hepatocyte cells. Reintroduction of βKlotho into hepatoma cells inhibited their proliferation. The anti-proliferative effect of βKlotho might be linked with G1 to S phase arrest, which was mediated by Akt/GSK-3β/cyclin D1 signaling, since forced expression βKlotho reduced the phosphorylation level of Akt and GSK-3β and induced down-regulation of cyclin D1. Furthermore, βKlotho overexpression could inhibit tumorgenesis, while constitutively activated Akt could override the suppressive effects of βKlotho in vivo. These data suggest βKlotho suppresses tumor growth in hepatocellular carcinoma.  相似文献   

18.
Klotho, a transmembrane protein, which can be cleaved off as β-glucuronidase and hormone, is released in both, kidney and choroid plexus and encountered in blood and cerebrospinal fluid. Klotho deficiency leads to early appearance of age-related disorders and premature death. Klotho may modify transport by inhibiting 1,25(OH)2D3 formation or by directly affecting channel and carrier proteins. The present study explored whether Klotho influences the activity of the Na+-coupled excitatory amino acid transporters EAAT3 and EAAT4, which are expressed in kidney (EAAT3), intestine (EAAT3) and brain (EAAT3 and EAAT4). To this end, cRNA encoding EAAT3 or EAAT4 was injected into Xenopus oocytes with and without additional injection of cRNA encoding Klotho. EAAT expressing Xenopus oocytes were further treated with recombinant human β-Klotho protein with or without β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate (DSAL). Electrogenic excitatory amino acid transport was determined as L-glutamate-induced current (Iglu) in two electrode voltage clamp experiments. EAAT3 and EAAT4 protein abundance in the Xenopus oocyte cell membrane was visualized by confocal microscopy and quantified utilizing chemiluminescence. As a result, coexpression of Klotho cRNA significantly increased Iglu in both, EAAT3 or EAAT4-expressing Xenopus oocytes. Klotho cRNA coexpression significantly increased the maximal current and cell membrane protein abundance of both EAAT3 and EAAT4. The effect of Klotho coexpression on EAAT3 and EAAT4 activity was mimicked by treating EAAT3 or EAAT4-expressing Xenopus oocytes with recombinant human β-Klotho protein. The effects of Klotho coexpression and of treatment with recombinant human β-Klotho protein were both abrogated in the presence of DSAL (10 µM). In conclusion, Klotho is a novel, powerful regulator of the excitatory amino acid transporters EAAT3 and EAAT4.  相似文献   

19.
Klotho mutant mouse (kl-/-), a mouse model for human aging, exhibits various phenotypes in a wide range of organs including arteriosclerosis, neural degeneration, skin and gonadal atrophy, pulmonary emphysema, calcification of soft tissues, and cognition impairment. Klotho mRNA, however, is expressed only in brain, kidney, reproductive organs, pituitary gland, and parathyroid gland. Therefore it remains to be elucidated how lack of Klotho protein in these limited organs leads to the variety of phenotypes. To shed light on mechanisms by which Klotho protein acts on distant targets, we examined localization of Klotho protein in brain, kidney, and reproductive organs, and analyzed brain and kidney in kl-/- mice searching for changes in target regions in these organs. In brain, Klotho proteins were localized at choroid plexus, where the proteins were dominantly localized at the apical plasma membrane of ependymal cells. In kl-/- brain, reduction of synapses was evident in hippocampus, suggesting a role of Klotho as a humoral factor in cerebrospinal fluid. Klotho proteins in kidney localized at distal renal tubules. Interestingly, in kl-/-mice, type IIa Na/phosphate (Pi) cotransporters, which function at the proximal renal tubules in reabsorption of phosphate ions, were translocated. This suggests that Klotho protein in kidney is implicated in calcium homeostasis which regulates localization of type IIa Na/Pi cotransporters via parathyroid hormone (PTH). Klotho proteins in reproductive organs were expressed only in mature germ cells, although in kl-/- mice germ cell maturation was arrested at earlier stages. Thus, Klotho proteins not only function as a humoral factor, but also are implicated in hormonal regulation, which may explain why mutation of klotho gene results in a variety of phenotypes.  相似文献   

20.
Fibrosis is a pathological process characterized by infiltration and proliferation of mesenchymal cells in interstitial space. A substantial portion of these cells is derived from residing non-epithelial and/or epithelial cells that have acquired the ability to migrate and proliferate. The mesenchymal transition is also observed in cancer cells to confer the ability to metastasize. Here, we show that renal fibrosis induced by unilateral ureteral obstruction and metastasis of human cancer xenografts are suppressed by administration of secreted Klotho protein to mice. Klotho is a single-pass transmembrane protein expressed in renal tubular epithelial cells. The extracellular domain of Klotho is secreted by ectodomain shedding. Secreted Klotho protein directly binds to the type-II TGF-β receptor and inhibits TGF-β1 binding to cell surface receptors, thereby inhibiting TGF-β1 signaling. Klotho suppresses TGF-β1-induced epithelial-to-mesenchymal transition (EMT) responses in cultured cells, including decreased epithelial marker expression, increased mesenchymal marker expression, and/or increased cell migration. In addition to TGF-β1 signaling, secreted Klotho has been shown to inhibit Wnt and IGF-1 signaling that can promote EMT. These results have raised the possibility that secreted Klotho may function as an endogenous anti-EMT factor by inhibiting multiple growth factor signaling pathways simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号