首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Norepinephrine (NE) is a neuromodulator that in multiple ways regulates the activity of neuronal and non-neuronal cells. NE participates in the rapid modulation of cortical circuits and cellular energy metabolism, and on a slower time scale in neuroplasticity and inflammation. Of the multiple sources of NE in the brain, the locus coeruleus (LC) plays a major role in noradrenergic signaling. Processes from the LC primarily release NE over widespread brain regions via non-junctional varicosities. We here review the actions of NE in astrocytes, microglial cells, and neurons based on the idea that the overarching effect of signaling from the LC is to maximize brain power, which is accomplished via an orchestrated cellular response involving most, if not all cell types in CNS.  相似文献   

2.
The role of glial cell-line derived neurotrophic factor (GDNF) and neurotrophins in the development of locus coeruleus noradrenergic neurons was evaluated. We found that two neurotrophic factors previously reported to prevent the degeneration of lesioned adult central noradrenergic neurons, GDNF and neurotrophin 3 (NT3), do not play significant roles in the prenatal development of locus coeruleus noradrenergic neurons, as demonstrated by: (1) the lack of alterations in double Gdnf/Nt3 null mutant mice; and (2) the lack of survival-promoting effects of GDNF and/or NT3 in rat E13.5 primary cultures. In contrast, null mutant mice for TrkB, the tyrosine kinase receptor for brain-derived neurotrophic factor and neurotrophin 4, displayed a clear loss of locus coeruleus noradrenergic neurons. In accordance with this, treatment of rat E13.5 primary cultures with TrkB ligands prevented the early loss of noradrenergic neurons and maintained their survival for up to 6 days in vitro. Moreover, an additional 5-10-fold increase in the number of tyrosine hydroxylase positive noradrenergic neurons was detected after 12 hours in culture. This second effect of TrkB ligands involved neither proliferation nor survival, because the number of BrdU- or TUNEL-positive noradrenergic neurons did not change and the effect was elicited by delayed administration of either factor. Because TrkB ligands increased the number of tyrosine hydroxylase-positive cells expressing Phox2a, a paired homeodomain protein required for the development of locus coeruleus noradrenergic neurons, but did not affect the number of Phox2a-positive tyrosine hydroxylase-negative cells, our results suggest that the second effect of TrkB ligands may involve promoting or inducing a noradrenergic phenotype. In summary, our findings suggest that, unlike NT3 and GDNF, TrkB ligands are required and sufficient to promote the development of central noradrenergic neurons.  相似文献   

3.
The locus coeruleus (LC) is a major target of several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. However, very little is known of the trophic requirements of LC neurons. In the present work, we have studied the biological activity of neurotrophic factors from different families in E15 primary cultures of LC neurons. In agreement with previous results, neurotrophin-3 (NT-3) and also glial cell line- derived neurotrophic factor (GDNF) increased the number of embryonic LC noradrenergic neurons in the presence of serum. In serum-free conditions, none of the factors tested, including NT-3, GDNF, neurturin, basic fibroblast growth factor (bFGF), or bone morphogenetic protein-2 (BMP-2), promoted the survival of tyrosine hydroxylase (TH)-immunoreactive neurons at 6 days in vitro. However, when BMP-2 was coadministered with any of these factors the number of LC TH-positive neurons increased twofold. Similar results were obtained by cotreatment of LC neurons with forskolin and NT-3, bFGF, or BMP-2. The strongest effect (a fourfold increase in the number of TH-positive cells) was induced by cotreatment with forskolin, BMP-2, and GDNF. Thus, our results show that LC neurons require multiple factors for their survival and development, and suggest that activation of LC neurons by bone morphogenetic proteins and cAMP plays a decisive role in conferring noradrenergic neuron responsiveness to several trophic factors.  相似文献   

4.
The locus coeruleus (LC) is a major target of several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. However, very little is known of the trophic requirements of LC neurons. In the present work, we have studied the biological activity of neurotrophic factors from different families in E15 primary cultures of LC neurons. In agreement with previous results, neurotrophin‐3 (NT‐3) and also glial cell line‐ derived neurotrophic factor (GDNF) increased the number of embryonic LC noradrenergic neurons in the presence of serum. In serum‐free conditions, none of the factors tested, including NT‐3, GDNF, neurturin, basic fibroblast growth factor (bFGF), or bone morphogenetic protein‐2 (BMP‐2), promoted the survival of tyrosine hydroxylase (TH)‐immunoreactive neurons at 6 days in vitro. However, when BMP‐2 was coadministered with any of these factors the number of LC TH‐positive neurons increased twofold. Similar results were obtained by cotreatment of LC neurons with forskolin and NT‐3, bFGF, or BMP‐2. The strongest effect (a fourfold increase in the number of TH‐positive cells) was induced by cotreatment with forskolin, BMP‐2, and GDNF. Thus, our results show that LC neurons require multiple factors for their survival and development, and suggest that activation of LC neurons by bone morphogenetic proteins and cAMP plays a decisive role in conferring noradrenergic neuron responsiveness to several trophic factors. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 291–304, 2002; DOI 10.1002/neu.10034  相似文献   

5.
The effect of a long-term administration of the antidepressant milnacipran on the function of the serotonergic (5-HT) and noradrenergic (NE) systems was studied using single cell recording of CA3 hippocampal pyramidal cells in chloral hydrate-anesthetized male Sprague-Dawley rats, and in vitro [3H]5-HT release measurement from hippocampal slices. The sensitivity of neither the extrasynaptic nor that of the postsynaptic 5-HT1A receptors of the pyramidal neurons was altered, as indicated by their unchanged responsiveness to the microiontophoretic application of 5-HT, and by the unchanged effect of the electrical stimulation at low frequency of the ascending 5-HT bundle, respectively. Increasing the frequency of stimulation (from 1 to 5 Hz) decreased its efficacy in control rats; the milnacipran treatment abolished this phenomenon. This cannot be attributed to a desensitisation of the terminal 5-HT1B autoreceptor, since the suppressive effect of 5-HT agonist 5-carboxyamidotryptamine on [3H]5-HT release was enhanced in milnacipran-treated rats. As for the NE system, the unchanged suppressing effect of microiontophoretic applications of NE and that of the 5 Hz stimulation in the locus coeruleus (LC) on the firing activity of pyramidal neurons indicates that the milnacipran treatment not altered the sensitivity of extrasynaptic alpha2- and postsynaptic alpha1-adrenergic receptors on pyramidal cells, as well as that of the presynaptic alpha2-autoreceptor on NE terminals. The decreased inhibitory effect of NE on the [3H]5-HT release in milnacipran-treated rats revealed that this treatment results in a desensitisation of the presynaptic alpha2-heteroreceptor located on serotonergic terminals. Taken together with the decreased suppressive effect of a low frequency of stimulation of the NE tract, the present results suggest that long-term milnacipran treatment enhances the efficacy of the 5-HT and reduces that of the NE neurotransmission.  相似文献   

6.
Noradrenergic neurons of the rat locus coeruleus (LC) respond to noxious stimuli or peripheral nerve stimulation with a burst of spikes followed by a period of suppressed activity. During this period of post-activation suppression, responses to additional stimuli were attenuated. After antidromic activation of the LC there was also a period of reduced responsivity, presumably mediated by inhibitory recurrent LC collaterals. The suppression of LC unit firing which follows nerve stimulation was reduced by piperoxane, an α-adrenergic antagonist which is known to block the norepinephrine-mediated autoinhibitory action of recurrent LC axon collaterals. The specificity of piperoxane in blocking norepinephrine was shown by the fact that it did not antagonize several other putative transmitters in the LC (i.e., GABA, glycine, and met-enkephalin). It is concluded that the post-activation reduction of LC neuronal responsivity may be mediated in part through noradrenergic autoinhibitory mechanisms within the LC.  相似文献   

7.
Abstract: Pre- and postsynaptic neurochemical markers for several afferent and intrinsic neuronal systems were measured in the mouse mutant, reeler. In the neocortex of the reeler, the relative positions of the polymorphic and pyramidal cells were inverted but this was not associated with alterations in the content/mg protein of synaptic markers for noradrenergic [tyrosine hydroxylase (TH), norepinephrine (NE), NE uptake], cholinergic [choline acetyltransferase (ChAT), quinuclidinyl benzilate (QNB) binding], γ-aminobutyric acid (GABA)ergic (glutamate decarboxylase, GABA uptake, GABA receptors, GABA) or glutamatergic (glutamate uptake, receptors, glutamate) neurons. The laminar distributions of the hippocampal neurons were disrupted and associated with mild hypoplasia; consistent with this alteration, the content/mg protein of some GABAergic (GABA uptake) and glutamatergic (glutamate receptors) markers were slightly increased. The reeler cerebellum was characterized not only by misalignment of neurons but also by a marked loss of granule cells. Commensurate with the degree of cerebellar hypoplasia, the total amount of glutamate content, [3H]l-glutamate uptake activity, [3H]muscimol, and [3H]QNB ligand binding were reduced in the reeler cerebellum. In contrast, presynaptic markers for the noradrenergic (TH, NE) climbing fibers and the cholinergic (ChAT) mossy fibers were significantly increased/mg protein but their total content/cerebellum was near normal. Our data support suggestions that cerebellar granule cells use glutamate as their neurotransmitter and contain GABA and cholinergic receptors. The findings also suggest that misplaced cortical and cerebellar neurons retain normal neurochemical characteristics and that the morphologic alterations do not markedly affect the quantitative development of aminergic afferent systems.  相似文献   

8.
Y H Huang 《Life sciences》1979,25(9):739-746
The tricyclic antidepressant drug desipramine (DMI) produces multiple effects on noradrenergic nervous systems. This study attempted to determine the net outcome of these effects by evaluating the firing rate of noradrenergic postsynaptic neurons. Hippocampal pyramidal cells inhibited by stimulation of the nucleus locus coeruleus were used as noradrenergic postsynaptic neurons. An intraperitoneal injection of DMI (5 or 10 mg/kg) inhibited 14 of 23 cells studied and an intravenous injection (0.3 or 0.6 mg/kg) supressed 16 of 16 cells studied. The inhibition was pronounced and lasted 18 min (i.p.) or 8 min (i.v.). It was blocked by either locus coeruleus lesions or pretreatment with reserpine and α-methyl-p-tyrosine, which suggests that the inhibition was mediated by norepinephrine. These results indicate that the net effect of DMI on noradrenergic systems is facilitation.  相似文献   

9.
The influence of an i.v. perfusion of buspirone on the firing rate of central monoaminergic neurons was studied in rats anaesthetized with chloral hydrate. Buspirone increased the firing rate of A10 dopaminergic neurons and blocked the inhibitory effect of iontophoretically applied dopamine on these neurons. A slight attenuation of the inhibitory effect of iontophoretically applied GABA was also observed. Buspirone increased the firing rate of locus coeruleus (LC) noradrenergic neurons and induced an attenuation of the inhibitory effect of iontophoretically applied clonidine. A slight attenuation of the inhibitory effect of iontophoretically applied GABA was also observed. Furthermore buspirone was a very potent inhibitor of the firing rate of dorsal raphe (DR) serotonergic neurons. It is concluded that activation of A10 neurons by buspirone is due to blockade of dopaminergic autoreceptors and that activation of LC neurons is related to blockade of alpha-2 autoreceptors. The significance of the interaction with gabaergic inhibition is unclear. The mechanisms involved in the inhibition of DR neurons remain to be investigated.  相似文献   

10.
Noradrenergic and corticotropin-releasing factor (CRF) neuronal systems within the brain have been implicated in stress and anxiety. Synaptic release of cerebral norepinephrine (NE) is increased during stress, and following intracerebral CRF administration. Benzodiazepines are commonly used anxiolytic drugs but information on their effects on the stress- and CRF-related release of NE is limited. We have used in vivo microdialysis to test the effects of the benzodiazepine, chlordiazepoxide (CDP) on the noradrenergic responses to footshock and intracerebroventricular CRF in the medial hypothalamus and the medial prefrontal cortex (PFM) of freely moving rats. Footshock (60 x 0.1-0.2 mA shocks in 20 min) significantly increased microdialysate concentrations of NE in the first sample collected after initiating the footshock. In the hypothalamus, microdialysate NE was augmented 64% above baseline. A second footshock session (100 min after the first footshock) increased microdialysate NE to 313% of the baseline. Thus the noradrenergic responses to footshock were enhanced by preceding footshocks. CRF (100 ng) administered into the locus coeruleus (LC) almost tripled microdialysate concentrations of NE in the PFM. CDP (5mg/kg, i.p.) had no statistically significant effects on the basal dialysate concentrations of NE, but it significantly attenuated both footshock- and CRF-induced increases in dialysate NE. CDP may exert a direct inhibitory effect on the noradrenergic neurons, alter the input to LC noradrenergic neurons, or alter the ability of CRF to activate the LC noradrenergic system.  相似文献   

11.
Noradrenergic neurons of the locus coeruleus (LC) express the receptor tyrosine kinase c-ret, which binds ligands of the glial cell line-derived neurotrophic factor (GDNF) family. In the present study, we evaluated the function of neurturin (NTN), a GDNF family ligand whose function on LC neurons is unknown. Interestingly, we found that tyrosine hydroxylase (TH)-positive neurons in the LC express both GFRalpha1 and 2 receptors in a developmentally regulated fashion, suggesting a function for their preferred ligands: GDNF and NTN, respectively. Moreover, our results show that NTN mRNA expression is developmentally down-regulated in the LC and peaks in the postnatal hippocampus and cerebral cortex, during the target innervation period. In order to examine the function of NTN, we next performed LC primary cultures, and found that neither GDNF nor NTN promoted the survival of TH-positive neurons. However, both factors efficiently induced neurite outgrowth in noradrenergic neurons (147% and 149% over controls, respectively). Similarly, grafting of fibroblast cell lines engineered to express high levels of NTN did not prevent the loss of LC noradrenergic neurons in a 6-hydroxydopamine (6-OHDA) lesion model, but induced the sprouting of TH-positive cells. Thus our findings show that NTN does not promote the survival of LC noradrenergic neurons, but induces neurite outgrowth in developing noradrenergic neurons in vitro and in a model of neurodegeneration in vivo. These data, combined with data in the literature, suggest that GDNF family ligands are able to independently regulate neuronal survival and/or neuritogenesis.  相似文献   

12.
The nucleus locus coeruleus (LC) has been implicated in the processing of spinal reflexes following noxious stimuli. It has been demonstrated that noxious stimuli activate LC neuronal firing, but little is known about the neurochemical changes that might occur following such activation. To determine the effects of different noxious stimuli on LC neuronal activity, anaesthetized rats were exposed to mechanical (tail pinch), thermal (55 degrees C water), and chemical (5% Formalin injected in the hind paw) stimuli; the catechol oxidation current (CA.OC), an index of noradrenergic neuronal activity, in the locus coeruleus was monitored using differential normal pulse voltammetry. In addition, the effect of the opioid antagonist naloxone on the CA.OC in the LC was examined. Exposure to both mechanical and chemical stimuli significantly increased CA.OC indicating an increase in LC noradrenergic neuronal activity, while the thermal stimulus had no effect. Treatment with naloxone (1 mg/kg i.v.) had no effect on CA.OC in the LC. The results show a differential responsiveness of LC noradrenergic neurons to different modes of noxious stimuli and fail to demonstrate a tonic opioid regulation of these neurons in the anaesthetized rat.  相似文献   

13.
In the present study, we investigated the involvement of rhombomere 1 patterning proteins in the regulation of the major noradrenergic centre of the brain, the locus coeruleus. Primary cultures of rat embryonic day 13.5 locus coeruleus were treated with fibroblast growth factor-8, noggin and members of the bone morphogenetic and Wnt protein families. We show that bone morphogenetic proteins 2, 5 and 7 increase and noggin decreases the number of tyrosine hydroxylase-positive locus coeruleus neurons. Interestingly, from all Wnts expressed in the first rhombomere by embryonic day 12.5 in the mice, we only found expression of wnt5a mRNA in the vicinity of the locus coeruleus. In agreement with this finding, from all Wnts studied in vitro, only Wnt5a increased the number of tyrosine hydroxylase-positive neurons in locus coeruleus cultures. Finally, we also found that fibroblast growth factor-8 increased the number of tyrosine hydroxylase-positive cells in locus coeruleus cultures. Neither of the identified factors affected the survival of tyrosine hydroxylase-positive locus coeruleus noradrenergic neurons or the proliferation of their progenitors or neurogenesis. Instead, our results suggest that these patterning signals of rhombomere 1 may work to promote the differentiation of noradrenergic progenitors at later stages of development.  相似文献   

14.
Y H Huang 《Life sciences》1979,25(8):709-715
Chronic administration of tricyclic antidepressant drugs has been shown to exert multiple influences on various mechanisms of noradrenergic nervous systems. To determine the overall effect of these influences, this study examined the effect of long-term desipramine administration on the firing rate of noradrenergic postsynaptic neurons, specifically, those in the rat hippocampus that were inhibited by the nucleus locus coeruleus. Daily injections for 3 weeks of 5 or 10 mg/kg desipramine resulted in a 32% or 49% increase, respectively, of hippocampal cell activity, suggesting that long-term desipramine treatment is antagonistic to noradrenergic functions.  相似文献   

15.
D K Pitts  J Marwah 《Life sciences》1986,38(13):1229-1234
The effects of intravenous (i.v.) cocaine HCl on single identified spontaneously firing noradrenergic neurons in the nucleus locus coeruleus (LC) were studied in rats in vivo. Cocaine (0.25-1 mg/kg) produced inhibition of spontaneously firing LC neurons, which was reversed by the administration of the selective alpha 2-adrenoceptor antagonist, piperoxane (250 micrograms/kg, i.v.). Procaine, a local anesthetic that is structurally related to cocaine, did not inhibit LC neurons in doses up to 4 mg/kg, i.v. These results suggest that cocaine in low doses has significant central sympathomimetic effects at the single noradrenergic neuron level and that the inhibition of spontaneous activity may be mediated by alpha 2-adrenoceptors. Our results also indicate that cocaine in pharmacologically relevant doses, can significantly affect central alpha 2-adrenoceptor regulatory processes.  相似文献   

16.
The cell bodies of ascending noradrenergic neurons in the brain are located predominantly in the locus coeruleus. An in vitro model of locus coeruleus neurons could prove to be a useful tool in the investigation of noradrenergic neural networks and their associated pathophysiologies. The CATH.a cell line demonstrates some of the properties expected of locus coeruleus neurons, and the present study investigated the neurotransmitter uptake and release properties of the CATH.a cells. It was surprising that the CATH.a cells failed to accumulate [3H]noradrenaline ([3H]NA), suggesting the lack of a functional NA transporter. RT-PCR supported this finding by demonstrating the absence of NA transporter mRNA. Treatment of CATH.a cells with various differentiating agents failed to increase the [3H]NA uptake. Endogenous NA release was studied using HPLC detection, which revealed a lack of depolarisation-induced increases in endogenous NA release. A human NA transporter-transfected CATH.a cell line was generated (termed RUNT), and a study of the [3H]NA uptake revealed that the RUNT cells displayed significant uptake that could be blocked by cocaine (10 microM). Furthermore, the uptake capacity could be dramatically increased by differentiation of the cells with dibutyryl cyclic AMP (1 mM) for 24 h. Using dibutyryl cyclic AMP-differentiated RUNT cells, high K+ concentrations (50 mM) significantly increased [3H]NA release above basal levels.  相似文献   

17.
Disruptions of glutamatergic and noradrenergic signaling have been postulated to occur in depressive disorders. Glutamate provides excitatory input to the noradrenergic locus coeruleus (LC). In this study, the location of immunoreactivity against neuronal nitric oxide synthase (nNOS), an intracellular mediator of glutamate receptor activation, was examined in the normal human LC, and potential changes in nNOS immunoreactivity that might occur in major depression were evaluated. Tissue containing LC, and a non-limbic, LC projection area (cerebellum) was obtained from 11 to 12 matched pairs of subjects with major depression and control subjects lacking major psychiatric diagnoses. In the LC region, nNOS immunoreactivity was found in large neuromelanin-containing neurons, small neurons lacking neuromelanin, and glial cells. Levels of nNOS immunoreactivity were significantly lower in the LC (- 44%, p < 0.05), but not in the cerebellum, when comparing depressed with control subjects. nNOS levels were positively correlated with brain pH values in depressed, but not control, subjects in both brain regions. Low levels of nNOS in the LC may reflect altered excitatory input to this nucleus in major depression. However, pH appears to effect preservation of nNOS immunoreactivity in subjects with depression. This factor may contribute, in part, to low levels of nNOS in depression.  相似文献   

18.
The spontaneous activity of locus coeruleus (LC) noradrenergic neurons was assessed by single unit recording in adult recovered rats undernourished at perinatal age as compared with wellnourished animals. Locus coeruleus activity, measured by the firing rate of noradrenergic neurons and the number of spontaneously active cells/track was significantly higher in deprived rats than in controls. In addition, dose-response curves for the inhibitory LC activity of clonidine showed a shift to the right in deprived animals indicating a subsensitivity of alpha2-adrenergic autoreceptors. This fact suggests an alteration in the negative feedback mechanism mediated by somatodentritic alpha2 autoreceptors that modulate the activity of LC neurons, and may account for the behavioral alterations attributed to early undernutrition. Repeated desipramine (DMI) administration to deprived rats reduced LC activity to values comparable to controls, which were not affected after a similar treatment. These data extend to previous reports on long-lasting or permanent plastic changes in the CNS induced by early undernutrition, which may be reverted by pharmacological manipulations. In addition, these results support the hypothesis that alterations induced by early undernutrition are in the same direction as and resemble those described for patients with panic disorders. Furthermore, together with behavioral alterations and selective anxiolytic effect of DMI and other drugs with antipanic effects described in early malnourished rats, the present data support the proposal that perinatally deprived rats may be a useful model for screening drugs with potential antipanic activity.  相似文献   

19.
Neonatal injection of 6-OHDA produces defects of sensory attention and emotional reactions in the rats. Possibility of compensation of these behavioural defects by the grafts of embryonal locus coeruleus (LC) tissue into the neocortex was investigated in male rats of the Wistar strain. Histological analysis revealed spindle-shaped and oval cells typical of LC in the neocortex of all animals with LC grafts. Characteristic green fluorescence of these noradrenergic cells was demonstrated by Falck's method. Normalization of the orienting reaction to sensory (tactile and visual) stimuli, as well as of frustration effects was observed in the animals with LC grafts, but not in the control groups with saline injections or hippocampal grafts. The data show the possibility of stable compensation of the behavioural defects resulting from neonatal injection of 6-OHDA by the grafts of embryonal tissue containing noradrenergic neurones.  相似文献   

20.
Phenothiazine derivatives were examined as potential antagonists of the inhibitory noradrenergic synapses from the nucleus locus coeruleus to rat cerebellar Purkinje cells. Fluphenazine, and its thioxanthine analogue, flupenthixol, antagonized the inhibitory action of norepinephrine, when iontrophoretically applied to single cells. Alpha-flupenthixol was generally more active than the beta isomer. Fluphenazine had no appreciable effect on inhibitions induced by iontophoresis of GABA or cyclic AMP. Parenteral fluphenazine also blocked the inhibition of Purkinje cells produced by the stimulation of the noradrenergic pathway from locus coeruleus, but basket and stellate cell inhibitory inputs to Purkinje cells were unaffected. These data suggest that fluphenazine can specifically block a known central adrenergic inhibitory pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号