首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The use of polymorphic DNA segments as markers for the gene for the multiple endocrine neoplasia (MEN) syndrome, type 2a, allows the identification of family members at high risk for developing medullary carcinoma of the thyroid and other tumors, especially pheochromocytoma. Several families have also been identified in which medullary thyroid carcinoma is inherited, but pheochromocytoma is not seen. We have analysed 18 families, 9 with MEN 2A and 9 with medullary carcinoma of the thyroid without pheochromocytoma, with probes specific for the pericentromeric region of chromosome 10 and conclude that the mutations for the two presentations are closely situated. Genetic heterogeneity of the susceptibility locus was not seen among this sample of 18 families. The genetic mutation for medullary carcinoma was in disequilibrium with the marker alleles of the two closely linked probes. IRBPH4 and MCK2. These data suggest that different mutant alleles of the same gene or closely linked mutations account for the variation in penetrance of pheochromocytoma in families with hereditary, medullary thyroid carcinoma.  相似文献   

2.
Gene(s) for the autosomal dominant endocrine cancer syndromes, multiple endocrine neoplasia type 2A (MEN2A), multiple endocrine neoplasia type 2B (MEN2B), and familial medullary thyroid carcinoma (MTC1) all map to the pericentromeric region of chromosome 10. Predictive testing for the inheritance of mutant alleles in individuals at risk for these disorders has been limited by the availability of highly informative and closely linked flanking markers. We describe the development of eight new markers, including two PCR-based dinucleotide repeat polymorphisms and six RFLPs that flank the disease loci. One of the dinucleotide repeat markers (sJRH-1) derives from the RBP3 locus on 10q11.2 and has a PIC of .88. The other dinucleotide repeat (sTCL-1) defines a new locus, D10S176, that maps by in situ hybridization to 10p11.2 and has a PIC of .68. We have constructed a new genetic linkage map of the pericentromeric region of chromosome 10, on the basis of 13 polymorphisms at six loci, which places the MEN2A locus between the dinucleotide repeat markers, with odds of 5,750:1 over the next most likely position. Using this set of markers, predictive genetic testing of 130 at-risk individuals from six families segregating MEN2A revealed that 95% were jointly informative with flanking markers, representing a significant improvement in genetic testing capabilities.  相似文献   

3.
The gene responsible for multiple endocrine neoplasia type 2A (MEN 2A) has been localized to the pericentromeric region of chromosome 10. Several markers that fail to recombine with MEN2A have been identified, including D10Z1, D10S94, D10S97, and D10S102. Meiotic mapping in the MEN2A region is limited by the paucity of critical crossovers identified and by the dramatically reduced rates of recombination in males. Additional approaches to mapping loci in the pericentromeric region of chromosome 10 are required. We have undertaken the generation of a detailed physical map by radiation hybrid mapping. Here we report the development of a radiation hybrid panel and its use in the mapping of new DNA markers in pericentromeric chromosome 10. The radiation-reduced hybrids used for mapping studies all retain small subchromosomal fragments that include both D10S94 and D10Z1. One hybrid was selected as the source of DNA for cloning. One hundred five human recombinant clones were isolated from a lambda library made with pp11A DNA. We have completed regional mapping of 22 of those clones using our radiation hybrid mapping panel. Seven markers have been identified and, when taken together with previously meiotically mapped markers, define eight radiation hybrid map intervals between D10S34 and RBP3. The identical order is found for a number of these using either the radiation hybrid mapping panel or the meiotic mapping panel. We believe that this combination cloning and mapping approach will facilitate the precise positioning of new markers in pericentromeric chromosome 10 and will help in refining further the localization of MEN2A.  相似文献   

4.
The syndrome of multiple endocrine neoplasia type 2B (MEN 2B) resembles that of MEN 2A in that both include medullary carcinoma of the thyroid, pheochromocytoma, and autosomal dominant inheritance, but is distinct in that MEN 2B patients have neuromas of the mucous membranes. MEN2A has been linked to RBP3, D10S5, FNRB, D10S15, and D10Z1 near the centromere of chromosome 10. We examined linkage between MEN2B and RFLPs on chromosome 10 in all available members in two or three generations of 14 kindreds. The centromere marker D10Z1 was linked to MEN2B with a peak lod score of 5.42 at theta = 0.02. One possible recombinant was observed between D10Z1 and MEN2B. Multipoint analysis of RFLPs at FNRB, D10Z1, RBP3, and D10S15 gave a peak lod score of 7.12 at the midpoint between D10Z1 and RBP3 on the long arm (band q11). The most likely gene order FNRB-D10Z1-MEN2B was 27 times more likely than MEN2B-FNRB-D10Z1 and 31/2 times more likely than FNRB-MEN2B-D10Z1. Additional data will be required to establish the order of these loci with confidence.  相似文献   

5.
The gene for multiple endocrine neoplasia type 2A (MEN2A) has been mapped to the pericentromeric region of chromosome 10 by linkage analysis. Thirty-four families with multiple cases of medullary carcinoma of the thyroid (MTC), including 24 families with origins in France, have been typed with nine polymorphic markers spanning the centromere of chromosome 10. No recombination was observed between the MEN2A locus and either of the four loci D10Z1 (lod score 12.79), D10S102 (lod score 6.38), D10S94 (lod score 7.76), and D10S34 (lod score 5.94). There was no evidence for genetic linkage heterogeneity in the panel of 34 families. Haplotypes were constructed for a total of 11 polymorphisms in the MEN2A region, for mutation-bearing chromosomes in 24 French families and for 100 spouse controls. One haplotype was present in four MEN2A families but was not observed in any control (P less than .01). Two additional families share a core segment of this haplotype near the MEN2A gene. It is likely that these six families have a common affected ancestor. Because the incidence of pheochromocytoma among carriers varies from 0% to 74% within these six families, it is probable that additional factors modify the expression of the MEN2A gene.  相似文献   

6.
A linkage group of five DNA markers on human chromosome 10   总被引:3,自引:0,他引:3  
Five chromosome 10 DNA markers (D10S1, D10S3, D10S4, D10S5, and RBP3) were typed in five large pedigrees with multiple endocrine neoplasia type 2A (MEN-2A) and in five non-MEN-2A pedigrees. Linkage analyses showed that these loci and the locus for MEN-2A (MEN2A) are in one linkage group spanning at least 70 cM. The order of the marker loci is RBP3-D10S5-D10S3-D10S1-D10S4, with interlocus recombination frequencies of 7, 13-19, 19, and 19%, respectively, all on the same side of MEN2A. Analyses of sex-specific recombination frequencies indicated no significant differences between males and females for any of the map intervals studied. Previous localization of D10S5 and RBP3 to the proximal region of the long arm and the pericentric region, respectively, comparison of results with other studies, and our preliminary results with other chromosome 10 markers suggest that the D10S4 end of the map extends into the long arm. Our linkage map has been constructed using only two- and three-locus analyses. It will be possible to combine our results with those of other groups to construct a more detailed and accurate genetic map of chromosome 10.  相似文献   

7.
Multiple endocrine neoplasia type 2A (MEN2A) is a rare cancer syndrome that is inherited in an apparently autosomal dominant fashion. Previous linkage studies had assigned the MEN2A locus to chromosome 10 in the pericentromeric region. We recently have described several new easily scorable RFLPs for the chromosome 10-specific alpha satellite DNA (the D10Z1) locus that is known, on the basis of previous in situ hybridization experiments, to lie at the centromere. We report here tight linkage between MEN2A and D10Z1, as demonstrated by a maximum lod score of 12.02 at the recombination frequency of zero (1-lod-unit support interval 0-4 cM), indicating that the genetic defect in MEN2A lies in the immediate vicinity of the centromere. By means of a set of ordered polymorphic DNA markers from the pericentromeric region, multipoint as well as pairwise linkage analyses place the MEN2A locus at the middle of a small region (approximately 11 cM) bracketing the centromere with FNRB (at 10p11.2) and RBP3 (at 10q11.2) on either side, providing further support for the centromeric location of the MEN2A locus. Marked sex difference in recombination frequencies exists in this pericentromeric region: significantly (P less than .01) more female than male crossovers were observed across all of the adjacent intervals D10S24-FNRB, FNRB-D10Z1, and D10Z1-RBP3. However, a sex difference was not seen in the 7-cM interval from RBP3 to D10S5, suggesting that large variation in the sex difference in recombination can occur over small chromosomal regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Combined somatic cell hybrid and linkage studies between D10S94 and five pericentromeric loci (FNRB, D10Z1, MEN2A, RBP3, and D10S15) have localized the new DNA sequence pcl1/A1S-6-c23 at D10S94 to 10q11.2. No recombinants were observed between D10S94 and D10Z1 or MEN2A. D10S94 maps in proximal 10q11.2 very near to MEN2A. There are three possible orders for the six loci that we investigated from the centromeric region of chromosome 10. At present the genetic data do not allow us to order MEN2A with respect to D10Z1 and D10S94. The three possible orders are FNRB-D10Z1-D10S94-MEN2A-RBP3-D10S15, FNRB-D10Z1-MEN2A-D10S94-RBP3-D10S15, and FNRB-MEN2A-D10Z1-D10S94-RBP3-D10S15. In view of the fact that no recombinants between D10S94 and MEN2A or between D10S94 and D10Z1 were observed, the combined haplotypes formed from RFLPs and D10Z1 and D10S94 will increase the informativeness and accuracy of genotype prediction for at-risk members of the families having the MEN 2A syndrome, particularly when the affected parent is female. The localization of D10S94 with respect to MEN2A will prove valuable in experiments directed toward cloning the MEN2A locus.  相似文献   

9.
Medullary thyroid carcinoma (MTC) occurs as a component of three well-described autosomal dominant familial cancer syndromes. Multiple endocrine neoplasia type 2A (MEN 2A) is characterized by MTC, pheochromocytomas, and parathyroid hyperplasia. Patients with the rarer multiple endocrine neoplasia type 2B (MEN 2B) syndrome develop MTC and pheochromocytomas, as well as mucosal neuromas, ganglioneuromatosis of the gastrointestinal tract, and a characteristic "marfanoid" habitus. Finally, MTC is transmitted in an autosomal dominant pattern in some families without associated pheochromocytomas or parathyroid hyperplasia (familial medullary thyroid carcinoma, MTC1(2). Sixty-one members of two well-characterized kindreds segregating MTC1 and 34 [corrected] members of six families segregating MEN2B were genotyped using a panel of RFLP probes from the pericentromeric region of chromosome 10 near a locus for MEN 2A. Statistically significant linkage was observed between the chromosome 10 centromere-specific marker D10Z1 and MTC1 (maximum pairwise lod score 5.88 with 0% recombination) and D10Z1 and MEN2B (maximum pairwise lod score 3.58 with 0% recombination). A maximum multipoint lod score of 4.08 was obtained for MEN2B at the position of D10Z1. In addition, 92 members of a previously unreported large MEN2A kindred were genotyped, and linkage to the pericentromeric region of chromosome 10 is reported (maximum pairwise lod score of 11.33 with 0% recombination between MEN2A and RBP3). These results demonstrate that both a locus for familial MTC and a locus for MEN 2B map to the pericentromeric region of chromosome 10, in the same region as a locus for MEN 2A. The finding that each of these three clinically distinct familial cancer syndromes maps to the same chromosomal region suggests that all are allelic mutations at the same locus or represent a cluster of genes involved in the regulation of neuroendocrine tissue development.  相似文献   

10.
Close linkage of MEN2A with RBP3 locus in Japanese kindreds   总被引:7,自引:0,他引:7  
Summary The gene responsible for multiple endocrine neoplasia type 2A (MEN2A) has recently been assigned to the pericentromeric region of chromsome 10 in European Caucasian kindreds by linkage analysis using a DNA marker, interstitial retinol-binding protein 3 (RBP3). We have found tight linkage between the MEN2A and RBP3 loci in Japanese MEN2A kindreds. The maximum lod score is 5.19 at a recombination fraction of 0.00. This result suggests that mutation of a certain gene close to RBP3 is responsible for MEN2A irrespective of ethnic backgrounds.  相似文献   

11.
Summary Extensive sequence polymorphisms exist in the chromosome 10 alpha satellite DNA (the D10Z1 locus). Polymorphic morphs revealed by the enzymes PstI, EcoRV, and HincII, can be unambiguously scored and make this centromeric region an excellent genetic marker for the study of multiple endocrine neoplasia, type 2A (MEN2A), as well as for chromosome 10 linkage studies in general. Strong positive lod scores and linkage distance relationships between D10Z1 and DNA markers from the chromosome 10 pericentromeric region, especially FNRB and RBP3, known to be on either side of the centromere, provide independent support for mapping of all these loci.  相似文献   

12.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder with a high penetrance characterized by tumors of the parathyroid glands, the endocrine pancreas, and the anterior pituitary. TheMEN1gene, a putative tumor suppressor gene, has been mapped to a 3- to 8-cM region in chromosome 11q13 but it remains elusive as yet. We have combined the efforts and resources from four laboratories to form the European Consortium on MEN1 with the aims of establishing the genetic and the physical maps of 11q13 and of further narrowing the MEN1 region. A 5-Mb integrated map of the region was established by fluorescencein situhybridization on both metaphase chromosomes and DNA fibers, by hybridization to DNA from somatic cell hybrids containing various parts of human chromosome 11, by long-range restriction mapping, and by characterization of YACs and cosmids. Polymorphic markers were positioned and ordered by physical mapping and genetic linkage in 86 MEN1 families with 452 affected individuals. Two critical recombinants identified in two affected cases placed theMEN1gene in an ≈2-Mb region aroundPYGM,flanked by D11S1883 and D11S449.  相似文献   

13.
In MEN2A both familial and sporadic cases are known. The familial cases show a dominant pattern of inheritance. In these respects, MEN2A resembles other tumors in whose etiology so-called tumor suppressor genes play a decisive role. The MEN2A locus has been assigned to chromosome 10 by linkage studies. Analysis of tumor DNA from 42 patients shows that markers on chromosome 10 were lost in only one tumor. Thus, these results contrast with previous studies which show that tumor development is generally associated with the loss of the whole or substantial parts of the chromosome on which the putative tumor suppressor gene is located.  相似文献   

14.
Summary We have examined 30 families with multiple endocrine neoplasia type 2a (MEN2A). Linkage studies indicate that the gene for MEN2A is located on chromosome 10, tightly linked to the D10Z1 locus.  相似文献   

15.
Multiple endocrine neoplasia type 1 (MEN 1) is inherited as an autosomal dominant disorder, characterized by hyperplasia and neoplasia in several endocrine organs. The MEN 1 gene, which is most probably a tumor suppressor gene, has been localized to a 900-kb region on chromosome 11q13. The human phosphatidylinositol-specific phospholipase C β3 (PLC β3) gene, which is located within this region, was considered to be a good candidate for the MEN 1 gene. In this study, the structure and expression of the PLC β3 gene in MEN 1 patients were investigated in more detail, to determine its potential role in MEN 1 tumorigenesis. Southern blot analysis, using blood and tumor DNA from affected persons from seven different MEN 1 families, did not reveal structural abnormalities in the PLC β3 gene. To detect possible point mutations, or other small structural aberrations, direct sequencing of PLC β3 cDNAs from two affected persons from two different MEN 1 families was performed, but no MEN 1-specific abnormalities were revealed. Several common nucleotide sequence polymorphisms were detected in these cDNAs, proving that both alleles of the PLC β3 gene were expressed and analyzed. In conclusion, these results exclude the PLC β3 gene as a candidate gene for MEN 1. Received: 20 March 1996  相似文献   

16.
Thirty-one new RFLP systems corresponding to 24 loci have been identified from a chromosome 10-specific cosmid library. Twelve of the markers on the proximal long arm (cen-q11.2) of this chromosome, including four RFLP systems for the RET locus, will be especially useful in efforts to identify the gene responsible for multiple endocrine neoplasia type 2A (MEN2A). The new panel of markers also may contribute to fine-scale mapping of tumor suppressor genes associated with glioblastoma multiforme or renal cell carcinoma, because allelic deletions in these tumors have implied the presence of a tumor suppressor gene(s) on chromosome 10.  相似文献   

17.
Two new morphs (F and G) detected by the centromeric alpha satellite probe p alpha 10RP8 and D10Z1 in HinfI digests are linked to the PstI polymorphisms of D10Z1, confirming their chromosome 10 location. The F and G morphs were in strong linkage disequilibrium with each other but were in weak linkage disequilibrium with the A and B morphs defined in PstI digests. Data for haplotypes formed by using the A and F morphs improved the lod score for linkage between the disease locus for multiple endocrine neoplasia type 2A (MEN2A) and D10Z1 (Z = 14.06 at theta = 0) in the six large families studied by Wu et al. Furthermore, the locus that codes for a distinct phenotype, medullary thyroid carcinoma (MTC) with parathyroid tumors (PTs) and no pheochromocytomas (PHEOs) (referred to as MTC with PTs), in one of the families was closely linked to two markers, D10Z1 and RBP3, with lodscores of 2.86 and 3.54, respectively, at theta = 0. A possible allelic association was noted between disease phenotypes and centromeric haplotypes. The phenotype MTC and PHEOs with and without PTs was associated with the same relatively common centromeric haplotype (A + B-F-G-) in the four families in which all four morphs could be determined, while the phenotype MTC with PTs was associated with the rare centromeric haplotype (A-B-F-G+) in one family.  相似文献   

18.
We describe familial cases of multiple endocrine neoplasia (MEN) 2B: A 48-year-old man is the proband. He had pheochromocytoma, medullary thyroid carcinomas (MTCs), parathyroid hyperplasia, mucosal neuromas, eversion of eyelids and Marfanoid appearance, and then underwent adrenalectomy and total thyroidectomy. Family screening revealed that his two daughters (10 and 8 years old) had mucosal neuromas and increased serum calcitonin (CT). Both of them had MTCs but no pheochromocytoma, and their MTCs were surgically removed. The father and his children have been in favorable condition since the operations. Southern blot analysis with 33 polymorphic DNA probes was done in MTCs obtained from two daughters. An RBP3 (10q11.2) locus linked to a predisposing gene on chromosome 10 was uninformative in either patient because of constitutional homozygosity. Loss of heterozygosity at the MYCL1 locus on chromosome 1p32 was observed in MTC from the younger sister, but no loss of heterozygosity was recognized in other loci examined. Deletion of the 1p32 locus may play a role in the development of MEN 2B.  相似文献   

19.
Human mannose-binding lectin (MBL) is a serum protein which appears to function as an opsonin in first line host defense. In situ hybridization studies assign the human MBL gene to chromosome 10q11.2----q21. A restriction fragment length polymorphism (RFLP) was found using TaqI with a 0.8-kb cDNA probe for MBL (probe 48-11), yielding heterozysity in 34% of individuals tested. Using this biallelic RFLP, linkage analysis of 30 families confirms the assignment of MBL to the region of multiple endocrine neoplasia, type 2a (MEN2A) with a maximum lod score of 7.54 at a recombination fraction of 0.00 (males) and 0.097 (females). The presence of two crossovers between MEN2A and MBL in these families indicates that a defect of MBL itself is not the cause of the hereditary thyroid cancer syndrome. The addition of MBL to the genetic map of the pericentromeric region of chromosome 10 should prove useful for improved localization of the MEN2A mutation.  相似文献   

20.
Multiple endocrine neoplasia 2a (MEN 2a) is known to be genetically linked to a locus on chromosome 10. The application of polymorphic DNA probes for the region has made it possible to identify carriers of the disease susceptible gene. We performed DNA analysis for a newly found non-Caucasian MEN 2a family using MEN 203 as a probe. Data from DNA analysis of the family members were concordant with the results of conventional endocrinological tests. Furthermore, DNA analysis discriminated four individuals out of fifteen as non-carriers of the gene with a high degree of certainty. The results relieved these people from taking screening tests for years. DNA analysis employing suitable markers such as MEN 203 appears to be useful for a screening program of MEN 2a in Japanese as well as Caucasians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号