首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mosses dominate many northern ecosystems and their presence is integral to soil thermal and hydrological regimes which, in turn, dictate important ecological processes. Drivers, such as climate change and increasing herbivore pressure, affect the moss layer thus, assessment of the functional role of mosses in determining soil characteristics is essential. Field manipulations conducted in high arctic Spitsbergen (78° N), creating shallow (3 cm), intermediate (6 cm) and deep (12 cm) moss layers over the soil surface, had an immediate impact on soil temperature in terms of both average temperatures and amplitude of fluctuations. In soil under deep moss, temperature was substantially lower and organic layer thaw occurred 4 weeks later than in other treatment plots; the growing season for vascular plants was thereby reduced by 40%. Soil moisture was also reduced under deep moss, reflecting the influence of local heterogeneity in moss depth, over and above the landscape-scale topographic control of soil moisture. Data from field and laboratory experiments show that moss-mediated effects on the soil environment influenced microbial biomass and activity, resulting in warmer and wetter soil under thinner moss layers containing more plant-available nitrogen. In arctic ecosystems, which are limited by soil temperature, growing season length and nutrient availability, spatial and temporal variation in the depth of the moss layer has significant repercussions for ecosystem function. Evidence from our mesic tundra site shows that any disturbance causing reduction in the depth of the moss layer will alleviate temperature and moisture constraints and therefore profoundly influence a wide range of ecosystem processes, including nutrient cycling and energy transfer.  相似文献   

2.
Herbivory and climate are key environmental drivers, shaping ecosystems at high latitudes. Here, we focus on how these two drivers act in concert, influencing the high arctic tundra. We aim to investigate mechanisms through which herbivory by geese influences vegetation and soil processes in tundra ecosystems under ambient and warmed conditions. To achieve this, two grazing treatments, clipping plus faecal additions and moss removal, were implemented in conjunction with passive warming. Our key finding was that, in many cases, the tundra ecosystem response was determined by treatment impacts on the moss layer. Moss removal reduced the remaining moss layer depth by 30% and increased peak grass biomass by 27%. These impacts were probably due to observed higher soil temperatures and decomposition rates associated with moss removal. The positive impact of moss removal on grass biomass was even greater with warming, further supporting this conclusion. In contrast, moss removal reduced dwarf shrub biomass possibly resulting from increased exposure to desiccating winds. An intact moss layer buffered the soil to increased air temperature and as a result there was no response of vascular plant productivity to warming over the course of this study. In fact, moss removal impacts on soil temperature were nearly double those of warming, suggesting that the moss layer is a key component in controlling soil conditions. The moss layer also absorbed nutrients from faeces, promoting moss growth. We conclude that both herbivory and warming influence this high arctic ecosystem but that herbivory is the stronger driver of the two. Disturbance to the moss layer resulted in a shift towards a more grass-dominated system with less abundant mosses and shrubs, a trend that was further enhanced by warming. Thus herbivore impacts to the moss layer are key to understanding arctic ecosystem response to grazing and warming.  相似文献   

3.
Our understanding of positive and negative plant interactions is primarily based on vascular plants, as is the prediction that facilitative effects dominate in harsh environments. It remains unclear whether this understanding is also applicable to moss–vascular plant interactions, which are likely to be influential in low-temperature environments with extensive moss ground cover such as boreal forest and arctic tundra. In a field experiment in high-arctic tundra, we investigated positive and negative impacts of the moss layer on vascular plants. Ramets of the shrub Salix polaris, herb Bistorta vivipara, grass Alopecurus borealis and rush Luzula confusa were transplanted into plots manipulated to contain bare soil, shallow moss (3 cm) and deep moss (6 cm) and harvested after three growing seasons. The moss layer had both positive and negative impacts upon vascular plant growth, the relative extent of which varied among vascular plant species. Deep moss cover reduced soil temperature and nitrogen availability, and this was reflected in reduced graminoid productivity. Shrub and herb biomass were greatest in shallow moss, where soil moisture also appeared to be highest. The relative importance of the mechanisms by which moss may influence vascular plants, through effects on soil temperature, moisture and nitrogen availability, was investigated in a phytotron growth experiment. Soil temperature, and not nutrient availability, determined Alopecurus growth, whereas Salix only responded to increased temperature if soil nitrogen was also increased. We propose a conceptual model showing the relative importance of positive and negative influences of the moss mat on vascular plants along a gradient of moss depth and illustrate species-specific outcomes. Our findings suggest that, through their strong influence on the soil environment, mat-forming mosses structure the composition of vascular plant communities. Thus, for plant interaction theory to be widely applicable to extreme environments such as the Arctic, growth forms other than vascular plants should be considered.  相似文献   

4.
Abstract. Low temperatures exert a primary constraint on the growth of high arctic vascular plants. However, investigations into the impact of temperature on high arctic plants rarely separate out the role of air and soil temperatures, and few data exist to indicate whether soil temperatures alone can significantly influence the growth of high arctic vascular plants in a manner that might direct community composition. We examined the response of high arctic plants of three functional types (grasses, sedges/rushes and non‐graminoids) to manipulated soil temperature under common air temperature conditions. Target plants, within intact soil cores, were placed in water baths at a range of temperatures between 4.9 and 15.3 °C for one growing season. Grasses responded most rapidly to increased soil temperature, with increased total live plant mass, above‐ground live mass and total below‐ground live mass, with non‐graminoids having the lowest, and sedges/rushes an intermediate degree of response. The ratio of above‐ground live mass to total live mass increased in all growth forms. Grasses, in particular, responded to enhanced soil temperatures by increasing shoot size rather than shoot number. In all growth forms the mass of root tissue beneath the moss layer increased significantly and to a similar extent with increasing soil temperature. These results clearly indicate that different growth forms, although collected from the same plant community, respond differently to changes in soil temperature. As a consequence, factors influencing soil temperature in high arctic ecosystems, such as global climate change or herbivory (which leads to reduced moss depth and increased soil temperatures), may also direct changes in vascular plant community composition.  相似文献   

5.
  1. Kānuka (Kunzea serotina, Myrtaceae) dryland shrubland communities of the lowland plains of South Island (Te Wai Pounamu), New Zealand (Aoteoroa), contain a ground cover largely consisting of mosses, predominantly Hypnum cupressiforme. There has been no previous study of the role of mosses in this threatened habitat which is currently being restored within a contemporary irrigated and intensively farmed landscape that may be incompatible with this component of the ecosystem.
  2. The aim of the present study was to investigate the influence of moss ground cover on hydrology, nitrogen (N) availability and vascular plant interactions, and in relation to nutrient spillover from adjacent farmland. Experimental work was a combination of glasshouse experiments and field‐based studies.
  3. Extremes of soil temperature and moisture were found to be mediated by the moss carpet, which also influenced N speciation; available N declined with moss depth. The moss layer decreased the amount of germination and establishment of vascular plants but, in some cases, enhanced their growth. Spillover of mineral nitrogen and phosphate from farmland enhanced invasion of exotic grasses which may have benefited from conditions provided by the moss carpet.
  4. Synthesis: We found the moss layer to be crucial to ecosystem functioning in these dry habitats with low nutrient substrate. However, when the moss layer is accompanied by nutrient spillover, it has the potential to increase exotic weed encroachment. Our results not only emphasize the importance of non‐vascular plant inclusion in restoration schemes but also highlights the importance of mitigating for nutrient spillover.
  相似文献   

6.
Tamminen  Pekka  Starr  Michael  Kubin  Eero 《Plant and Soil》2004,259(1-2):51-58
Concentrations of 15 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S and Zn) in the current annual growth increments of the ectohydric feather moss, Hylocomium splendens, were compared with those in the humus layer (Of+Oh) of coniferous forests at 353 sites throughout Finland. Moss concentrations in the moss increments were considered measures of atmospheric deposition of these elements. Concentrations in both moss and humus layer samples were negatively correlated with latitude, except Mn (moss) and Cr and Ni (humus layer), indicating a direct effect of deposition. Spearman correlations between concentrations in moss and humus layer samples were significant (P<0.05) for all elements; that for Pb concentrations was the highest (rs=0.60) while those for the other elements were ≤0.48. Using thickness and organic matter content of the humus layer, clay content of the mineral soil (5–20 cm layer) and the concentration in the moss explained between 8% (Cd) and 44% (Cr, Mg) of the variation in the concentrations in the humus layer samples. It was concluded that, for most elements, concentration in the humus layer are a poor indicator of current atmospheric deposition levels, at least in relatively unpolluted regions such as Finland.  相似文献   

7.
In arctic and boreal ecosystems, ground bryophytes play an important role in regulating carbon (C) exchange between vast belowground C stores and the atmosphere. Climate is changing particularly fast in these high-latitude regions, but it is unclear how altered precipitation regimes will affect C dynamics in the bryosphere (i.e. the ground moss layer including senesced moss, litter and associated biota) and the closely associated upper humus layer, and how these effects will vary across contrasting environmental conditions. Here, we set up a greenhouse experiment in which mesocosms were assembled containing samples of the bryosphere, dominated by the feather moss Hylocomium splendens, and the upper humus layer, that were collected from across a boreal forest chronosequence in northern Sweden which varies strongly in nutrient availability, productivity and soil biota. We tested the effect of variation in precipitation volume and frequency on CO2 exchange and dissolved organic carbon (DOC) export, and on moss growth. As expected, reduced precipitation volume and frequency lowered net CO2 efflux, DOC export and moss growth. However, by regulating moisture, the lower bryosphere and humus layers often mediated how precipitation volume and frequency interacted to drive C dynamics. For example, less frequent precipitation reduced moss growth only when precipitation volume was low. When volume was high, high moisture content of the humus layer helped avoid moss desiccation. Variation in precipitation regime affected C cycling consistently in samples collected across the chronosequence, despite large environmental variation along the sequence. This suggests that the bryosphere exerts a strong buffering effect on environmental variation at the forest floor, which leads to similar responses of C cycling to external perturbations across highly contrasting ecosystems. As such, our study indicates that projected increases in droughts and ground evapotranspiration in high-latitude regions resulting from climate change will consistently reduce C losses from moss-dominated ecosystems.  相似文献   

8.
The global increase in surface air temperature has produced an overall lengthening of the growing season by 3–5 days/decade in the Northern Hemisphere during the last 30 years. The direct impact of a longer growing season has not been well documented for Sphagnum moss communities in the Arctic. We hypothesized that an increase in the growing season length may be detrimental to Sphagnum growth as a result of photoinhibition caused by the plants emerging from snow near the seasonal peak of solar irradiance. We conducted an experiment from 1999 to 2002, lengthening the growing season in arctic Alaska, to determine the effects that this simulation of climate change had on the growth of hollows dominated by Sphagnum angustifolium. The lengthened growing season was associated with a decrease in annual moss height increment of 78 and 69 % for 1999 and 2000, respectively. These growth reductions may be related to freeze/thaw episodes and prolonged periods of cold in those years. The growth of individuals exposed to snow removal was also reduced by high global radiation. Overall, snow removal did not significantly affect the seasonal dynamics of growth, but seasonal patterns of growth strongly differed among years. These differences in seasonal dynamics suggest that Sphagnum growth is driven by opportunistic responses to favorable conditions rather than ontogenetic drivers. In addition, we compared environmental variation and growth between control and snow removal plots. Growth of Sphagnum in both treatments was stimulated by warmer soil temperatures and drier conditions. With earlier snowmelt as a result of warmer temperatures, it is likely that S. angustifolium will be subjected to higher levels of radiation and possibly greater photoinhibition which may lead to lower growth rates and significant implications for moss production in tussock tundra.  相似文献   

9.
Climate warming enables tree seedling establishment beyond the current alpine treeline, but to achieve this, seedlings have to establish within existing tundra vegetation. In tundra, mosses are a prominent feature, known to regulate soil temperature and moisture through their physical structure and associated water retention capacity. Moss presence and species identity might therefore modify the impact of increases in temperature and precipitation on tree seedling establishment at the arctic‐alpine treeline. We followed Betula pubescens and Pinus sylvestris seedling survival and growth during three growing seasons in the field. Tree seedlings were transplanted along a natural precipitation gradient at the subarctic‐alpine treeline in northern Sweden, into plots dominated by each of three common moss species and exposed to combinations of moss removal and experimental warming by open‐top chambers (OTCs). Independent of climate, the presence of feather moss, but not Sphagnum, strongly supressed survival of both tree species. Positive effects of warming and precipitation on survival and growth of B. pubescens seedlings occurred in the absence of mosses and as expected, this was partly dependent on moss species. P. sylvestris survival was greatest at high precipitation, and this effect was more pronounced in Sphagnum than in feather moss plots irrespective of whether the mosses had been removed or not. Moss presence did not reduce the effects of OTCs on soil temperature. Mosses therefore modified seedling response to climate through other mechanisms, such as altered competition or nutrient availability. We conclude that both moss presence and species identity pose a strong control on seedling establishment at the alpine treeline, and that in some cases mosses weaken climate‐change effects on seedling establishment. Changes in moss abundance and species composition therefore have the potential to hamper treeline expansion induced by climate warming.  相似文献   

10.
The carbon (C) sink strength of arctic tundra is under pressure from increasing populations of arctic breeding geese. In this study we examined how CO2 and CH4 fluxes, plant biomass and soil C responded to the removal of vertebrate herbivores in a high arctic wet moss meadow that has been intensively used by barnacle geese (Branta leucopsis) for ca. 20 years. We used 4 and 9 years old grazing exclosures to investigate the potential for recovery of ecosystem function during the growing season (July 2007). The results show greater above- and below-ground vascular plant biomass within the grazing exclosures with graminoid biomass being most responsive to the removal of herbivory whilst moss biomass remained unchanged. The changes in biomass switched the system from net emission to net uptake of CO2 (0.47 and −0.77 μmol m−2 s−1 in grazed and exclosure plots, respectively) during the growing season and doubled the C storage in live biomass. In contrast, the treatment had no impact on the CH4 fluxes, the total litter C pool or the soil C concentration. The rapid recovery of the above ground biomass and CO2 fluxes demonstrates the plasticity of this high arctic ecosystem in terms of response to changing herbivore pressure.  相似文献   

11.
Fires produce land cover changes that have consequences for surface energy balance and temperature. Three eddy covariance towers were setup along a burn severity gradient (i.e. Severely, Moderately, and Unburned tundra) to determine the effect of fire and burn severity on arctic tundra surface energy exchange and temperature for three growing seasons (2008–2010) following the 2007 Anaktuvuk River fire. The three sites were well matched before the fire, experienced similar weather, and had similar energy budget closure, indicating that the measured energy exchange differences between sites were largely attributable to burn severity. Increased burn severity resulted in decreased vegetation and moss cover, organic layer depth, and the rate of postfire vegetation recovery. Albedo and surface greenness steadily recovered with Moderately matching Unburned tundra by the third growing season. Decreased albedo increased net radiation and partly fueled increased latent and ground heat fluxes, soil temperatures, and thaw depth. Decreases in moss cover and the organic layer also influenced the ground thermal regime and increased latent heat fluxes. These changes either offset or decreased the surface warming effect from decreased albedo, resulting in a small surface warming in Severely and a small surface cooling in Moderately relative to Unburned tundra. These results indicate that fires have a significant impact on surface energy balance and highlight the importance of moss and permafrost thaw in regulating arctic surface energy exchange and temperature.  相似文献   

12.
Ombrotrophic (rain-fed) Sphagnum-mires do not significantly contribute to gaseous nitrogen (N) emissions to the atmosphere. However, increasing levels of N deposition reduce Sphagnum growth and moss cover. As a consequence, higher amounts of mineral N reach the underlying peat beneath the moss layer. The aim of our work was to determine the effects of supplementary N inputs to peat beneath Sphagnum magellanicum carpets. Peat cores were incubated in controlled laboratory conditions of temperature and humidity, and the impact of increasing N inputs was evaluated on denitrification rates, basal respiration and methane emissions. Rates of denitrification were quickly stimulated by addition of 1?g?N?m?2 but rates were not significantly elevated in the short-term (9?days) by further additions of up to 10?g?N?m?2. Over a longer term period (up to 45?days), denitrification rates followed an exponential (10?g?N?m?2 addition) or a gamma (1?g?N?m?2) function. Findings from this study support the hypothesis that mineral-N addition in atmospheric deposition will have a negative effect on peat biogeochemistry, by modifying its N sink capacity via denitrification leading to a potential increase in N2O emissions.  相似文献   

13.
Many hours of sunlight in the midnight sun period suggest that significant amounts of biogenic volatile organic compounds (BVOCs) may be released from arctic ecosystems during night-time. However, the emissions from these ecosystems are rarely studied and limited to point measurements during daytime. We measured BVOC emissions during 24-hour periods in the field using a push-pull chamber technique and collection of volatiles in adsorbent cartridges followed by analysis with gas chromatography- mass spectrometry. Five different arctic vegetation communities were examined: high arctic heaths dominated by Salix arctica and Cassiope tetragona, low arctic heaths dominated by Salix glauca and Betula nana and a subarctic peatland dominated by the moss Warnstorfia exannulata and the sedge Eriophorum russeolum. We also addressed how climate warming affects the 24-hour emission and how the daytime emissions respond to sudden darkness. The emissions from the high arctic sites were lowest and had a strong diel variation with almost no emissions during night-time. The low arctic sites as well as the subarctic site had a more stable release of BVOCs during the 24-hour period with night-time emissions in the same range as those during the day. These results warn against overlooking the night period when considering arctic emissions. During the day, the quantity of BVOCs and the number of different compounds emitted was higher under ambient light than in darkness. The monoterpenes α-fenchene, α -phellandrene, 3-carene and α-terpinene as well as isoprene were absent in dark measurements during the day. Warming by open top chambers increased the emission rates both in the high and low arctic sites, forewarning higher emissions in a future warmer climate in the Arctic.  相似文献   

14.
Moss-sedge heath, an important habitat of oceanic alpine regions, is under threat from elevated nitrogen (N) deposition and rising temperatures increasing decomposition rates and fragmentation of the extensive, thick moss mats of Racomitrium lanuginosum which characterise this habitat. Here, we examine the potential effects of N deposition and temperature on fungal communities associated with R. lanuginosum mats. Fungal community composition in both green moss shoots and underlying soil were significantly influenced by mat temperatures and green moss shoot N contents. Total OTU, Ascomycota, Basidiomycota and saprotrophic fungal richness in shoots were all positively related to temperature, while in soil, the richness of all groups, except Basidiomycota, was positively related to moss tissue N. The observed community changes suggest that increased N loading and increasing temperatures are ameliorating growing conditions for fungi associated with moss-sedge heath. Further study is required to determine if the observed changes in fungal communities contribute to accelerated decomposition of moss mats and degradation of the habitat.  相似文献   

15.
Weber B  Graf T  Bass M 《Planta》2012,236(1):129-139
Biological soil crusts, formed by an association of soil particles with cyanobacteria, lichens, mosses, fungi and bacteria in varying proportions, live in or directly on top of the uppermost soil layer. To evaluate their role in the global carbon cycle, gas exchange measurements were conducted under controlled conditions. Moss-dominated soil crusts were first analyzed as moss tufts on soil, then the mosses were removed and the soil was analyzed separately to obtain the physiological response of both soil and individual moss stems. Net photosynthetic response of moss stems and complete crusts was decreased by insufficient and excess amounts of water, resulting in optimum curves with similar ranges of optimum water content. Light saturation of both sample types occurred at high irradiance, but moss stems reached light compensation and saturation points at lower values. Optimum temperatures of moss stems ranged between 22 and 27°C, whereas complete crusts reached similar net photosynthesis between 7 and 27°C. Under optimum conditions, moss stems reached higher net photosynthesis (4.0 vs. 2.8 μmol m?2 s?1) and lower dark respiration rates (?0.9 vs. ?2.4 μmol m?2 s?1). Respiration rates of soil without moss stems were high (up to ?2.0 μmol m?2 s?1) causing by far lower absolute values of NP/DR ratios of soil crusts as compared to moss stems. In carbon balances, it therefore has to be clearly distinguished between measurements of soil crust components versus complete crusts. High rates of soil respiration may be caused by leaching of mosses, creating high-nutrient microsites that favor microorganism growth.  相似文献   

16.
Climate warming will induce changes in Arctic ecosystem carbon balance, but besides climate, nitrogen availability is a critical controlling factor of carbon cycling. It is therefore essential to obtain knowledge on the influence of a changing climate on nitrogen fixation, as this process is the main source of new nitrogen to arctic ecosystems. In order to gain information on future nitrogen fixation rates in a changing climate, we studied the effects of two decades of warming with passive greenhouses, shading with sackcloth, and fertilization with NPK fertilizer on nitrogen fixation rates. To expand the knowledge on species-specific responses, we measured nitrogen fixation associated with two moss species: Hylocomium splendens and Aulacomnium turgidum. Our expectations of decreased nitrogen fixation rates in the fertilizer and shading treatments were met. However, contrary to our expectation of increased nitrogen fixation in the warming treatment, we observed either no change (Hylocomium) or a decrease (Aulacomnium) in fixation in the warmed plots. We hypothesize that this could be due to moss-specific responses or to long-term induced effects of the warming. For example, we observed that the soil temperature increase induced by the warming treatment was low and insignificant as vegetation height and total vascular plant cover of the warmed plots increased, and moss cover decreased. Hence, truly long-term studies lasting more than two decades provide insights on changes in key biogeochemical processes, which differ from more transient responses to warming in the Arctic.  相似文献   

17.
Air temperature freeze–thaw cycles often occur during the early spring period directly after snowmelt and before budbreak in low arctic tundra. This early spring period may be associated with nitrogen (N) and carbon (C) loss from soils as leachate or as trace gases, due to the detrimental impact of soil freeze–thaw cycles and a developing active layer on soil microorganisms. We measured soil and microbial pools of C and N in early spring during a period of fluctuating air temperature (ranging from ?4 to +10°C) and in midsummer, in low arctic birch hummock tundra. In addition we measured N2O, CH4 and CO2 production in the early spring. All of these biogeochemical variables were also measured in long-term snowfence (deepened snow) and N-addition plots to characterize climate-change related controls on these variables. Microbial and soil solution pools of C and N, and trace gas production varied among the five early spring sample dates, but only marginally and no more than among sample dates in midsummer. N-addition greatly elevated N2O fluxes, indicating that although denitrifiers were present their activity during early spring was strongly limited by N-availability, but otherwise trace gas production was very low in early spring. The later thaw, warmer winter and colder spring soil temperatures resulting from deepened snow did not significantly alter N pools or rates in early spring. Together, our results indicate strong stability in microbial and soil solution C and N pool sizes in the early spring period just after snowmelt when soil temperatures are close to 0°C (?1.5 to +5°C). A review of annual temperature records from this and other sites suggests that soil freeze–thaw cycles are probably infrequent in mesic tundra in early spring. We suggest that future studies concerned with temperature controls on soil and microbial biogeochemistry should focus not on soil freeze–thaw cycles per se, but on the rapid and often stepped increases in soil temperature that occur under the thawing snowpack.  相似文献   

18.
灌丛与生物土壤结皮镶嵌分布是温带荒漠常见的地表景观之一,二者的发育均显著影响了地表土壤养分的空间分布特征及循环过程。然而,灌丛和生物土壤结皮对荒漠土壤表层养分的影响存在怎样的差异,二者对养分变化的贡献度如何尚不清楚。因此,选择中国北方典型温带荒漠古尔班通古特沙漠为研究区,以荒漠中的优势灌丛膜果麻黄(Ephedra przewalskii)灌丛和生物土壤结皮发育高级阶段的藓类结皮的结皮层及结皮下层土壤为研究对象,采集不同微生境(裸露地、灌丛下)的裸沙与藓类结皮的土壤样品。为探究不同微生境下不同土层碳、氮、磷和钾养分变化特征,测定了不同土层土壤有机碳(SOC)、全氮(TN)、全磷(TP)、全钾(TK)、速效氮(AN)、速效磷(AP)和速效钾(AK)含量。结果表明:(1)相较于裸露地,灌丛显著提高了藓类结皮不同土层有机碳、全氮和全钾的含量和裸沙全磷的含量,降低了灌丛下藓类结皮土壤全磷的含量。(2)对于速效养分而言,与裸沙相比,裸露地藓类结皮覆盖降低了土壤速效氮含量,增加了速效磷和速效钾含量;而灌丛下藓类结皮覆盖提高了土壤速效氮和速效钾的含量,但降低了速效磷的含量。 (3) 相关性分析显示,在0-2 cm土壤中速效磷与速效氮呈现显著负相关,而在2-6 cm速效磷与速效氮呈现显著正相关(P<0.01)。(4)贡献度分析表明,土壤中灌丛效应对养分的贡献(42.54%)要远大于藓类结皮的贡献(2.43%),但二者交互作用却降低了除速效氮以外的其他土壤养分含量。综上,灌丛、藓类结皮覆盖和土层深度变化对土壤碳、氮、磷和钾养分均具有显著影响(P<0.05),但三者间的交互效应对养分的影响不显著(P>0.05)。相对于裸露地,灌丛与藓类结皮的覆盖均对表层土壤碳、氮、磷和钾养分具有促进作用,且随着土层深度的下降,土壤养分含量呈现显著的下降趋势(P<0.05)。因此,在荒漠生态系统中耐旱灌丛与生物土壤结皮这两个最重要的斑块单元联合调控了微尺度土壤养分的空间异质性变化。  相似文献   

19.
We assessed the effects of ambient solar ultraviolet (UV) radiation on below‐ground parameters in an arctic heath in north‐eastern Greenland. We hypothesized that the current UV fluxes would reduce root biomass and mycorrhizal colonization and that these changes would lead to lower soil microbial biomass and altered microbial community composition. These hypotheses were tested on cored soil samples from a UV reduction experiment with three filter treatments (Mylar, 60% UV‐B reduction; Lexan, up to 90% UV‐B reduction+UV‐A reduction; UV transparent Teflon, filter control) and an open control treatment in two study sites after 3 years' manipulation. Reduction of both UV‐A and UV‐B radiation caused over 30% increase in the root biomass of Vaccinium uliginosum, which was the dominant plant species. UV reduction had contrasting effects on ericoid mycorrhizal colonization of V. uliginosum roots in the two sites, while it had no clear effects on fungal (ergosterol) or microbial biomass (measured both with fumigation–extraction and quantitative lipid biomarker analysis) in soil. However, principal component analysis of lipid biomarkers (phospholipid and glycolipid fatty acid profiles) showed that microbial community composition was altered by UV reduction. Although the UV responses were slight considering the large dose difference between the treatments (from near‐ambient to up to 90% UV‐B reduction), we cannot rule out the possibility that the recovery of ozone layer would change the below‐ground functioning of arctic ecosystems.  相似文献   

20.
Abstract: Although moss is commonly found in the feces of arctic herbivores, we do not know the digestible value of this forage for ruminants. We compared grass hay (Bromus sp.) with moss (Hylocomium splendens, Tomenthypnum nitens) from 2 locations in Alaska, USA: Cape Krusenstern National Monument and Fairbanks. We evaluated forages by digestion in ruminally fistulated muskoxen (Ovibos moschatus) by suspending forages in polyester bags before and after the rumen was acclimated with moss for 15 consecutive days. Ruminal degradation was not affected by acclimation to moss. Hay lost dry matter during 48 hours of ruminal incubation (-49%), whereas moss gained dry matter (+44-57%). Incubated moss gained nitrogen (+435-680%), as well as fiber (+18%), and one moss gained ash (+121%). Mass gained by moss in the rumen was probably due to the combined effect of microbial colonization and adsorption of fibrous particles onto the sponge-like matrix. We evaluated postruminal degradation of forages by incubation in acid-pepsin. Ruminally incubated mosses lost little nitrogen in acid-pepsin even though ruminally incubated hay lost 23% nitrogen on acid digestion. Consumption of moss during winter may be a net cost of selecting plants within moss communities when lichens and graminoids are scarce. Moss in feces may, therefore, indicate low availability of favored foods for muskoxen and other arctic ruminants that are confined to small winter ranges. Increasing concentrations of moss in the feces and, thus, the diet of muskoxen may alert wildlife managers to shifts in winter range quality or forage access due to changing snow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号