首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Raf-1 kinase inhibitory protein (RKIP) can regulate multiple key signaling pathways. Specifically, RKIP binds to Raf-1 kinase and inhibits the Ras-Raf-1-MEK1/2- ERK1/2 pathway. Additionally, Raf-1 has been shown to translocate to mitochondria and thereby protect cells from stress-mediated apoptosis. Recently, HBx was found to stimulate the mitochondrial translocation of Raf-1, contributing to the anti-apoptotic effect. We found that RKIP was downregulated during HBx-mediated hepatocarcinogenesis. In this study, we show that RKIP bound to Raf-1 and consequently inhibited the translocation of Raf-1 into mitochondria. This promoted the apoptosis of cells treated with apoptotic stimulus. Thus, the downregulation of RKIP increased the level of free Raf-1 and thereby elevated the mitochondrial translocation of Raf-1 during HBx-mediated hepatocarcinogenesis. The elevated Raf-1 mitochondrial translocation induced the increased anti-apoptotic effect and subsequently promoted HBx-mediated hepatocarcinogenesis.  相似文献   

2.
3.
Human septin-septin interaction: CDCrel-1 partners with KIAA0202   总被引:11,自引:0,他引:11  
  相似文献   

4.
Hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC), which is a highly aggressive cancer. HBV X protein (HBx), one of four HBV gene products, plays pivotal roles in the development and metastasis of HCC. It has been reported that HBx induces liver cancer cell migration and reorganizes actin cytoskeleton, however the molecular basis for actin cytoskeleton reorganization remains obscure. In this study, we for the first time report that HBx promotes actin polymerization and liver cancer cell migration by regulating calcium modulated protein, calmodulin (CaM). HBx physically interacts with CaM to control the level of phosphorylated cofilin, an actin depolymerizing factor. Mechanistically, HBx interacts with CaM, liberates Hsp90 from its inhibitory partner CaM, and increases the activity of Hsp90, thus activating LIMK1/cofilin pathway. Interestingly, the interaction between HBx and CaM is calcium-dependent and requires the CaM binding motif on HBx. These results indicate that HBx modulates CaM which plays a regulatory role in Hsp90/LIMK1/cofilin pathway of actin reorganization, suggesting a new mechanism of HBV-induced HCC metastasis specifically derived by HBx.  相似文献   

5.
Chronic hepatitis B virus (HBV) infection is the major risk for hepatocellular carcinomas (HCC). HBV X protein (HBx) and p53 tumor suppressor family interactions may be crucial for HCC induction. We compared p53 and p73 interactions with HBx in normal and HCC tumor cell lines differing in their p53 status. In the latter, HBx was pro-apoptotic but exhibited opposite effects in non-tumor cells. In these normal cells, p53 and p73 were retained in the cytoplasm. In hepatoma cells, however, HBx led to nuclear translocation of p53 and p73, followed by enhanced transactivation of p53-dependent promoters. The nuclear transfer of p53, but not of p73, was abrogated by protein kinase C inhibitor Gö6976. HBx overexpression in HCC cells led to strong p53 phosphorylation at Ser15, but not in non-tumor cells. Our results define ATM kinase as mediator for HBx-induced p53 phosphorylation. While HBx promotes cell death in p53/p73-positive hepatoma cells also in presence of increased levels of the oncogenic ΔTAp73 isoform, it significantly potentiates ΔTAp73-mediated proliferation and malignant transformation of fibroblasts. Our data suggest that prevention of apoptosis in normal cells by HBx through inhibition of pro-apoptotic p53 family members via direct interaction and coaction with anti-apoptotic ΔTAp73 seems to be the key element in the decision in favor of cell survival. The complex cell context-dependent interactions between p53 family members and HBx in the regulation of apoptosis may be essential in HBV-induced HCC and anticancer therapy.  相似文献   

6.
Various functions are ascribed to the HBx regulatory protein of the hepatitis B virus (HBV). Due to the low expression level of HBx, it has been difficult to correlate spatial and temporal HBx expression levels with specific functions. Based on a novel cell-permeable peptide, known as the translocation motif (TLM), cell-permeable HBx fusion proteins were generated. The TLM–HBx fusion protein is rapidly internalized from the medium into almost all cells, whereas no significant internalization was seen with wild-type HBx. The major fraction of internalized HBx protein moves from the cytoplasm to the nucleus. The cytosolic fraction, however, activates c-RAF1/extracellular-signal-related kinase 2 signalling and causes activation of activator protein 1 (AP1) and nuclear factor-κB. The TLM–HBx protein rescues HBV gene expression from an activator-deficient HBV genome. These results indicate that cell-permeable regulatory proteins provide a novel, efficient tool for a clearly defined, dose-dependent analysis of regulatory protein function, without affecting the integrity of the cell, and can be used for the safe reconstitution of virus production from a regulatory-protein-deficient virus genome.  相似文献   

7.
肝细胞癌 (hepatocellular carcinoma, HCC)是我国最常见的恶性肿瘤之一,而HBV慢性感染是肝癌发生的主要原因.乙型肝炎病毒(HBV)中X基因编码的一种多功能蛋白(HBx),参与众多重要生物学过程的调控,并促进肝细胞癌的发生. 早期研究表明,HBx在HCC发生过程中发挥重要的调控功能,但其确切分子机制尚未完全明确. 近几年,HBx参与生物学过程的分子机制研究有了较快的进展. 有趣的是,研究发现,HBx在不同的细胞系以及HBV感染的不同阶段发挥促抑凋亡的双重作用,HBx还参与细胞自噬的调控. 此外,在HBx参与细胞增殖及肿瘤侵袭和转移等方面,也产生了一些新的认识. 本文将从HBx对肝细胞凋亡、自噬和增殖的调控及其对肝癌细胞转移和侵袭的调控等方面,对HBx参与肝细胞癌发生发展调控机制做一综述.  相似文献   

8.
Hepatocellular carcinoma (HCC), a major cause of cancer-related death in Southeast Asia, is frequently associated with hepatitis B virus (HBV) infection. HBV X protein (HBx), encoded by a viral non-structural gene, is a multifunctional regulator in HBV-associated tumor development. We investigated novel signaling pathways underlying HBx-induced liver tumorigenesis and found that the signaling pathway involving IκB kinase β (IKKβ), tuberous sclerosis complex 1 (TSC1), and mammalian target of rapamycin (mTOR) downstream effector S6 kinase (S6K1), was upregulated when HBx was overexpressed in hepatoma cells. HBx-induced S6K1 activation was reversed by IKKβ inhibitor Bay 11-7082 or silencing IKKβ expression using siRNA. HBx upregulated cell proliferation and vascular endothelial growth factor (VEGF) production, and these HBx-upregulated phenotypes were abolished by treatment with IKKβ inhibitor Bay 11-7082 or mTOR inhibitor rapamycin. The association of HBx-modulated IKKβ/mTOR/S6K1 signaling with liver tumorigenesis was verified in a HBx transgenic mouse model in which pIKKβ, pS6K1, and VEGF expression was found to be higher in cancerous than non-cancerous liver tissues. Furthermore, we also found that pIKKβ levels were strongly correlated with pTSC1 and pS6K1 levels in HBV-associated hepatoma tissue specimens taken from 95 patients, and that higher pIKKβ, pTSC1, and pS6K1 levels were correlated with a poor prognosis in these patients. Taken together, our findings demonstrate that HBx deregulates TSC1/mTOR signaling through IKKβ, which is crucially linked to HBV-associated HCC development.  相似文献   

9.
Hepatitis B virus (HBV) X protein (HBx) has been implicated in HBV-associated carcinogenesis through activation of IκB kinase (IKK)/nuclear factor kappa B (NF-κB) signaling pathway. Besides activating NF-κB in the cytoplasm, IKKα was found in the nucleus to regulate gene expression epigenetically in response to various stimuli. However, it is unknown whether nuclear IKKα plays a role in HBx-associated tumor progression. Moreover, the molecular mechanism underlying IKKα nuclear transport also remains to be elucidated. Here, we disclosed HBx as a new inducer of IKKα nuclear transport in hepatoma cells. HBx induced IKKα nuclear transport in an Akt-dependent manner. HBx-activated Akt promoted IKKα nuclear translocation via phosphorylating its threonine-23 (Thr23). In addition, IKKα ubiquitination enhanced by HBx and Akt also contributed to the IKKα accumulation in the nucleus, indicating the involvement of ubiquitination in Akt-increased IKKα nuclear transport in response to HBx. Furthermore, inhibition of IKKα nuclear translocation by mutation of its nuclear localization signal and Thr23 diminished IKKα-dependent cell migration. Taken together, our findings shed light on the molecular mechanism of IKKα nuclear translocation and provide a potential role of nuclear IKKα in HBx-mediated hepatocellular carcinoma (HCC) progression.  相似文献   

10.
11.
Hepatitis virus B (HBV) infection is one of the major causes of hepatocellular carcinomas (HCC). HBx protein encoded in HBV genome is one of the key viral factors leading to malignant transformation of infected cells. HBx functions by interfering with cellular functions, causing aberration in cellular behaviour and transformation. Notch signalling is a well-conserved pathway involved in cellular differentiation, cell survival and cell death operating in various types of cells. Aberration in the Notch signalling pathways is linked to various tumors, including HCC. The role of HBx on the Notch signalling in HCC, however, is still controversial. In this study, we reported that HBV genome-containing HCC cell line HepG2 (HepG2.2.15) expressed higher Notch1 and Delta-like 4 (Dll4), compared to the control HepG2 without HBV genome. This upregulation coincided with increased appearance of the cleavage of Notch1, indicating constitutively activated Notch signalling. Silencing of HBx specifically reduced the level of Dll4 and cleaved Notch1. The increase in Dll4 level was confirmed in clinical specimens of HCC lesion, in comparison with non-tumor lesions. Using specific signalling pathway inhibitors, we found that MEK1/2, PI3K/AKT and NF-κB pathways are critical for HBx-mediated Dll4 upregulation. Silencing of HBx clearly decreased the level of phosphorylation of Akt and Erk1/2. Upon silencing of Dll4 in HepG2.2.15, decreased cleaved Notch1, increased apoptosis and cell cycle arrest were observed, suggesting a critical role of HBx-Dll4-Notch1 axis in regulating cell survival in HCC. Furthermore, clonogenic assay confirmed the important role of Dll4 in regulating cell survival of HBV-genome containing HCC cell line. Taken together, we reported a link between HBx and the Notch signalling in HCC that affects cell survival of HCC, which can be a potential target for therapy.  相似文献   

12.
13.
14.
Choi YH  Kim HI  Seong JK  Yu DY  Cho H  Lee MO  Lee JM  Ahn YH  Kim SJ  Park JH 《FEBS letters》2004,557(1-3):73-80
Ligand activation of peroxisome proliferator-activated receptor gamma (PPARgamma) has been reported to induce growth inhibition and apoptosis in various cancers including hepatocellular carcinoma (HCC). However, the effect of hepatitis B virus X protein (HBx) on PPARgamma activation has not been characterized in hepatitis B virus (HBV)-associated HCC. Herein, we demonstrated that HBx counteracted growth inhibition caused by PPARgamma ligand in HBx-associated HCC cells. We found that HBx bound to DNA binding domain of PPARgamma and HBx/PPARgamma interaction blocked nuclear localization and binding to recognition site of PPARgamma. HBx significantly suppressed a PPARgamma-mediated transactivation. These results suggest that HBx modulates PPARgamma function through protein-protein interaction.  相似文献   

15.
16.
Choi M  Lee H  Rho HM 《IUBMB life》2002,53(6):309-317
The functional effect of the interaction of E2F1 and hepatitis B virus X protein (HBx) on the promoter of human p53 gene was studied using chloramphenicol acetyl transferase (CAT) assay. E2F1 activated the p53 promoter through E2F1 binding site. As previously reported, HBx repressed the p53 promoter through E-box. When E2F1 was cotransfected with HBx, E2F1 overcame the repressive effect of HBx on the p53 promoter through the E2F1 site. However, in the thymidine kinase (tk) heterologous promoter system with the E2F1 binding sites, cotransfection of E2F1 and HBx showed a strong synergistic activation. An in vitro interaction assay showed that E2F1 and HBx physically bind with each other. Analyses of the interaction domain with the GAL4 fusion protein showed that the pRb-binding domain of E2F1 was necessary for the functional interaction of these two proteins. Taken together, these results imply the functional inhibitory action of E2F1 on the HBV life cycle and HBV-mediated hepatocellular carcinogenesis (HCC). Therefore, the normal or enhanced function of E2F1 gene would be important in controlling the HBx function in HCC.  相似文献   

17.
18.
19.
乙肝病毒感染对细胞基本自噬的影响   总被引:4,自引:0,他引:4  
王娟  时迎娣  杨怀义 《微生物学报》2010,50(12):1651-1656
【目的】慢性乙肝病毒(Hepatitis B virus,HBV)感染在肝硬化和肝癌的发生过程中起着重要的作用,通过研究HBV感染对细胞基本自噬的影响,为HBV感染诱发肝癌以及HBV的免疫逃逸机理研究提供新的思路。【方法】本研究利用乙肝病毒表达质粒瞬时或稳定转染不同肝细胞,通过计数绿色荧光蛋白(greenfluorescent protein,GFP)聚集数目检测自噬小体形成,western blot检测LC3(microtubule-associated proteinlight chain 3,微管相关蛋白质轻链3)脂酰化和p62的降解,通过构建HBV B型和C型X蛋白(HBx)的表达质粒并瞬时转染肝癌细胞和正常肝细胞,对不同基因型X蛋白对细胞自噬的影响进行了分析。【结果】乙肝病毒感染后促进了LC3的脂酰化和p62的降解,增加了自噬小体的形成,增强了细胞的基本自噬。进一步研究发现,HBV感染增强的细胞基本自噬水平由HBx所引发,且C型HBx比B型对细胞基本自噬的增加更加显著。【结论】HBV通过HBx增强细胞的基本自噬,且不同基因型HBx对细胞基本自噬的增强程度不同,为进一步阐明HBV感染机理奠定了基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号