首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of lanthanoids on exocytosis was investigated. It was shown that gadolinium increases the spontaneous release of the glutamate nonmetabolizing analogue [3H]D-aspartate. It was established using the fluorescent dye acridine orange that gadolinium and lanthanum induce exocytosis. The effect was dose-dependent and was maximum at 300 microM Gd3+. The exocytosis induced by gadolinium was calcium-independent. It is suggested that lanthanides induce a vesicular release of neurotransmitters by the mechanisms common for all polyvalent cations.  相似文献   

2.
Carbachol (CCh), a muscarinic agonist that elicits the formation of inositol trisphosphate (IP3) and diacylglycerol (DG), induces a calcium-dependent [3H]norepinephrine ([3H]NE) release [IC50 = (2.7 +/- 0.5) X 10(-4) M] in rat brain slices. Similarly, other muscarinic agonists evoke [3H]NE release which is specifically inhibited by muscarinic antagonists such as 3-quinuclidinyl benzilate, atropine, and N-methyl-4-piperidyl benzilate. The atropine-sensitive evoked release is effectively inhibited by neomycin (IC50 = 50 microM), a phospholipase C inhibitor that interferes with IP3-dependent cellular processes. In addition, polymyxin B, a rather selective inhibitor of protein kinase C (PK-C), abolishes the agonist-mediated release with a half-maximal effective concentration of 0.53 microM (750 ng/ml). These results have a significant implication for the mechanism by which agonists generating IP3 and DG act as inducers of neurotransmitter release in the CNS. However, since both neomycin and polymyxin B act also as N-calcium-channel blockers, other possible mechanisms are discussed. The CCh-induced release suggests that in the CNS an agonist-receptor interaction leads to a calcium-dependent neurotransmitter release, most likely via promoting the IP3/DG as second messengers followed by activation of PK-C.  相似文献   

3.
The ability of an endogenous brain Na+, K+ -ATPase inhibitor, termed endobain E, to increase [3H]norepinephrine release in rat hypothalamus was previously reported. Endobain E effect on neurotransmitter uptake was studied by assaying [3H]norepinephrine uptake in rat hypothalamus preparations, to observe uptake inhibition, which reached 60% with endobain E equivalent to 100 mg fresh cerebral cortex, an effect achieved with 40 or 400 microM ouabain. Results support the proposal that endobain E behaves as an ouabain-like substance. Taken jointly results obtained on neurotransmitter release and uptake, the suggestion that endobain E may enhance norepinephrine availability in the synaptic gap and thus lead to an increase in noradrenergic activity is advanced.  相似文献   

4.
KRDS (Lys-Arg-Asp-Ser), a tetrapeptide from human lactotransferrin, was tested in vitro on human platelet function, and its effects were compared to those of RGDS, a tetrapeptide from human fibrinogen. Both peptides had a high probability of initiating a beta-turn and were highly hydrophilic. KRDS inhibited ADP-induced platelet aggregation [median inhibitory concentration (IC50) 350 microM] and fibrinogen binding (IC50 360 microM) to a lesser extent than RGDS (IC50 75 microM and 20 microM, respectively). Different from RGDS, thrombin-induced serotonin release was inhibited by KRDS (750 microM) on normal platelets (55 +/- 10%) and type I Glanzmann's thrombasthenia platelets (43% +/- 1). However, KRDS had no effect on cytoplasmic Ca2+ mobilization, inositol phospholipid metabolism or protein phosphorylation (myosin light chain P20 and P43). In contrast to RGDS, KRDS does not inhibit the binding of monoclonal antibody PAC-1 to activated platelets. KRDS and RGDS inhibited 4 beta-phorbol-12-myristate-13-acetate (PMA)-induced aggregation and fibrinogen binding, while proteins were normally phosphorylated. Thus, the tetrapeptide KRDS is (a) an inhibitor of serotonin release by a mechanism independent of protein phosphorylation and (b) an inhibitor of fibrinogen binding and, hence, aggregation by a mechanism that may not necessarily involve its direct binding to the glycoprotein IIb-IIIa-complex.  相似文献   

5.
Abstract: Excessive generation of free radicals has been implicated in several pathological conditions. We demonstrated previously that peroxide-generated free radicals decrease calcium-dependent high K+-evoked l -[3H]-glutamate release from synaptosomes while increasing calcium-independent basal release. The present study evaluates the nonyesicular release of excitatory amino acid neurotransmitters, using d -[3H]aspartate as an exogenous label of the cytoplasmic pool of l -glutamate and l -aspartate. Isolated presynaptic nerve terminals from the guinea pig cerebral cortex were used to examine the actions and interactions of peroxide, iron, and desferrioxamine. Pretreatment with peroxide, iron alone, or peroxide with iron significantly increased the calcium-independent basal release of d -[3H]aspartate. Pretreatment with desferrioxamine had little effect on its own but significantly limited the enhancement by peroxide. High K+-evoked release in the presence of Ca2+ was enhanced by peroxide but not by iron. These data suggest that peroxide increases nonvesicular basal release of excitatory amino acids through Fenton-generated hydroxyl radicals. This release could cause accumulation of extracellular excitatory amino acids and contribute to the excitotoxicity associated with some pathologies.  相似文献   

6.
N-Acetylaspartylglutamate (NAAG) is a neuropeptide localized to several putative glutamatergic neuronal systems, including the rodent optic pathway. To determine whether the peptide is released by depolarization, the superior colliculus of the rat was perfused with 2 microCi of [3H]NAAG, then with Krebs-bicarbonate buffer for 1 h, using a microdialysis system. Subsequently, 10-min fractions were collected and analyzed by HPLC for [3H]NAAG. Addition of 100 microM veratridine resulted in a several-fold increase in the evoked release of [3H]NAAG that was virtually abolished by coperfusion with Ca2+-free Krebs buffer containing 1 mM EGTA. When [3H]glutamate was used as the precursor, veratridine depolarization resulted in only an 80% increase in the release of [3H]NAAG. Prior enucleation of the right eye reduced the spontaneous release of [3H]NAAG by 50%, and the veratridine-evoked release by greater than 85%, from the left superior colliculus. These results suggest that NAAG is released upon depolarization and may serve as a neurotransmitter/neuromodulator in the optic tract.  相似文献   

7.
The role of l -aspartate as a classical neurotransmitter of the CNS has been a matter of great debate. In this study, we have characterized the main mechanisms of its depolarization-induced release from rat purified cerebrocortical synaptosomes in superfusion and compared them with those of the well-known excitatory neurotransmitter l -glutamate. High KCl and 4-aminopyridine were used as depolarizing agents. At 15 mM KCl, the overflows of both transmitters were almost completely dependent on external Ca2+. At 35 and 50 mM KCl, the overflows of l -aspartate, but not those of l -glutamate, became sensitive to dl -threo-β-benzyloxyaspartic acid ( dl -TBOA), an excitatory amino acid transporter inhibitor. In the presence of dl -TBOA, the 50 mM KCl-evoked release of l -aspartate was still largely external Ca2+-dependent. The dl -TBOA insensitive, external Ca2+-independent component of the 50 mM KCl-evoked overflows of l -aspartate and l -glutamate was significantly decreased by the mitochondrial Na+/Ca2+ exchanger blocker CGP 37157. The Ca2+-dependent, KCl-evoked overflows of l -aspartate and l -glutamate were diminished by botulinum neurotoxin C, although to a significantly different extent. The 4-aminopyridine-induced l -aspartate and l -glutamate release was completely external Ca2+-dependent and never affected by dl -TBOA. Superimposable results have been obtained by pre-labeling synaptosomes with [3H] d -aspartate and [3H] l -glutamate. Therefore, our data showing that l -aspartate is released from nerve terminals by calcium-dependent, exocytotic mechanisms support the neurotransmitter role of this amino acid.  相似文献   

8.
This study examined the effects of dopamine D1 and D2 receptor agonists and antagonists on the spontaneous and calcium-dependent, K+-induced release of gamma-[3H]aminobutyric acid [( 3H]GABA) accumulated by slices of rat substantia nigra. SKF 38393 (D1 agonist) and dopamine (dual D1/D2 agonist) were without effect on [3H]GABA efflux by themselves (1-40 microM), or in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) (0.5 mM), but potentiated evoked release in the presence of forskolin (0.5 microM), an adenylate cyclase activator. These increases in release were prevented by the D1 antagonist SCH 23390 (0.5 microM), but not by the D2 antagonist metoclopramide (0.5 microM). Higher concentrations of forskolin (10-40 microM) augmented stimulus-evoked [3H]GABA release directly, whereas dibutyryl cyclic AMP (100-200 microM) depressed it. Apomorphine, noradrenaline, and 5-hydroxytryptamine (1-40 microM) had no effect. The D2 stimulants lisuride, RU 24213, LY 171555, and bromocriptine dose-dependently inhibited depolarisation-induced but not basal [3H]GABA outflow. These inhibitory responses were not modified by the additional presence of SKF 38393 (10 microM) or SCH 23390 (1 microM), or by injection of 6-hydroxydopamine into the medial forebrain bundle 42 days earlier, but were attenuated by metoclopramide (0.5 microM). Higher amounts (10 microM) of SCH 23390, metoclopramide, or other D2 antagonists (loxapine, haloperidol) reduced evoked GABA release by themselves, probably by nonspecific mechanisms. These results suggest D1 and D2 receptors may have opposing effects on nigral GABA output and could explain the variable effects of mixed D1/D2 dopaminomimetics in earlier release and electrophysiological experiments.  相似文献   

9.
In order to determine whether the status epilepticus leads to alterations in the neurosteroid effect on excitatory amino acid transmission, we studied the influence of allopregnanolone on aspartate release and glutamate uptake in mouse hippocampus at various times after kainate administration. No significant differences in the K+-stimulated D-[3H]-aspartate release from the hippocampi of saline- and kainate-treated mice were observed; however, that parameter tended to fall in tissues collected I h after kainate administration. Allopregnanolone significantly attenuated the K+-stimulated D-[3H]-aspartate release from the hippocampi of control animals, as well at 24 h and 7 days after kainate injection; in contrast it did not affect amino acid release from the hippocampi collected 1 h after kainate administration. Kainate administration had no effect on [3H]-glutamate uptake after 1 and 24 h, but elevated that parameter on day 7. Allopregnanolone (10 and 100 microM) did not affect [3H]-glutamate uptake in control and kainate-treated mice. In conclusion, the present study indicates a loss of the inhibitory effect of allopregnanolone on the potasium-stimulated D-[3H]-aspartate release from mouse hippocampus during the kainate-induced status epilepticus; moreover, it excludes involvement of this neurosteroid in the regulation of hippocampal [3H]-glutamate uptake in both control and kainate-treated mice.  相似文献   

10.
Exposure of a crude synaptosomal fraction to K+ concentrations ranging from 25 to 100 mM evokes the release of [3H]taurine and [3H]GABA. These high concentrations of K+ induce, besides depolarization, a marked synaptosomal swelling, which is prevented by replacing chloride in the solutions with the largely impermeant anion gluconate. The depolarizing effect of K+ is unaffected by omission of chloride. The K+-evoked release of taurine seems related to K+-induced changes in synaptosomal volume rather than to a depolarizing effect, since it is totally calcium-independent but is abolished by reducing chloride and by making solutions hypertonic with mannitol. The release of [3H]GABA, in contrast is unaffected in chloride-free or hypertonic solutions.  相似文献   

11.
A pulse of short peptides, RGDS and DGEA in the millimolar range, immediately elicits in normal human fibroblasts a transient increase of intracellular Ca2+ ([Ca2+]i). In the present study, we show that this [Ca2+]i occurs in an increasing number of cells as a function of peptides concentration. It is specific of each peptide and inhibited at saturating concentration of the peptide in the culture medium. The [Ca2+]i transient depends on signalling pathways slightly different for DGEA and RGDS involving tyrosine kinase(s) and phosphatase(s), phospholipase C, production of inositol-trisphosphate and release of Ca2+ from the cellular stores. GFOGER, the classical collagen binding peptide of alpha1- alpha2- and alpha11-beta1 integrins, in triple helical or denatured form, does not produce any Ca2+ signal. The [Ca2+]i signalling induced by RGDS and DGEA is inhibited by antibodies against beta1 integrin subunit while that mediated by RGDS is also inhibited by antibodies against the alpha3 integrin. Delay in the acquisition of responsiveness is observed during cell adhesion and spreading on a coat of fibronectin for RGDS or collagen for DGEA or on a coat of the specific integrin-inhibiting antibodies but not by seeding cells on GFOGER or laminin-5. This delay is suppressed specifically by collagenase acting on the collagen coat or trypsin on the fibronectin coat. Our results suggest that free integrins and associated focal complexes generate a Ca2+ signal upon recognition of DGEA and RGDS by different cellular pathways.  相似文献   

12.
In primary cultures of mouse cerebral cortex neurons, sulphur-containing excitatory amino acids (SAAs; namely, L-cysteine sulphinate, L-cysteate, L-homocysteine sulphinate, L-homocysteate, S-sulphocysteine) at concentrations ranging from 0.1 microM to 1 mM evoked a saturable release of gamma-[3H]aminobutyric acid ([3H]GABA) in the absence of any other depolarizing agent. All SAAs exhibited essentially similar potency (EC50, 100-150 microM) in releasing [3H]GABA although a variable profile of maximal stimulatory effect was observed when compared with basal release. The intracellular accumulation of the lipophilic cation, [3H]tetraphenylphosphonium, was significantly reduced in the presence of all SAAs, thus verifying a depolarization of the neuronal plasma membrane. SAA-stimulated release of [3H]GABA was shown to comprise two distinct components, calcium-dependent and calcium-independent, which occur after activation of N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Thus, all SAA-evoked responses were antagonized by the selective, competitive NMDA-receptor antagonist, 3-[(+/-)-2-carboxypiperazin-4-yl]propyl-1-phosphonic acid (IC50 range, greater than 50 microM) and the non-NMDA-receptor antagonist, 6,7-dinitroquinoxalinedione (IC50 range, 5-50 microM). Removal of magnesium ions from the superfusion medium caused a significant potentiation of SAA-evoked responses without having any effect on basal levels of [3H]GABA efflux, a result consistent with an involvement of NMDA-receptor activation. Calcium-independent release (i.e., that release remaining in the presence of 1 mM cobalt ions) was a distinct component but of smaller magnitude. Using 500 microM excitatory amino acid agonist concentrations, this component of release was (1) markedly attenuated by 15 microM SKF-89976-A, a non-transportable inhibitor of the GABA carrier, and (2) abolished when choline ions replaced sodium ions in the superfusion medium or when in the presence of excitatory amino acid receptor antagonists. These observations are clearly consistent with a receptor-mediated, depolarization-induced reversal of the GABA carrier.  相似文献   

13.
1. The effect of ouabain on the release of [3H]acetylcholine ([3H]ACh) in rat brain cortical slices was investigated. 2. The ouabain-induced release of [3H]ACh was calcium-independent and not blocked by EGTA. 3. BAPTA-AM, a chelator of intracellular calcium, inhibited the ouabain effect suggesting the involvement of intracellular calcium stores. 4. Vesamicol, a drug that blocks the storage of acetylcholine in synaptic vesicles inhibited by 73% the ouabain-induced release of [3H] ACh, suggesting exocytotic release of the neurotransmitter. 5. Dantrolene and tetracaine, inhibitors of ryanodine and InP3 receptors, inhibited by 57 and 66% respectively, the ouabain-elicited release of [3H]ACh in brain cortical slices. 6. Confocal microscopy and calcium imaging showed that ouabain increased the levels of [Ca2+]i in cholinergic SN56 cells and that this increase was concentrated in the cell soma. 7. In conclusion, we suggested that ouabain causes Ca2+ release from intracellular stores that can increase [3H] ACh exocytosis from rat brain cortical slices.  相似文献   

14.
In addition to the somatodendritic region, myenteric motoneuron terminals are endowed with nicotinic autoreceptors. We aimed at investigating the effect of nicotinic receptor (nAChR) activation on [3H]-acetylcholine ([3H]-ACh) release from longitudinal muscle-myenteric plexus of the rat ileum and to evaluate whether this could be modulated by adenosine, an endogenous neuromodulator typically operating changes in intracellular cyclic AMP. The nAChR agonist, 1,1-dimethyl-4-phenylpiperazinium (DMPP, 1-30 microM, 3 min) increased [3H]-ACh release in a concentration-dependent manner. DMPP (30 microM)-induced [3H]-ACh outflow was attenuated by hexamethonium (0.1-1 mM), tubocurarine (1-5 microM), or by removing external Ca2+ (plus EGTA, 1 mM). In contrast to veratridine (0.2-10 microM)-induced [3H]-ACh release, the DMPP (30 microM)-induced outflow was resistant to tetrodotoxin (1 microM) and cadmium (0.5 mM). Pretreatment with adenosine deaminase (0.5 U/mL) or with the adenosine A(2A)-receptor antagonist, ZM 241385 (50 nM), enhanced nAChR-induced transmitter release. Activation of A(2A) receptors with CGS 21680C (3 nM) reduced the DMPP-induced release of [3H]-ACh. CGS 21680C (3 nM) inhibition was prevented by MDL 12,330A (10 microM, an adenylate cyclase inhibitor) and by H-89 (10 microM, an inhibitor of protein kinase A), but was potentiated by rolipram (300 microM, a phosphodiesterase inhibitor). DMPP-induced transmitter release was decreased by 8-bromo-cyclic AMP (1 mM, a protein kinase A activator), rolipram (300 microM), and forskolin (3 microM, an activator of adenylate cyclase). Both MDL 12,330A (10 microM) and H-89 (10 microM) facilitated DMPP-induced release of [3H]-ACh. The results indicate that nAChR-induced [3H]-ACh release is triggered by the influx of Ca2+, independent of voltage-sensitive calcium channels, presumably directly through nAChRs located on myenteric axon terminals. It was also shown that endogenous adenosine, activating A(2A) receptors coupled to the adenylate cyclase/cyclic AMP transducing system, is tonically downregulating this nAChR-mediated control of [3H]-ACh release.  相似文献   

15.
The serotonergic system may play a role during general anesthesia but the effect of the volatile anesthetic halothane on the release of serotonin (5-HT) is not fully understood. Rat brain cortical slices were labeled with [3H]5-HT to investigate the effects of halothane on the release of this neurotransmitter from the central nervous system. Halothane induced an increase on the release of [3H]5-HT that was dependent on incubation time and anesthetic concentration (0.006, 0.012, 0.024, 0.036, 0.048 and 0.072 mM). This effect was independent of extracellular calcium and was not affected by tetrodotoxin (blocker of voltage dependent Na+ channels). In contrast, the halothane-evoked [3H]5-HT release was reduced by BAPTA-AM, a membrane-permeable BAPTA analog that chelates intracellular Ca2+. The anesthetic-induced [3H]5-HT release depends on the ryanodine-sensitive intracellular calcium store since it was blocked by dantrolene and azumolene (inhibitors of the calcium-release through ryanodine receptors) but was not affected by aminoethoxydiphenylborate (2-APB), an inhibitor of inositol 1,4,5-triphosphate receptor. The [3H]5-HT release induced by halothane comes mainly from the vesicular pool since it was reduced in about 70% by reserpine, a blocker of vesicular monoamine transporter. The halothane-evoked release of [3H]5-HT release is reduced by fluoxetine, an inhibitor of 5-HT uptake, and the volatile agent also decreased the uptake of [3H]5-HT into rat brain cortical slices. Moreover, a decrease on halothane-induced release of [3H]5-HT was also observed when the brain cortical slices were incubated at low temperature, which is known to interfere with the carrier-mediated release of the neurotransmitter. Ouabain, a Na+/K+ ATPase pump inhibitor, which induces 5-HT release through reverse transport, also decreased [3H]5-HT release induced by halothane, confirming the involvement of a carrier-mediated release of the neurotransmitter in the presence of halothane. In conclusion, these data suggest that halothane induces vesicular and carrier-mediated release of [3H]5-HT in rat brain cortical slices.  相似文献   

16.
Using cerebellar, neuron-enriched primary cultures, we have studied the glutamate receptor subtypes coupled to neurotransmitter amino acid release. Acute exposure of the cultures to micromolar concentrations of kainate and quisqualate stimulated D-[3H]aspartate release, whereas N-methyl-D-aspartate, as well as dihydrokainic acid, were ineffective. The effect of kainic acid was concentration dependent in the concentration range of 20-100 microM. Quisqualic acid was effective at lower concentrations, with maximal releasing activity at about 50 microM. Kainate and dihydrokainate (20-100 microM) inhibited the initial rate of D-[3H]aspartate uptake into cultured granule cells, whereas quisqualate and N-methyl-DL-aspartate were ineffective. D-[3H]Aspartate uptake into confluent cerebellar astrocyte cultures was not affected by kainic acid. The stimulatory effect of kainic acid on D-[3H]aspartate release was Na+ independent, and partly Ca2+ dependent; the effect of quisqualate was Na+ and Ca2+ independent. Kynurenic acid (50-200 microM) and, to a lesser extent, 2,3-cis-piperidine dicarboxylic acid (100-200 microM) antagonized the stimulatory effect of kainate but not that of quisqualate. Kainic and quisqualic acid (20-100 microM) also stimulated gamma-[3H]-aminobutyric acid release from cerebellar cultures, and kynurenic acid antagonized the effect of kainate but not that of quisqualate. In conclusion, kainic acid and quisqualic acid appear to activate two different excitatory amino acid receptor subtypes, both coupled to neurotransmitter amino acid release. Moreover, kainate inhibits D-[3H]aspartate neuronal uptake by interfering with the acidic amino acid high-affinity transport system.  相似文献   

17.
The effect of calcium ionophore A23187 on the release of nonmetabolizable glutamate analogues [3H]D-aspartate and the exocytosis registered by fluorescent dyes in synaptosomes was investigated. It was shown that A23187 is able to induce neurotransmitter release both in calcium-containing and calcium-free medium, the effect in the latter case being more pronounced. Calcium ionophore is able to induce exocytosis registered by acridine orange and FM 2-10. The influence of A23187 on the fluorescence of acridine orange was mainly calcium-independent, whereas the change in the fluorescence of FM 2-10 was calcium-dependent. It was suggested that the calcium-independent increase in acridine orange fluorescence is related to the dissipation of pH gradient in synaptic vesicles. Probably, the calcium-independent release of D-aspartate is also associated with the dissipation of pH gradient and subsequent leakage of neurotransmitters.  相似文献   

18.
Barbiturates have been shown to be competitive antagonists at A1 adenosine receptors in radioligand binding studies. The present study investigates the effects of pentobarbital on the A1 receptor-mediated inhibition of neurotransmitter release from rabbit hippocampal slices. The inhibition of the electrically evoked release of [3H]noradrenaline by the A1 receptor agonist (R)-N6-phenylisopropyladenosine (R-PIA) was antagonized by pentobarbital with an apparent pA2 value of 3.5. Low concentrations of pentobarbital alone altered neither basal nor evoked release of [3H]noradrenaline, whereas 1,000 microM pentobarbital enhanced the basal and reduced the evoked release. In the presence of 8-phenyltheophylline, pentobarbital (200 microM and 1,000 microM) reduced the evoked noradrenaline release. Pentobarbital also antagonized the inhibition of [3H]acetylcholine release by R-PIA. In contrast to the noradrenaline release model, the evoked release of acetylcholine was enhanced by the presence of pentobarbital (50-500 microM), an effect that was lost in the presence of 8-phenyltheophylline. These results indicate that pentobarbital, in addition to a direct inhibitory action at higher concentrations, has a facilitatory effect on neurotransmitter release by blocking presynaptic A1 adenosine receptors. The possible relevance of these findings for the excitatory effects of barbiturates is discussed.  相似文献   

19.
Arachidonic acid release is an important regulatory component of uterine contraction and parturition, and previous studies showed that lindane stimulates arachidonic acid release from myometrium. The present study partially characterized the enzyme activity responsible for lindane-induced arachidonic acid release in myometrial cells. Lindane released arachidonic acid from cultured rat myometrial cells in concentration- and time-dependent manners. This release was primarily from phosphatidylcholine and phosphatidylinositol, and was independent of intracellular and extracellular calcium. In cells prelabeled with [3H]arachidonic acid, 85% of radiolabel was recovered as free arachidonate and only 5% was recovered as eicosanoids. Pretreatment with the antioxidants Cu, Zn-superoxide dismutase, alpha-tocopherol or Trolox did not significantly modify lindane-induced arachidonic acid release. Pretreatment of cells with the phosphatidylcholine-specific phospholipase C inhibitor D609, phosphatidylinositol-specific phospholipase C inhibitor ET-18-OCH3, or an interrupter of the phospholipase D pathway (ethanol) did not suppress lindane-induced arachidonic acid release. Although these results are consistent with calcium-independent phospholipase A2 activation by lindane, the calcium-independent phospholipase A2 inhibitor bromoenol lactone failed to inhibit lindane-induced arachidonic acid release in myometrial cells, even though bromoenol lactone effectively blocked arachidonic acid release in neutrophils. These results suggest that myometrial cells express a novel, previously unidentified phospholipase that is arachidonate-specific, calcium-independent, insensitive to bromoenol lactone, insensitive to reactive oxygen species activation, shows substrate preference for phosphatidylcholine and phosphatidylinositol, and is stimulated by lindane. Moreover, the data show that the overwhelming majority of arachidonic acid released remains as arachidonate, but that lindane does not significantly inhibit metabolism of arachidonate to eicosanoids.  相似文献   

20.
The effect of SKF 89976-A, a lipophilic non-substrate inhibitor of the -aminobutyric acid (GABA) transporter, on the release of radioactive GABA andd-aspartate has been studied. Neuronal cultures from 8 day old chick embryos, grown for six days, served as a model. The cultures were incubated with [3H]d-aspartate and [14C] GABA with the subsequent addition of high or low concentrations of SKF 89976-A. Finally the cultures were exposed to differently composed media for either 30 or 300 seconds. The release was quantified, using liquid scintillation counting. The efflux of [3H]d-aspartate and [14C] GABA was increased by [K+] and time, and a minimum value was obtained at [Ca2+] 1.05 mM. The release of both [3H]d-aspartate and [14C] GABA was inhibited by SKF 89976-A. The obtained results indicate that transporter mediated processes are the major mechanisms of transmitter release in the investigated model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号