首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have cloned a novel cell-surface protein designated SPAP1a for SH2 domain-containing phosphatase anchor protein 1a. SPAP1a belongs to the group of type I transmembrane proteins. Its extracellular domain contains a single immunoglobulin-like domain, and its intracellular segment has two immunoreceptor tyrosine-based inhibition motifs (ITIMs). We also identified two alternatively spliced products that were named SPAP1b and SPAP1c. SPAP1b contains a short intracellular part without ITIMs, while SPAP1c lacks the transmembrane segment and represents a potential soluble protein. Sequence alignment with the genomic database revealed that the SPAP1 gene contains seven exons and is localized at chromosome 1q21. PCR analyses demonstrated that SPAP1a mRNA is specifically expressed in human hematopoietic tissues including spleen, peripheral blood, and bone marrow, and it may be restricted to expression in B cells. Recombinant SPAP1a is tyrosine phosphorylated in cells upon pervanadate stimulation and tyrosine-phosphorylated SPAP1a recruits the SH2 domain containing phosphatase SHP-1, but not SHP-2. As a specific anchor protein of SHP-1, SPAP1a may have an important role in hematopoietic cell signaling.  相似文献   

2.
3.
Tyrosine phosphorylation of membrane proteins plays a crucial role in cell signaling by recruiting Src homology 2 (SH2) domain-containing signaling molecules. Recently, we have isolated a transmembrane protein designated PZR that specifically binds tyrosine phosphatase SHP-2, which has two SH2 domains (Zhao, Z. J., and Zhao, R. (1998) J. Biol. Chem. 273, 29367-29372). PZR belongs to the immunoglobulin superfamily. Its intracellular segment contains four putative sites of tyrosine phosphorylation. By site-specific mutagenesis, we found that the tyrosine 241 and 263 embedded in the consensus immunoreceptor tyrosine-based inhibitory motifs VIYAQL and VVYADI, respectively, accounted for the entire tyrosine phosphorylation of PZR. The interaction between PZR and SHP-2 requires involvement of both tyrosyl residues of the former and both SH2 domains of the latter, since its was disrupted by mutating a single tyrosyl residue or an SH2 domain. Overexpression of catalytically inactive but not active forms of SHP-2 bearing intact SH2 domains in cells caused hyperphosphorylation of PZR. In vitro, tyrosine-phosphorylated PZR was efficiently dephosphorylated by the full-length form of SHP-2 but not by its SH2 domain-truncated form. Together, the data indicate that PZR serves not only as a specific anchor protein of SHP-2 on the plasma membrane but also as a physiological substrate of the enzyme. The coexisting binding and dephosphorylation of PZR by SHP-2 may function to terminate signal transduction initiated by PZR and SHP-2 and to set a threshold for the signal transduction to be initiated.  相似文献   

4.
SHP-1, an SH2 domain-containing tyrosine phosphatase, has a crucial role in hematopoiesis. Here we report that SHP-1 is associated with two major tyrosine-phosphorylated proteins in hematopoietic cells treated with the tyrosine phosphatase inhibitor, pervanadate. One of the proteins corresponds to leukocyte-associated Ig-like receptor-1 (LAIR-1), a recently cloned transmembrane protein. Molecular cloning revealed four isoforms of the protein. LAIR-1 is hyper-phosphorylated on tyrosyl residues in cells overexpressing a catalytically inactive mutant form of SHP-1 as well as in pervanadate-treated cells. An antibody against the extracellular domain of the protein also induced its tyrosine phosphorylation. Tyrosine-phosphorylated LAIR-1 specifically interacts with SHP-1 but not with SHP-2, a structurally related tyrosine phosphatase. Using site-specific mutagenesis, we demonstrated that Tyr(233) and Tyr(263), each embedded in an immunoreceptor tyrosine-based inhibitory motif, are responsible for tyrosine phosphorylation of LAIR-1 and recruitment of SHP-1. Both tyrosyl residues are required for SHP-1 binding. Protein kinases responsible for tyrosine phosphorylation of LAIR-1 may belong to the Src family since PP1, a Src family kinase inhibitor, significantly inhibited its phosphorylation. As a major binding protein of SHP-1 on the plasma membrane, LAIR-1 may play an important role in hematopoietic cell signaling.  相似文献   

5.
Platelet activation is regulated by both positive and negative signals. G6B-b is an inhibitory platelet receptor with an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM). The molecular basis of inhibition by G6B-b is currently unknown but thought to involve the SH2 domain-containing tyrosine phosphatase SHP-1. Here we show that G6B-b also associates with SHP-2, as well as SHP-1, in human platelets. Using a number of biochemical approaches, we found these interactions to be direct and that the tandem SH2 domains of SHP-2 demonstrated a binding affinity for G6B-b 100-fold higher than that of SHP-1. It was also observed that while SHP-1 has an absolute requirement for phosphorylation at both motifs to bind, SHP-2 can associate with G6B-b when only one motif is phosphorylated, with the N-terminal SH2 domain and the ITIM being most important for the interaction. A number of other previously unreported SH2 domain-containing proteins, including Syk and PLCγ2, also demonstrated specificity for G6B-b phosphomotifs and may serve to explain the observation that G6B-b remains inhibitory in the absence of both SHP-1 and SHP-2. In addition, the presence of dual phosphorylated G6B-b in washed human platelets can reduce the EC50 for both CRP and collagen.  相似文献   

6.
FcgammaRIIB are single-chain low affinity receptors for IgG that negatively regulate immunoreceptor tyrosine-based activation motif-dependent cell activation. They bear one immunoreceptor tyrosine-based inhibition motif (ITIM) that becomes tyrosyl-phosphorylated upon coaggregation of FcgammaRIIB with immunoreceptor tyrosine-based activation motif-bearing receptors and that recruits SH2 domain-containing inositol 5-phosphatases (SHIPs) in vivo. Synthetic FcgammaRIIB ITIM phosphopeptides, however, also bind SH2 domain-containing protein-tyrosine phosphatases (SHPs) in vitro. To identify SHIP-binding sites, we exchanged residues between the FcgammaRIIB ITIM and the N-terminal ITIM of a killer cell Ig-like receptor that does not bind SHIPs. Loss of function and gain of function substitutions identified the Y+2 leucine, in the FcgammaRIIB ITIM, as determining the binding of both SHIP1 and SHIP2, but not the binding of SHP-1 or SHP-2. Conversely, the Y-2 isoleucine that determines the in vitro binding of SHP-1 and SHP-2 affected neither the binding nor the recruitment of SHIP1 or SHIP2. One hydrophobic residue, in the ITIM of FcgammaRIIB therefore determines the affinity for SHIPs. This residue is symmetrical to the hydrophobic residue that determines the affinity of all ITIMs for SHPs. It defines a SHIP-binding site, distinct from a SHP-binding site, that enables FcgammaRIIB to recruit SHIP1 and SHIP2 and that is preferentially used in vivo.  相似文献   

7.
PZR is an immunoglobulin superfamily protein that specifically binds tyrosine phosphatase SHP-2 through its intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Here we report a novel isoform of the protein designated PZR1b. PZR1b shares the same extracellular region with PZR, but it lacks intracellular ITIMs and thus the ability to recruit SHP-2. Genomic sequence analysis revealed that PZR1b is resulted from alternative gene splicing of the PZR gene localized at chromosome 1q24. Like PZR, PZR1b is widely expressed. However, the relative ratio of two forms varies in different human tissues and cells. More importantly, overexpression of PZR1b in human HT-1080 cells had a dominant negative effect by blocking concanavalin A-induced tyrosine phosphorylation of full-length PZR and recruitment of tyrosine phosphatase SHP-2. Therefore, PZR1b may have an important role in cell signaling by counteracting with PZR.  相似文献   

8.
SHPS-1 is an immunoglobulin superfamily protein with four immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in its cytoplasmic region. Various neurotrophic factors induce the tyrosine phosphorylation of SHPS-1 and the association of SHPS-1 with the protein tyrosine phosphatase SHP-2. Using a yeast two-hybrid screen, we identified a protein tyrosine kinase, Csk-homologous kinase (CHK), as an SHPS-1-interacting protein. Immunoprecipitation and pull-down assays using glutathione S -transferase (GST) fusion proteins containing the Src homology 2 (SH2) domain of CHK revealed that CHK associates with tyrosine-phosphorylated SHPS-1 via its SH2 domain. HIS3 assay in a yeast two-hybrid system using the tyrosine-to-phenylalanine mutants of SHPS-1 indicated that the first and second ITIMs of SHPS-1 are required to bind CHK. Over-expression of wild-type CHK, but not a kinase-inactive CHK mutant, enhanced the phosphorylation of SHPS-1 and its subsequent association with SHP-2. CHK phosphorylated each of four tyrosines in the cytoplasmic region of SHPS-1 in vitro . Co-expression of SHPS-1 and CHK enhanced neurite outgrowth in PC12 cells. Thus, CHK phosphorylates and associates with SHPS-1 and is involved in neural differentiation via SHP-2 activation.  相似文献   

9.
Clustering of the mast cell function-associated antigen by its specific monoclonal antibody (G63) inhibits the FcepsilonRI-mediated secretory response. The cytosolic tail of the mast cell function-associated antigen contains a SIYSTL stretch, a potential immunoreceptor tyrosine-based inhibition motif. To investigate the possible functional role of this sequence, as well as identify potential intracellular proteins that interact with it, peptides corresponding to residues 4-12 of the mast cell function-associated antigen's N-terminal cytoplasmic domain, containing the above motif, were synthesized and used in affinity chromatography of mast cell lysates. Both tyrosyl phosphorylated and thiophosphorylated mast cell function-associated antigen peptides bound the src homology domain 2 (SH2)-containing tyrosine phosphatases-1 (SHP-1), -2 (SHP-2) and inositol 5'-phosphatase (SHIP), though with different efficiencies. Neither the nonphosphorylated peptide nor its tyrosyl phosphorylated reversed sequence peptide bound any of these phosphatases. Point mutation analysis of mast cell function-associated antigen pITIM binding requirements demonstrated that for SHP-2 association the amino acid residue at position Y-2 is not restricted to the hydrophobic isoleucine or valine. Glycine and other amino acids with hydrophilic residues, such as serine and threonine, at this position also maintain this binding capacity, whereas alanine and acidic residues abolish it. In contrast, SHP-1 binding was maintained only when serine was substituted by valine, suggesting that the Y-2 position provides selectivity for peptide binding to SH2 domains of SHP-1 and SHP-2. These results were corroborated by surface plasmon resonance measurements of the interaction between tyrosyl phosphorylated mast cell function-associated antigen peptide and recombinant soluble SH2 domains of SHP-1, SHP-2 and SHIP, suggesting that the associations observed in the cell lysates may be direct. Taken together these results clearly indicate that the SIYSTL motif present in mast cell function-associated antigen's cytosolic tail exhibits characteristic features of an immunoreceptor tyrosine-based inhibition motif, suggesting it is a new member of the growing diverse family of immunoreceptor tyrosine-based inhibition motif-containing receptors.  相似文献   

10.
11.
Killer cell inhibitory receptors (KIRs) inhibit NK and T cell cytotoxicity when recognizing MHC class I molecules on target cells. They possess two tandem intracytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs) that, when phosphorylated, each bind to the two Src homology 2 domain-bearing protein tyrosine phosphatases SHP-1 and SHP-2 in vitro. Using chimeric receptors having an intact intracytoplasmic KIR domain bearing both ITIMs (N + C-KIR), a deleted domain containing the N-terminal ITIM only (N-KIR), or a deleted domain containing the C-terminal ITIM only (C-KIR), we examined the respective contributions of the two ITIMs in the inhibition of cell activation in two experimental models (a rat mast cell and a mouse B cell line) that have been widely used to analyze KIR functions. We found that the two KIR ITIMs play distinct roles. When coaggregated with immunoreceptor tyrosine-based activation motif-bearing receptors such as high-affinity IgE receptors or B cell receptors, the N + C-KIR and the N-KIR chimeras, but not the C-KIR chimera, inhibited mast cell and B cell activation, became tyrosyl-phosphorylated, and recruited phosphatases in vivo. The N + C-KIR chimera recruited SHP-1 as expected, but also SHP-2. Surprisingly, the N-KIR chimera failed to recruit SHP-1; however, it did recruit SHP-2. Consequently, the N-terminal ITIM is sufficient to recruit SHP-2 and to inhibit cell activation, whereas the N-terminal and the C-terminal ITIMs are both necessary to recruit SHP-1. The two KIR ITIMs, therefore, are neither mandatory for inhibition nor redundant. Rather than simply amplifying inhibitory signals, they differentially contribute to the recruitment of distinct phosphatases that may cooperate to inhibit cell activation.  相似文献   

12.
CD22, a B lymphocyte membrane glycoprotein, contains immunoreceptor tyrosine-based inhibition motifs (ITIMs) in the cytoplasmic region and recruits Src homology 2-containing protein-tyrosine phosphatase-1 (SHP-1) to the phosphorylated ITIMs upon ligation of B lymphocyte antigen receptor (BCR), thereby negatively regulating BCR signaling. Among the three previously identified ITIMs, both ITIMs containing tyrosine residues at position 843 (Tyr(843)) and 863 (Tyr(863)), respectively, are shown to be required for CD22 to recruit SHP-1 and regulate BCR signaling upon BCR ligation by anti-Ig antibody (Ab), indicating that CD22 has the SHP-1-binding domain at the region containing Tyr(843) and Tyr(863). Here we address the requirement of CD22 for SHP-1 recruitment and BCR regulation upon BCR ligation by antigen, which induces much stronger CD22 phosphorylation than anti-Ig Ab does. We demonstrate that the CD22 mutant in which both Tyr(843) and Tyr(863) are replaced by phenylalanine (CD22F5/6) recruits SHP-1 and regulates BCR signaling upon stimulation with antigen but not anti-Ig Ab. This result strongly suggests that CD22 contains another SHP-1 binding domain that is specifically activated upon stimulation with antigen. Both of the flanking sequences of Tyr(783) and Tyr(817) fit the consensus sequence of ITIM, and the CD22F5/6 mutant requires these tyrosine residues for SHP-1 binding and BCR regulation. Thus, these ITIMs constitute a novel conditional SHP-1-binding site of CD22 that is activated upon BCR ligation by antigen but not by anti-Ig Ab.  相似文献   

13.
B and T lymphocytes express receptors providing positive and negative co-stimulatory signals. We recently identified a novel co-stimulatory molecule, B and T lymphocyte attenuator (BTLA), which exerts inhibitory effects on B and T lymphocytes. The cytoplasmic domain of murine and human BTLA share three conserved tyrosine-based signaling motifs, a Grb-2 recognition consensus, and two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Phosphorylation of the cytoplasmic domain of BTLA induced the association with the protein tyrosine phosphatases SHP-1 and SHP-2. Association of SHP-1 and SHP-2 to other receptors can involve recruitment to either a single receptor ITIM or to two receptor ITIMs. Here, we analyzed the requirements of BTLA interaction with SHP-1 and SHP-2 in a series of murine and human BTLA mutants. For human BTLA, mutations of either Y257 or Y282, but not Y226, abrogated association with both SHP-1 and SHP-2. For murine BTLA, mutation of either Y274 or Y299, but not Y245, also abrogated association with both SHP-1 and SHP-2. These results indicate that for both murine and human BTLA, association with SHP-1 or SHP-2 requires both of conserved ITIM motifs and does not involve the conserved Grb-2 consensus. Thus, similar to the bisphosphoryl tyrosine-based activation motif (BTAM) by which the Grb-2 associated binder (Gab1), PDGF receptor, and PECAM-1 recruit SHP-2, BTLA also relies on dual ITIMs for its association with the phosphatases SHP-1 and SHP-2.  相似文献   

14.
Recognition of antigen by the B cell antigen receptor (BCR) determines the subsequent fate of a B cell and is regulated in part by the involvement of other surface molecules, termed coreceptors. CD22 is a B cell-restricted coreceptor that gets rapidly tyrosyl-phosphorylated and recruits various signaling molecules to the membrane following BCR ligation. Although CD22 contains three immunoreceptor tyrosine-based inhibitory motifs (ITIMs), only the two carboxyl-terminal ITIM tyrosines are required for efficient recruitment of the SHP-1 phosphatase after BCR ligation. Furthermore, Grb2 is inducibly recruited to CD22 in human and murine B cells. Unlike SHP-1, Grb2 recruitment to CD22 is not inhibited by specific doses of the Src family kinase-specific inhibitor PP1. The tyrosine residue in CD22 required for Grb2 recruitment (Tyr-828) is distinct and independent from the two ITIM tyrosines required for efficient SHP-1 recruitment (Tyr-843 and Tyr-863). Individually both Lyn and Syk are required for maximal phosphorylation of CD22 following ligation of the BCR, and together Lyn and Syk are required for all of the constitutive and induced tyrosine phosphorylation of CD22. We propose that the cytoplasmic tail of CD22 contains two domains that regulate signal transduction pathways initiated by the BCR and B cell fate.  相似文献   

15.
The G protein-coupled sst2 somatostatin receptor acts as a negative cell growth regulator. Sst2 transmits antimitogenic signaling by recruiting and activating the tyrosine phosphatase SHP-1. We now identified Src and SHP-2 as sst2-associated molecules and demonstrated their role in sst2 signaling. Surface plasmon resonance and mutation analyses revealed that SHP-2 directly associated with phosphorylated tyrosine 228 and 312, which are located in sst2 ITIMs (immunoreceptor tyrosine-based inhibitory motifs). This interaction was required for somatostatin-induced SHP-1 recruitment and activation and consequent inhibition of cell proliferation. Src interacted with sst2 and somatostatin promoted a transient Gbetagamma-dependent Src activation concomitant with sst2 tyrosine hyperphosphorylation and SHP-2 activation. These steps were abrogated with catalytically inactive Src. Both catalytically inactive Src and SHP-2 mutants abolished somatostatin-induced SHP-1 activation and cell growth inhibition. Sst2-Src-SHP-2 complex formation was dynamic. Somatostatin further induced sst2 tyrosine dephosphorylation and complex dissociation accompanied by Src and SHP-2 inhibition. These steps were defective in cells expressing a catalytically inactive Src mutant. All these data suggest that Src acts upstream of SHP-2 in sst2 signaling and provide evidence for a functional role for Src and SHP-2 downstream of an inhibitory G protein-coupled receptor.  相似文献   

16.
Syk and ZAP-70 form a subfamily of nonreceptor tyrosine kinases that contain tandem SH2 domains at their N termini. Engagement of these SH2 domains by tyrosine-phosphorylated immunoreceptor tyrosine-based activation motifs leads to kinase activation and downstream signaling. These kinases are also regulated by beta3 integrin-dependent cell adhesion via a phosphorylation-independent interaction with the beta3 integrin cytoplasmic domain. Here, we report that the interaction of integrins with Syk and ZAP-70 depends on the N-terminal SH2 domain and the interdomain A region of the kinase. The N-terminal SH2 domain alone is sufficient for weak binding, and this interaction is independent of tyrosine phosphorylation of the integrin tail. Indeed, phosphorylation of tyrosines within the two conserved NXXY motifs in the integrin beta3 cytoplasmic domain blocks Syk binding. The tandem SH2 domains of these kinases bind to multiple integrin beta cytoplasmic domains with varying affinities (beta3 (Kd = 24 nm) > beta2 (Kd = 38 nm) > beta1 (Kd = 71 nm)) as judged by both affinity chromatography and surface plasmon resonance. Thus, the binding of Syk and ZAP-70 to integrin beta cytoplasmic domains represents a novel phosphotyrosine-independent interaction mediated by their N-terminal SH2 domains.  相似文献   

17.
We have identified and characterized two mouse cDNAs in a mouse antigen-stimulated bone marrow-derived mast cell cDNA library, both of which encode type I transmembrane proteins. The genes were closely mapped in the distal region of mouse chromosome 11 and expressed not only in mast cells but also widely in leukocytes. The extracellular domains of their encoded proteins contain a single variable immunoglobulin (Ig) motif sharing about 90% identity with amino acids, showing that they comprise a pair of molecules and belong to the Ig superfamily. We named these molecules leukocyte mono-Ig-like receptor1 and 2 (LMIR1 and 2). The intracellular domain of LMIR1 contains several immunoreceptor tyrosine-based inhibition motifs (ITIMs). When cross-linked, the intracellular domain was tyrosine phosphorylated and capable of recruiting tyrosine phosphatases, SHP-1 and SHP-2 and inositol polyphosphate 5-phosphatase, SHIP. LMIR2, on the other hand, contains a short cytoplasmic tail and a characteristic transmembrane domain carrying two positively charged amino acids associated with three kinds of immunoreceptor tyrosine-based activation motif (ITAM)-bearing molecules, DAP10, DAP12, and FcRgamma. These findings suggest that a new pair of ITIM/ITAM-bearing receptors, LMIR1 and 2, regulate mast cell-mediated inflammatory responses through yet to be defined ligand(s).  相似文献   

18.
Wang J  Wu Y  Hu H  Wang W  Lu Y  Mao H  Liu X  Liu Z  Chen BG 《Cellular immunology》2011,(1):39-44
Although recent evidence supports a functional relationship between platelet endothelial cell adhesion molecule (PECAM-1) and Syk tyrosine kinase, little is known about the interaction of Syk with PECAM-1. We report that down-regulation of Syk inhibits the spreading of human THP-1 macrophage cells. Moreover, our data indicate that Syk binds PECAM-1 through its immune tyrosine-based inhibitory motif (ITIM), and dual phosphorylation of the ITIM domain of PECAM-1 leads to activation of Syk. Our results indicate that the distance between the phosphotyrosines could be up to 22 amino acids in length, depending on the conformational flexibility, and that the dual ITIM tyrosine motifs of PECAM-1 facilitate immunoreceptor tyrosine-based activation motif-like signaling. The preferential binding of PECAM-1 to Src homology region 2 domain-containing phosphatase-2 or Syk may depend on their relative affinities, and could provide a mechanism by which signal transduction from PECAM-1 is internally regulated by both positive and negative signaling enzymes.  相似文献   

19.
The inhibitory forms of killer cell Ig-like receptors (KIR) are MHC class I-binding receptors that are expressed by human NK cells and prevent their attack of normal cells. Substantial evidence indicates that the mechanism of KIR-mediated inhibition involves recruitment of the protein tyrosine phosphatase, Src homology region 2-containing protein tyrosine phosphatase (SHP)-1, to phosphorylated immunoreceptor tyrosine-based inhibitory motifs (ITIMs). However, the functional significance of parallel recruitment of a SHP-1-related phosphatase, SHP-2, to KIR ITIMs has not been addressed. In the present study, our results with mutant forms of a classical KIR, KIR3DL1, show a direct correlation between SHP-2 recruitment and functional inhibition of target cell conjugation and cytotoxicity. In addition, KIR3DL1 inhibition of target cell cytotoxicity is blocked by overexpression of a dominant-negative form of SHP-2. Finally, KIR3DL1 fused directly with the catalytic domain of SHP-2 inhibits both target cell conjugation and cytotoxicity responses. These results strongly indicate that SHP-2 catalytic activity plays a direct role in inhibitory KIR functions, and SHP-2 inhibits NK cell activation in concert with SHP-1.  相似文献   

20.
SHP-2 is an Src homology 2 (SH2) domain-containing tyrosine phosphatase with crucial functions in cell signaling and major pathological implications. It stays inactive in the cytosol and is activated by binding through its SH2 domains to tyrosine-phosphorylated receptors on the cell surface. One such cell surface protein is PZR, which contains two tyrosine-based inhibition motifs responsible for binding of SHP-2. We have generated a glutathione S-transferase fusion protein carrying the tandem tyrosine-based inhibition motifs of PZR, and the protein was tyrosine-phosphorylated by co-expressing c-Src in Escherichia coli cells. The purified phosphoprotein displays a strong binding to SHP-2 and causes its activation in vitro. However, when introduced into NIH 3T3 cells by using a protein delivery reagent, it effectively inhibited the activation of ERK1/2 induced by growth factors and serum but not by phorbol ester, in reminiscence of the effects caused by expression of dominant negative SHP-2 mutants and deletion of functional SHP-2. The data suggest that the exogenously introduced PZR protein specifically binds SHP-2, blocks its translocation, and renders it functionally incompetent. This is further supported by the fact that the phosphorylated PZR protein had no inhibitory effects on fibroblasts derived from mice expressing only a mutant SHP-2 protein lacking most of the N-terminal SH2 domain. This study thus provides a novel and highly specific method to interrupt the function of SHP-2 in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号