首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:1,自引:0,他引:1  
Aim We examine patterns of temporal turnover of common species in avian assemblages in North America to test the hypothesis that changes in avian diversity structure observed in these assemblages were associated with the colonization of common species. Location The contiguous United States and southern Canada. Methods We measured temporal turnover from 1968 to 2003 for 547 avian species at 1673 North American Breeding Bird Survey (BBS) routes. We used the Euclidian distance between expected and observed presence/absence vectors and randomization tests to place species into two categories, common and not‐common, and into three categories for common species: (1) always common, (2) common and colonizing, and (3) common and extirpated. We used these categories to identify species experiencing extreme colonization and extirpation events and to examine changes in species composition at BBS routes. We also determined how these patterns were associated with changes in species richness and changes in similarity in species composition. Results Nine of the 547 species represented outliers, where the number of BBS routes colonized greatly exceeded the number extirpated; no species showed extreme values for extirpation. The nine species colonized BBS routes primarily in the upper Midwest and north‐eastern United States. Presence of the nine species at BBS routes was correlated with increasing net gain in common species (difference between common colonized and common extirpated), higher levels of species richness and increasing species richness over time, more similar species compositions and increasing similarity over time, and a greater prevalence of common species over not‐common species. The literature indicates that all nine species experienced some form of geographical range expansion during the time of the survey involving four elements: (1) introduction and invasion; (2) the ability to use human‐altered environments, including habitats associated with agricultural, suburban, or urban areas; (3) intensive management activities, including habitat improvements and reintroductions and (4) the ability to use habitats formed through forest regeneration. These factors in combination point to anthropogenic activities and related land use histories as the primary drivers of change. One of the nine species colonized regions well outside its historic geographical range and the remaining eight species were native within the regions they colonized. Main conclusions Our results suggest that a combination of anthropogenic activities promoted, within certain regions of North America, the geographical expansion of a limited number of common species that were native to those regions. These colonization events were correlated with changes in diversity structure, implying that large‐scale diversity patterns were being influenced by anthropogenic activities. These changes can be characterized primarily by gains in species richness, an increased prevalence of common species, and more similar species compositions. Thus, using simple large‐scale measures of diversity could be problematic if recent biogeographical patterns of species diversity are not considered. Specifically, using species richness or an indicator species to assess diversity could bias assessments towards common species whose populations have recently benefited through anthropogenic activities.  相似文献   

2.
3.
  总被引:2,自引:0,他引:2  
Aim To determine the major patterns of change in avian diversity structure over space and time at a local resolution and continental extent in non‐urban areas in North America. Location The contiguous United States and southern Canada. Methods We used 1673 North American Breeding Bird Survey (BBS) routes containing 547 terrestrial and aquatic species to estimate four diversity components: species richness, individual abundance, taxonomic distinctness and species evenness. We implemented three levels of analysis to examine changes in diversity structure on a yearly basis from 1968 to 2003: (1) a canonical analysis of discriminance, (2) a univariate analysis across BBS routes, and (3) a univariate analysis at individual BBS routes. We estimated changes in similarity in species composition over time between 470,730 BBS route pairs. We also estimated the level of human activity at BBS routes using three spatial anthropogenic databases. Results BBS routes were located in non‐urban areas in association with low nighttime light activity and moderately low human population densities. The analysis of diversity structure indicated the presence of two independent patterns: (1) a temporally consistent pattern defined by increasing species richness (12% increase from 1968 to 2003) associated with limited gains in taxonomic distinctness, and (2) an association between species abundance and evenness related to variability in abundance associated with the most abundant species. The similarity analysis indicated that BBS routes located closer to the Atlantic and the Pacific coasts of the United States experienced the strongest patterns of homogenization of species composition. Main conclusions Our results suggest that avian diversity structure has changed at the local scale in non‐urban areas in North America. However, there was no evidence for a consistent continent‐wide pattern. Instead, the evidence pointed to the presence of regional factors influencing diversity patterns. This study provides a foundation for more detailed investigations of the spatiotemporal and taxonomic details of these general patterns.  相似文献   

4.
    
Comparative studies investigating relationships between plant traits and species rarity and commonness were surveyed to establish whether global patterns have emerged that would be of practical use in management strategies aimed at the long‐term conservation of species. Across 54 studies, 94 traits have been examined in relation to abundance, distribution and threatened status at local, regional and geographical spatial scales. Most traits (63) have yet to be the focus of more than one study. Half of the studies involved less than 10 species, and one‐quarter did not replicate rare–common contrasts. Although these features of the literature make it difficult to demonstrate robust generalizations regarding trait relationships with species rarity, some important findings surfaced in relation to traits that have been examined in two or more studies. Species with narrow geographical distributions were found to produce significantly fewer seeds (per unit measurement) than common species (in four of six studies), but did not differ with respect to breeding system (five of five studies). The majority of traits (including seed size, competitive ability, growth form and dispersal mode) were related to rarity in different ways from one study to the next. The highly context‐dependent nature of most trait relationships with rarity implies that application of knowledge concerning rare–common differences and similarities to management plans will vary substantially for different vegetation types and on different continents. A comparative analysis of distribution patterns in relation to several life‐history and ecological traits among 700 Australian eucalypt species was then performed. A significantly dispro­portionate number of tall species and species with long flowering durations had wide geographical ranges. Trait relationships with distribution were explored further through the development of a methodology incorporating multiple spatial scales. Eight theoretical categories were described illustrating variation in distribution patterns (and hence rarity and commonness) across small, intermediate and large spatial scales, based on the spatial structure of species occurrence across the Australian landscape. Each eucalypt species was placed into a category, and trait variation was explored across all species in relation to distribution patterns across multiple spatial scales. This approach yielded important information about trait relationships with distribution among the eucalypts, linking the spatial structure of points‐of‐occurrence with patterns of rarity and commonness. With the pressing need to protect increasing numbers of threatened species and slow rates of extinction, the development and refinement of a broadly usable methodology for rarity studies that encompasses multiple spatial scales, which can be used for any geographical location, will be useful in both conservation and management.  相似文献   

5.
The reptile fauna of Romania comprises 23 species, out of which 12 species reach here the limit of their geographic range. We compiled and updated a national database of the reptile species occurrences from a variety of sources including our own field surveys, personal communication from specialists, museum collections and the scientific literature. The occurrence records were georeferenced and stored in a geodatabase for additional analysis of their spatial patterns. The spatial analysis revealed a biased sampling effort concentrated in various protected areas, and deficient in the vast agricultural areas of the southern part of Romania. The patterns of species richness showed a higher number of species in the warmer and drier regions, and a relatively low number of species in the rest of the country. Our database provides a starting point for further analyses, and represents a reliable tool for drafting conservation plans.  相似文献   

6.
Nineteen species of amphibians inhabit Romania, 9 of which reach their range limit on this territory. Based on published occurrence reports, museum collections and our own data we compiled a national database of amphibian occurrences. We georeferenced 26779 amphibian species occurrences, and performed an analysis of their spatial patterns, checking for hotspots and patterns of species richness. The results of spatial statistic analyses supported the idea of a biased sampling for Romania, with clear hotspots of increased sampling efforts. The sampling effort is biased towards species with high detectability, protected areas, and large cities. Future sampling efforts should be focused mostly on species with a high rarity score in order to accurately map their range. Our results are an important step in achieving the long-term goals of increasing the efficiency of conservation efforts and evaluating the species range shifts under climate change scenarios.  相似文献   

7.
  总被引:1,自引:0,他引:1  
Aim To test for non‐random co‐occurrence in 36 species of grassland birds using a new metric and the C‐score. The analysis used presence–absence data of birds distributed among 305 sites (or landscapes) over a period of 35 years. This analysis departs from traditional analyses of species co‐occurrence in its use of temporal data and of individual species’ probabilities of occurrence to derive analytically the expected co‐occurrence between paired species. Location Great Plains region, USA. Methods Presence–absence data for the bird species were obtained from the North American Breeding Bird Survey. The analysis was restricted to species pairs whose geographic ranges overlapped. Each of 541 species pairs was classified as a positive, negative, or non‐significant association depending on the mean difference between the observed and expected frequencies of co‐occurrence over the 35‐year time‐span. Results Of the 541 species pairs that were examined, 202 to 293 (37–54%) were positively associated, depending on which of two null models was used. However, only a few species pairs (<5%) were negatively associated. An additional 89 species pairs did not have overlapping ranges and hence represented de facto negative associations. The results from analyses based on C‐scores generally agreed with the analyses based on the difference between observed and expected co‐occurrence, although the latter analyses were slightly more powerful. Main conclusions Grassland birds within the Great Plains region are primarily distributed among landscapes either independently or in conjunction with one another. Only a few species pairs exhibited repulsed or segregated distributions. This indicates that the shared preference for grassland habitat may be more important in producing coexistence than are negative species interactions in preventing it. The large number of non‐significant associations may represent random associations and thereby indicate that the presence/absence of other grassland bird species may have little effect on whether a given focal species is also found within the landscape. In a broader context, the probability‐based approach used in this study may be useful in future studies of species co‐occurrence.  相似文献   

8.
9.
This paper investigates the distribution of species richness, rarity and endemicity of European land mammals (bats and introduced species excluded). The highest level of species richness was in Central Europe, while Southern areas had the highest rarity and endemicity scores. The distribution of richness was affected by the location of sampling points in islands and peninsulas. After excluding these sampling points, richness continued to decrease Westward suggesting the existence of a large-scale peninsular effect on mammal distribution. These patterns of continental distribution of richness, rarity and endemicity could be the result of the distribution of refuge areas in the southern Mediterranean peninsulas, and the Pleistocene advances and retreats of mammals throughout the Western Palearctic. Thus, European mammal distribution can be interpreted on the basis of two different patterns of abundance distribution in which Palearctic species reduce their abundance from central-Europe outwards, while endemic, rare species show a similar depletion in the North. It should be useful to evaluate the role of the different regions in Europe in conserving the demographic interactions between central and peripheral populations of mammal species. Given the restricted distribution and potential small size of population, these endemic species are most likely to be susceptible to anthropogenic environmental degradation.  相似文献   

10.
11.
    
Aim Range expansion across a heterogeneous landscape may depend on the habitat selected and used by the expanding species. If habitat selection influences range expansion then localities colonized by a species should contain a greater proportion of favoured habitat (and less non‐habitat) than other nearby localities not colonized. White‐winged doves (Zenaida asiatica) and Eurasian collared doves (Streptopelia decaocto) are two bird species that provide an excellent opportunity to test this hypothesis, because the geographic ranges of both species have been expanding in North America for more than two decades. Location Continental USA. Methods We used distribution data from the North American Breeding Bird Survey to test whether the landscapes occupied by each species contained a greater proportion of favoured habitat (urban land, grassland/pasture, shrub land and cropland) and a lower proportion of non‐habitat (forest land) than landscapes where doves were not found. We tested each species separately in each of three broad expansion areas, namely East, Central and West. We also compared rates of spatial spread between expansion areas and between the two species. Results As predicted, both species tended to occupy landscapes with greater proportions of urban land, shrub land and cropland but with less forest land compared with landscapes without doves, in all three expansion areas. Contrary to prediction, occupied landscapes tended to have slightly less grassland/pasture than unoccupied landscapes. Rates of spread differed between the two species and among expansion areas. Main conclusions Range expansion and the extent to which a species fills or saturates its range are influenced by the habitat ecology of the expanding species. Species colonize localities based on the availability of suitable habitat. However, the role of habitat in a species’ range expansion does depend somewhat on the greater geographical setting. Over large regional and geographical scales, range expansion (rate of spread and saturation) may proceed unevenly, suggesting that range expansion is a very dynamic and context‐specific process.  相似文献   

12.
    
Understanding factors related to the range expansion trajectory of a successful invasive species may provide insights into environmental variables that favour additional expansion or guide monitoring and survey efforts for this and other invasive species. We examined the relationship of presence and abundance of Eurasian Collared Doves Streptopelia decaocto to environmental factors using recent data from the North American Breeding Bird Survey to understand factors influencing its expansion into the continental USA. A zero‐inflated Poisson (ZIP) model was used to account for excess zero observations because this species was not observed on the majority of survey routes, despite its large geographical range. Model fit was improved when we included environmental covariates as compared with the null model, which only included distance from the route where this species was first observed. Probability of zero count was positively related to the distance from the first route and road density and was inversely related to minimum temperature and distance to coast. Abundance of the species was positively related to road density and was inversely related to annual precipitation and distance to coast. Random intercept by land‐cover type also improved model fit. Model fit was improved with the ZIP model over the standard Poisson model, suggesting that presence and abundance of this species are characterized by different environmental factors. However, overall low accuracy of model‐predicted presence/absence and abundance with the independent validation dataset may indicate either that there are other explanatory factors or that there is great uncertainty in the species’ colonization process. Our large‐scale study provides additional evidence that the range expansion of this species tends to follow human‐altered landscapes such as road and agricultural areas as well as responding to general geographical features such as coastlines or thermal clines. Such patterns may hold true for other invasive species and may provide guidelines for monitoring and assessment activities in other invasive taxa.  相似文献   

13.
Aim Broad‐scale spatial patterns of species richness are very strongly correlated with climatic variables. If there is a causal link, i.e. if climate directly or indirectly determines patterns of richness, then when the climatic variables change, richness should change in the manner that spatial correlations between richness and climate would predict. The present study tests this prediction using seasonal changes in climatic variables and bird richness. Location We used a grid of equal area quadrats (37 000 km2) covering North and Central America as far south as Nicaragua. Methods Summer and winter bird distribution data were drawn from monographs and field guides. Climatic data came from published sources. We also used remotely sensed NDVI (normalized difference vegetation index — a measure of greenness). Results Bird species richness changes temporally (between summer and winter) in a manner that is close to, but statistically distinguishable from, the change one would predict from models relating the spatial variation in richness at a single time to climatic variables. If one further takes into account the seasonal changes in NDVI and within‐season variability of temperature and precipitation, then winter and summer richness follow congruent, statistically indistinguishable patterns. Main conclusions Our results are consistent with the hypothesis that climatic variables (temperature and precipitation) and vegetation cover directly or indirectly influence patterns of bird species richness.  相似文献   

14.
15.
16.
    
There is a growing body of evidence suggesting that widespread (i.e. common) rather than geographically restricted species (i.e. rare) shape the overall distribution patterns of species richness. This is a non‐intuitive fact, given that local and regional assemblages are normally composed by numerous rare species and few common ones. We evaluated here the primacy of common species in a biogeographic transition zone, where rarity has frequently a higher incidence. We analysed the geographical variability of trees and shrubs in Uruguay, located in a transitional zone between prairie and forest biomes, to assess the relative contribution of rare and common species to the generation of richness patterns. The distribution of 301 species of the native woody assemblage of Uruguay was mapped over the national grid system (302 quadrants of approximately 22 × 30 km), using published data and herbarium records. The overall assemblage was segregated into four subassemblages in function of species distribution (quartiles). Species richness in the four quartiles was positively correlated with overall richness, but common species (quartile 3) showed the highest level of correlation. Then, we ranked species from the most widespread to the most restricted (common‐to‐rare) and from the most restricted to the most widespread (rare‐to‐common). Along each stage of the sequences we obtained a series of species richness patterns for increasing numbers of species. Correlating the species richness pattern for each subassemblage of both sequences with that of the full assemblage, we also found higher correlations in the common‐to‐rare sequence. We conclude the Uruguayan woody plants assemblage has a very large number of rare species as expected for a transitional biogeographical zone, but it was the common species that contributed most to the overall pattern of species richness. We propose the low contribution of rare species is explained by the most interspecific variability in ecological determinants within the assemblage of rare species. Therefore the spatial covariance among rare species is low, and so is the relationship with overall species richness.  相似文献   

17.
18.
  总被引:6,自引:0,他引:6  
Qian H  Ricklefs RE 《Ecology letters》2006,9(12):1293-1298
Exotic species have begun to homogenize the global biota, yet few data are available to assess the extent of this process or factors that constrain its advance at global or continental scales. We evaluate homogenization of vascular plants across America north of Mexico by comparing similarity in the complete native and exotic floras between states and provinces of the USA and Canada. Compared with native species, exotic plants are distributed haphazardly among areas but spread more widely, producing differentiation of floras among neighbouring areas but homogenization at greater distance. The number of exotic species is more closely associated with the size of the human population than with ecological conditions, as in the case of native species, and their distributions are less influenced by climate than those of native species.  相似文献   

19.
20.
    
Global climate models predict increases in the frequency and intensity of extreme climatic events such as hurricanes, which may abruptly alter ecological processes in forests and thus affect avian diversity. Developing appropriate conservation measures necessitates identifying patterns of avifauna response to hurricanes. We sought to answer two questions: (1) does avian diversity, measured as community similarity, abundance, and species richness, change in areas affected by hurricane compared with unaffected areas, and (2) what factors are associated with the change(s) in avian diversity? We used North American Breeding Bird Survey data, hurricane track information, and a time series of Landsat images in a repeated measures framework to answer these questions. Our results show a decrease in community similarity in the first posthurricane breeding season for all species as a group, and for species that nest in the midstory and canopy. We also found significant effects of hurricanes on abundance for species that breed in urban and woodland habitats, but not on the richness of any guild. In total, hurricanes produced regional changes in community similarity largely without significant loss of richness or overall avian abundance. We identified several potential mechanisms for these changes in avian diversity, including hurricane‐induced changes in forest habitat and the use of refugia by birds displaced from hurricane‐damaged forests. The prospect of increasing frequency and intensity of hurricanes is not likely to invoke a conservation crisis for birds provided we maintain sufficient forest habitat so that avifauna can respond to hurricanes by shifting to areas of suitable habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号