首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Dipeptidyl peptidase IV (DP IV, CD26) plays an essential role in the activation and proliferation of lymphocytes, which is shown by the immunosuppressive effects of synthetic DP IV inhibitors. Similarly, both human immunodeficiency virus-1 (HIV-1) Tat protein and the N-terminal peptide Tat(1-9) inhibit DP IV activity and T cell proliferation. Therefore, the N-terminal amino acid sequence of HIV-1 Tat is important for the inhibition of DP IV. Recently, we characterized the thromboxane A2 receptor peptide TXA2-R(1-9), bearing the N-terminal MWP sequence motif, as a potent DP IV inhibitor possibly playing a functional role during antigen presentation by inhibiting T cell-expressed DP IV [Wrenger, S., Faust, J., Mrestani-Klaus, C., Fengler, A., St?ckel-Maschek, A., Lorey, S., K?hne, T., Brandt, W., Neubert, K., Ansorge, S. & Reinhold, D. (2000) J. Biol. Chem.275, 22180-22186]. Here, we demonstrate that amino acid substitutions at different positions of Tat(1-9) can result in a change of the inhibition type. Certain Tat(1-9)-related peptides are found to be competitive, and others linear mixed-type or parabolic mixed-type inhibitors indicating different inhibitor binding sites on DP IV, at the active site and out of the active site. The parabolic mixed-type mechanism, attributed to both non-mutually exclusive inhibitor binding sites of the enzyme, is described in detail. From the kinetic investigations and molecular modeling experiments, possible interactions of the oligopeptides with specified amino acids of DP IV are suggested. These findings give new insights for the development of more potent and specific peptide-based DP IV inhibitors. Such inhibitors could be useful for the treatment of autoimmune and inflammatory diseases.  相似文献   

2.
Aminopeptidase P (APP), dipeptidyl peptidase II (DP II), dipeptidyl peptidase IV (DP IV) and prolyl oligopeptidase (POP) are proline specific peptidases. Hence, they are able to cleave peptide bonds containing the imino acid proline. Amino acid pyrrolidides (Pyrr) and thiazolidides (Thia) are well-known product analogue inhibitors of DP IV and POP. For the first time we describe the influence of a thioxo amide bond, incorporated into these compounds, on the inhibition of the proline specific peptidases. Taking into account the substrate specificity of these peptidases, we have synthesized Xaa-psi[CS-N]-Pyrr and Xaa-psi[CS-N]-Thia of the amino acids Ala, Phe, Val and Ile. The inhibition constants were determined for the above mentioned proline specific peptidases isolated from different sources. As a result, the serine proteases DP II, DP IV and POP were inhibited competitively, whereas metal-dependent APP displayed a linear mixed-type inhibition with inhibition constants up to 10(-4) M. Thioxylation of Xaa-Pyrr and Xaa-Thia led to a slight decrease of inhibition of DP IV and POP compared to Xaa-Pyrr and Xaa-Thia, though the inhibition constants were still in the range up to 10(-7) M. As Xaa-Thia exist as two isomers, we investigated isomer specific inhibition with regard to DP IV. Thus, our studies have revealed that DP IV was only inhibited by the Z isomer of the Xaa-psi[CS-N]-Thia. For the first time, Xaa-Pyrr and Xaa-Thia were characterized as inhibitors of DP II with inhibition constants in the micromolar range. In contrast to DP IV inhibition, the Xaa-psi[CS-N]-Pyrr and Xaa-psi[CS-N]-Thia have proven to be more potent inhibitors of DP II than the corresponding Xaa-Pyrr and Xaa-Thia. Thus, these Xaa-psi[CS-N]-Thia are new potent inhibitors especially suitable for DP II with K(i) values ranging in the upper nanomolar concentration.  相似文献   

3.
Applications of dipeptidyl peptidase IV inhibitors in diabetes mellitus   总被引:1,自引:0,他引:1  
A number of alternative therapies for type 2 diabetes are currently under development that take advantage of the actions of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide on the pancreatic beta-cell. One such approach is based on the inhibition of dipeptidyl peptidase IV (DP IV), the major enzyme responsible for degrading the incretins in vivo. DP IV exhibits characteristics that have allowed the development of specific inhibitors with proven efficacy in improving glucose tolerance in animal models of diabetes and type 2 human diabetics. While enhancement of insulin secretion, resulting from blockade of incretin degradation, has been proposed to be the major mode of inhibitor action, there is also evidence that inhibition of gastric emptying, reduction in glucagon secretion and important effects on beta-cell differentiation, mitogenesis and survival, by the incretins and other DP IV-sensitive peptides, can potentially preserve beta-cell mass, and improve insulin secretory function and glucose handling in diabetics.  相似文献   

4.
There is current interest in the use of inhibitors of dipeptidyl peptidase IV (DP IV) as therapeutic agents to normalize glycemic excursions in type 2 diabetic patients. Data indicating that metformin increases the circulating amount of active glucagon-like peptide-1 (GLP-1) in obese nondiabetic subjects have recently been presented, and it was proposed that metformin might act as a DP IV inhibitor. This possibility has been investigated directly using a number of in vitro methods. Studies were performed on DP IV enzyme from three sources: 20% human serum, purified porcine kidney DP IV, and recombinant human DP IV. Inhibition of DP IV hydrolysis of the substrate Gly-Pro-pNA by metformin was examined spectrophotometrically. Effects of metformin on GLP-1([7-36NH2]) degradation were assessed by mass spectrometry. In addition, surface plasmon resonance was used to establish whether or not metformin had any effect on GLP-1([7-36NH2]) or GLP-1([9-36NH2]) interaction with immobilized porcine or human DP IV. Metformin failed to alter the kinetics of Gly-Pro-pNA hydrolysis or GLP-1 degradation tested according to established methods. Surface plasmon resonance recordings indicated that both GLP-1([7-36NH2]) and GLP-1([9-36NH2]) show micromolar affinity (K(D)) for DP IV, but neither interaction was influenced by metformin. The results conclusively indicate that metformin does not act directly on DP IV, therefore alternative explanations for the purported effect of metformin on circulating active GLP-1 concentrations must be considered.  相似文献   

5.
Dipeptidyl peptidase IV (DP IV) is a membrane peptidase playing a significant role in the process of activation and proliferation of human thymus-derived lymphocytes. This conclusion is drawn from (1) the induction of this enzyme on mitogen-activated T lymphocytes (cf. Sch?n, E. & Ansorge, S. (1990) Biol. Chem. Hoppe-Seyler 371, 699-705) and (2) the impairment of different functions of activated T cells in the presence of specific inhibitors and antibodies against DP IV (Sch?n, E. & al. (1987) Eur. J. Immunol 17, 1821-1826). This paper is aimed at testing new active site-specific peptide inhibitors for their efficiency as inhibitors of lymphocyte DP IV and DNA synthesis of mitogen-stimulated lymphocytes. These inhibitors comprise (i) diacylhydroxylamine derivatives of Xaa-Pro or Xaa-Ala peptides, (ii) different oligopeptides with N-terminal Xaa-Pro-sequences, and (iii) amino-acid amides of the pyrrolidide and the thiazolidide type. The thiazolidides of epsilon-(4-nitrobenzyloxycarbonyl)-L-lysine and of L-isoleucine as well as Ala-Pro-nitrobenzoylhydroxylamine are the most effective inhibitors in both test systems, yielding half-maximal inhibitory concentrations in the micromolar range. Cell viability was not impaired in this effective concentration range. Other inhibitors of DP IV are one to two orders of magnitude less efficient in the suppression of lymphocyte proliferation.  相似文献   

6.
AimsDipeptidyl peptidase IV (DP IV)-related proteases and aminopeptidase N (APN) are drug targets in various diseases. Here we investigated for the first time the effects of DP-IV-related protease inhibitors and APN inhibitors on chronic inflammatory lung diseases.Main methodsA murine model of silica (SiO2)-induced lung fibrosis and in vitro cultures of human lung epithelial cells and monocytes have been used and the influence of silica-treatment and inhibitors on inflammation and fibrosis has been measured.Key findingsWe found increased inflammation and secretion of the chemokines IL-6, MCP-1 and MIP-α 2 weeks after SiO2 application, and increased lung fibrosis after 3 months. Treatment with the APN inhibitor actinonin reduced chemokine secretion in the lung and bronchoalveolar lavage fluid, and in cell culture, and decreased the level of fibrosis after 3 months. Treatment with inhibitors of DP-IV-related proteases, or a combination of DP IV inhibitors and APN inhibitors, had no significant effect. We found no obvious side effects of long-term treatment with inhibitors of APN and DP IV.SignificanceOverall, our findings show that actinonin, an inhibitor of aminopeptidase N, might modulate chemokine secretion in the lung and thus attenuate the development of lung fibrosis. Additional targeting of DP-IV-related proteases had no significant effect on these processes.  相似文献   

7.
CD26 or dipeptidyl peptidase IV (DP IV) is expressed on various cell types, including T cells. Although T cells can receive activating signals via CD26, the physiological role of CD26/DP IV is largely unknown. We used the reversible DP IV inhibitor Lys[Z(NO(2))]-pyrrolidide (I40) to dissect the role of DP IV in experimental autoimmune encephalomyelitis (EAE) and to explore the therapeutic potential of DP IV inhibition for autoimmunity. I40 administration in vivo decreased and delayed clinical and neuropathological signs of adoptive transfer EAE. I40 blocked DP IV activity in vivo and increased the secretion of the immunosuppressive cytokine TGF-beta1 in spinal cord tissue and plasma during acute EAE. In vitro, while suppressing autoreactive T cell proliferation and TNF-alpha production, I40 consistently up-regulated TGF-beta1 secretion. A neutralizing anti-TGF-beta1 Ab blocked the inhibitory effect of I40 on T cell proliferation to myelin Ag. DP IV inhibition in vivo was not generally immunosuppressive, neither eliminating encephalitogenic T cells nor inhibiting T cell priming. These data suggest that DP IV inhibition represents a novel and specific therapeutic approach protecting from autoimmune disease by a mechanism that includes an active TGF-beta1-mediated antiinflammatory effect at the site of pathology.  相似文献   

8.
Dipeptidyl peptidase IV (DP IV) is a membrane peptidase with essential functional significance in thymus derived lymphocytes. This conclusion is drawn from 1) the induction of this enzyme after stimulation of T lymphocytes in vitro and 2) the impairment of T cell functions in presence of active site-specific inhibitors of the enzyme. The first item will be addressed in this paper, whereas the second one will be treated in a forthcoming article. Using flow cytofluorometry we investigated the expression of dipeptidyl peptidase IV on activated lymphocytes and the phenotype of lymphocytes expressing this enzyme. After stimulation by mitogenic lectins the number of epitopes on the cell surface binding polyclonal antibodies against DP IV increases 4 to 6 times. By means of double fluorescence staining the enzyme has been shown to be restricted nearly exclusively to T lymphocytes even after mitogenic stimulation. The highest density of DP IV epitopes has been found in cells coexpressing activation markers like receptors for interleukin 2 or transferrin in a high density.  相似文献   

9.
Many human tumours exhibit activation of the PI3K (phosphoinositide 3-kinase)/Akt pathway, and inhibition of this pathway slows tumour growth. This led to the development of specific Akt inhibitors for in vivo use. However, activation of Akt is also necessary for processes including glucose metabolism. Therefore a potential complication of such anticancer drugs is insulin resistance and/or diabetes. In the process of characterizing the metabolic effects of early-phase Akt inhibitors, we discovered an off-target inhibitory effect on mammalian facilitative glucose transporters. In view of the crucial role of glucose transport for all mammalian cells, such an off-target effect would have major implications for further development of this family of compounds. In the present study, we have characterized a next-generation Akt inhibitor, MK-2206. MK-2206 is an orally active allosteric Akt inhibitor under development for treating solid tumours. We report that MK-2206 potently inhibits Thr308Akt and Ser473Akt phosphorylation in 3T3-L1 adipocytes (IC50 0.11 and 0.18 μM respectively) as well as downstream effects of insulin on GLUT4 (glucose transporter 4) translocation (IC50 0.47 μM) and glucose transport (IC50 0.14 μM). Notably, the potency of MK-2206 is approximately 1 log higher than previous inhibitors and its specificity is significantly improved with modest inhibitory effects on glucose transport in GLUT4-expressing adipocytes and GLUT1-rich human erythrocytes, independently of Akt. Nevertheless, MK-2206 clearly has potent effects on Akt2, the principal isoform involved in peripheral insulin action, in which case insulin resistance will probably be a major complication following in vivo administration. We conclude that MK-2206 provides an optimal tool for studying the effects of Akt in vitro.  相似文献   

10.
Glucagon is a 29-amino acid polypeptide released from pancreatic islet alpha-cells that acts to maintain euglycemia by stimulating hepatic glycogenolysis and gluconeogenesis. Despite its importance, there remains controversy about the mechanisms responsible for glucagon clearance in the body. In the current study, enzymatic metabolism of glucagon was assessed using sensitive mass spectrometric techniques to identify the molecular products. Incubation of glucagon with purified porcine dipeptidyl peptidase IV (DP IV) yielded sequential production of glucagon(3-29) and glucagon(5-29). In human serum, degradation to glucagon(3-29) was rapidly followed by N-terminal cyclization of glucagon, preventing further DP IV-mediated hydrolysis. Bioassay of glucagon, following incubation with purified DP IV or normal rat serum demonstrated a significant loss of hyperglycemic activity, while a similar incubation in DP IV-deficient rat serum did not show any loss of glucagon bioactivity. Degradation, monitored by mass spectrometry and bioassay, was blocked by the specific DP IV inhibitor, isoleucyl thiazolidine. These results identify DP IV as a primary enzyme involved in the degradation and inactivation of glucagon. These findings have important implications for the determination of glucagon levels in human plasma.  相似文献   

11.
It has been shown that Listeria monocytogenes produces acetoin from glucose under aerobic conditions. A defined medium with glucose as the sole carbon source was used in an aerobic shake flask culture to reliably produce acetoin. Acetoin, the reactive compound in the Voges-Proskauer test, was assayable in the medium and was used to quantify the metabolic response when inhibitors were added to the medium. Inhibitors such as lactic, acetic, propionic and benzoic acids were used to demonstrate the utility of acetoin production as an indicator of metabolic disruption. With increasing levels of inhibitor, the metabolic and growth responses were measured by acetoin production and optical density change, respectively. Both measurements decreased in a similar manner with increasing inhibitor concentrations. The data also showed the apparent mode of action of the inhibitors. A bacteriostatic effect was observed for the protonated organic acids, acetic (4 mmol l(-1)) and propionic (4 mmol l(-1)), whereas protonated lactic (4 mmol l(-1)) and benzoic (0.16 mmol l(-1)) acids gave an irreversible (apparent bacteriocidal) effect. Lactic, acetic, and propionic acids showed stimulation of metabolic activity at low concentrations, but benzoic did not. Acetoin production is a novel method for quantifying and assessing the mode of action of inhibitors against L. monocytogenes. This system can be used to screen inhibitors for applications in food safety.  相似文献   

12.
N-terminal truncation of NPY has important physiological consequences, because the truncated peptides lose their capability to activate the Y1-receptor. The sources of N-terminally truncated NPY and related peptides are unknown and several proline specific peptidases may be involved. First, we therefore provide an overview on the peptidases, belonging to structural and functional homologues of dipeptidyl peptidase 4 (DP4) as well as aminopeptidase P (APP) and thus, represent potential candidates of NPY cleavage in vivo. Second, applying selective inhibitors against DP4, DP8/9 and DP2, respectively, the enzymatic distribution was analyzed in brain extracts from wild type and DP4 deficient F344 rat substrains and human plasma samples in activity studies as well as by matrix assisted laser desorption/ionisation-time of flight (MALDI-TOF)-mass spectrometry. Third, co-transfection of Cos-1 cells with Dpp4 and Npy followed by confocal lasermicroscopy illustrated that hNPY-dsRed1-N1 was transported in large dense core vesicles towards the membrane while rDP4-GFP-C1 was transported primarily in different vesicles thereby providing no clear evidence for co-localization of NPY and DP4. Nevertheless, the review and experimental results of activity and mass spectrometry studies support the notion that at least five peptidases (DP4, DP8, DP9, XPNPEP1, XPNPEP2) are potentially involved in NPY cleavage while the serine protease DP4 (CD26) could be the principal peptidase involved in the N-terminal truncation of NPY. However, DP8 and DP9 are also capable of cleaving NPY, whereas no cleavage could be demonstrated for DP2.  相似文献   

13.

Background

Several anti-diabetes drugs exert beneficial effects against metabolic syndrome by inhibiting mitochondrial function. Although much progress has been made toward understanding the role of mitochondrial function inhibitors in treating metabolic diseases, the potential effects of these inhibitors on mitochondrial respiratory chain complex III remain unclear.

Methods

We investigated the metabolic effects of azoxystrobin (AZOX), a Qo inhibitor of complex III, in a high-fat diet-fed mouse model with insulin resistance in order to elucidate the mechanism by which AZOX improves glucose and lipid metabolism at the metabolic cellular level.

Results

Acute administration of AZOX in mice increased the respiratory exchange ratio. Chronic treatment with AZOX reduced body weight and significantly improved glucose tolerance and insulin sensitivity in high-fat diet-fed mice. AZOX treatment resulted in decreased triacylglycerol accumulation and down-regulated the expression of genes involved in liver lipogenesis. AZOX increased glucose uptake in L6 myotubes and 3T3-L1 adipocytes and inhibited de novo lipogenesis in HepG2 cells. The findings indicate that AZOX-mediated alterations to lipid and glucose metabolism may depend on AMP-activated protein kinase (AMPK) signaling.

Conclusions

AZOX, a Qo inhibitor of mitochondrial respiratory complex III, exerts whole-body beneficial effects on the regulation of glucose and lipid homeostasis in high-fat diet-fed mice.

General significance

These findings provide evidence that a Qo inhibitor of mitochondrial respiratory complex III could represent a novel approach for the treatment of obesity.  相似文献   

14.
In a search for new inhibitors of leukotriene formation, a methylene chloride extract of the plant Dalbergia odorifera (Jiangxiang) was found to be a potent inhibitor of LTC4 formation in AB-CXBG Mct-1 mastocytoma cells. Following LH-20 and reverse phase HPLC chromatography, two compounds were isolated that had potent LTC4 inhibitory activity: medicarpin and 6-hydroxy-2-(2-hydroxy-4-methoxyphenyl) benzofuran (IV) with IC50s of 0.5 and 0.05 microM respectively. IV was shown to be a specific inhibitor of 5-lipoxygenase with an IC50 against the soluble rat enzyme of 0.08 microM, whereas it was inactive against cyclooxygenase. In neutrophils IV inhibited LTB4 production at comparable concentrations but had no effect on neutrophil degranulation or adhesion.  相似文献   

15.
Insulin-regulated aminopeptidase (IRAP) in humans is a membrane bound enzyme that has multiple functions. It was first described as a companion protein of the insulin-responsive glucose transporter, Glut4, in specialized vesicles. The protein has subsequently been shown to be identical to the oxytocinase/aminopeptidase or the angiotensin IV (Ang IV) receptor (AT4 receptor). Some AT4 ligand peptides, such as Ang IV and LVV-hemorphin-7, have been shown to act as IRAP inhibitors that exert memory-enhancing properties. As such IRAP has been a target for developing cognitive enhancers. To facilitate detailed mechanistic studies of IRAP catalysis and inhibition, and to pave the way for biophysical and structural studies of IRAP in complex with peptide inhibitors, we report here an optimized expression and purification system using High Five insect cells. We also report biochemical characterizations of the purified recombinant IRAP with a standard aminopeptidase substrate and an optimized IRAP peptide inhibitor with a Ki of 98 nM.  相似文献   

16.
Vanadyl(IV) ions (+4 oxidation state of vanadium) and their complexes have been shown to have in vitro insulinomimetic activity and to be effective in treating animals with diabetes mellitus. Although, researchers have proposed many vanadyl compounds for the treatment of diabetes patients, the mode of action of vanadyl compounds remains controversial. In order to evaluate the mode of action of these compounds, we examined the insulinomimetic activity of VOSO4, bis(picolinato)oxovanadyl(IV), and bis(maltolato)oxovanadyl(IV) in the presence of several inhibitors relevant to the glucose metabolism. After confirming that these vanadyl compounds were incorporated in the adipocytes as estimated by ESR method, we evaluated the mode of action by examining free fatty acids (FFA) release in the adipocytes. Inhibition of FFA release by these vanadyl compounds was found to be reversed by the addition of inhibitors, typically by cytochalasin B (glucose transporter 4 (GLUT4) inhibitor), cilostamide (phosphodiesterase inhibitor), HNMPA-(AM)3 (tyrosine kinase inhibitor), and wortmannin (PI3-k inhibitor), indicating that these compounds affect primarily GLUT4 and phosphodiesterase, as named "ensemble mechanism". Based on these results, we suggest that vanadyl compounds act on at least four sites relevant to the glucose metabolism, and on GLUT4 and phosphodiesterase in particular in rat adipocytes, which in turn normalizes the blood glucose levels of diabetic animals. The obtained results provide evidence for the role of vanadyl ion and its complexes in stimulation of the uptake and degeneration of glucose.  相似文献   

17.
Proteolytic enzymes contribute to the regulation of cellular functions such as cell proliferation and death, cytokine production, and matrix remodeling. Dipeptidyl peptidase IV (DP IV) catalyzes the cleavage of several cytokines and thereby contributes to the regulation of cytokine production and the proliferation of immune cells. Here we show for the first time that cell surface-bound DP IV catalyzes the cleavage of specific substrates that are associated with the cellular surface of neighboring cells. Rhodamine 110 (R110), a highly fluorescent xanthene dye, was used to synthesize dipeptidyl peptidase IV (DP IV/CD26) substrates Gly(Ala)-Pro-R110-R, thus facilitating a stable binding of the fluorescent moiety on the cell surface. The fixation resulted from the interaction with the reactive anchor rhodamine and allowed the quantification of cellular DP IV activity on single cells. The reactivity, length, and hydrophobicity of rhodamine was characterized as the decisive factor that facilitated the determination of cellular DP IV activity. Using fluorescence microscopy, it was possible to differentiate between different DP IV activities. The hydrolysis of cell-bound substrates Xaa-Pro-R110-R by DP IV of neighboring cells and by soluble DP IV was shown using flow cytometry. These data demonstrate that ectopeptidases such as DP IV may be involved in communication between blood cells via proteolysis of cell-associated substrates.  相似文献   

18.
We examined the long-term effect of in utero exposure to streptozotocin-induced maternal diabetes on the progeny that postnatally received either ad libitum access to milk by being fed by control mothers (CM/DP) or were subjected to relative nutrient restriction by being fed by diabetic mothers (DM/DP) compared with the control progeny fed by control mothers (CM/CP). There was increased food intake, glucose intolerance, and obesity in the CM/DP group and diminished food intake, glucose tolerance, and postnatal growth restriction in the DM/DP group, persisting in the adult. These changes were associated with aberrations in hormonal and metabolic profiles and alterations in hypothalamic neuropeptide Y concentrations. By use of subfractionation and Western blot analysis techniques, the CM/DP group demonstrated a higher skeletal muscle sarcolemma-associated (days 1 and 60) and white adipose tissue plasma membrane-associated (day 60) GLUT4 in the basal state with a lack of insulin-induced translocation. The DM/DP group demonstrated a partial amelioration of this change observed in the CM/DP group. We conclude that the offspring of a diabetic mother with ad libitum postnatal nutrition demonstrates increased food intake and resistance to insulin-induced translocation of GLUT4 in skeletal muscle and white adipose tissue. This in turn leads to glucose intolerance and obesity at a later stage (day 180). Postnatal nutrient restriction results in reversal of this adult phenotype, thereby explaining the phenotypic heterogeneity that exists in this population.  相似文献   

19.
Type 2 diabetes is quite diverse, including the improvement of insulin sensitivity by dipeptidylpeptidase-4 (DPP-4) inhibitor, α-glucosidase inhibitors, and the protection of β-cells islet. The aim of this study was to search the effect of trigonelline (Trig) on DPP-4, α-glucosidase and angiotensin converting enzyme (ACE) activities as well as β-cells architecture, and starch and glucose tolerance test. In surviving diabetic rats, the supplement of Trig potentially inhibited DPP-4 and α-glucosidase activities in both plasma and small intestine. The pancreas islet and less β-cells damage were observed after the administration of trig to diabetic rats. The increase of GLP-1 in surviving diabetic rats suppressed the increase of blood glucose level and improved results in the oral glucose and starch tolerance test. Trig also normalized key enzyme related to hypertension as ACE and improved the hemoglobin A1c and lipid profiles (plasma triglyceride, HDL-cholesterol, LDL-cholesterol, and total cholesterol), and liver indices toxicity. Therefore, these results revealed that Trig was successful in improving glycemic control, metabolic parameters, and liver function in diabetic rats. It is therefore suggested that Trig may be a potential agent for the treatment of type 2 diabetes.  相似文献   

20.
Plasma membrane electron transport (PMET), a cytosolic/plasma membrane analog of mitochondrial electron transport, is a ubiquitous system of cytosolic and plasma membrane oxidoreductases that oxidizes cytosolic NADH and NADPH and passes electrons to extracellular targets. While PMET has been shown to play an important role in a variety of cell types, no studies exist to evaluate its function in insulin-secreting cells. Here we demonstrate the presence of robust PMET activity in primary islets and clonal β-cells, as assessed by the reduction of the plasma membrane-impermeable dyes WST-1 and ferricyanide. Because the degree of metabolic function of β-cells (reflected by the level of insulin output) increases in a glucose-dependent manner between 4 and 10 mM glucose, PMET was evaluated under these conditions. PMET activity was present at 4 mM glucose and was further stimulated at 10 mM glucose. PMET activity at 10 mM glucose was inhibited by the application of the flavoprotein inhibitor diphenylene iodonium and various antioxidants. Overexpression of cytosolic NAD(P)H-quinone oxidoreductase (NQO1) increased PMET activity in the presence of 10 mM glucose while inhibition of NQO1 by its inhibitor dicoumarol abolished this activity. Mitochondrial inhibitors rotenone, antimycin A, and potassium cyanide elevated PMET activity. Regardless of glucose levels, PMET activity was greatly enhanced by the application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle. We propose a model for the role of PMET as a regulator of glycolytic flux and an important component of the metabolic machinery in β-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号