首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal stem cells are resistant to cellular aging   总被引:2,自引:1,他引:1  
The epidermis of the skin, acting as the primary physical barrier between self and environment, is a dynamic tissue whose maintenance is critical to the survival of an organism. Like most other tissues and organs, the epidermis is maintained and repaired by a population of resident somatic stem cells. The epidermal stem cells reside in the proliferative basal cell layer and are believed to persist for the lifetime of an individual. Acting through intermediaries known as transit amplifying cells, epidermal stem cells ensure that the enormous numbers of keratinocytes required for epidermal homeostasis to be maintained are generated. This continual demand for new cell production must be met over the entire lifetime of an individual. Breakdown of the epidermal barrier would have catastrophic consequences. This leads us to question whether or not epidermal stem cells represent a unique population of cells which, by necessity, might be resistant to cellular aging. We hypothesized that the full physiologic functional capacity of epidermal stem cells is maintained over an entire lifetime. Using murine skin epidermis as our model system, we compared several properties of young and old adult epidermal stem cells. We found that, over an average mouse's lifetime, there was no measurable loss in the physiologic functional capacity of epidermal stem cells, leading us to conclude that murine epidermal stem cells resist cellular aging.  相似文献   

2.
Embryonic stem (ES) cells are pluripotent cells able to differentiate into many cell types in vitro, thus providing a potential unlimited supply of cells for cognitive in vitro studies and cell-based therapy. We recently reported their efficient ability to recapitulate ectodermal and epidermal fates and form, in culture, a multilayered epidermis coupled with an underlying dermal compartment, similar to native skin. Thus, ES cells have the potential to recapitulate the reciprocal instructive ectodermal-mesodermal commitments, characteristic of embryonic skin formation. We clarified the function of BMP-4 in the binary neuroectodermal choice by stimulating sox-1+ neural precursors to undergo specific apoptosis while inducing epidermal differentiation. We further demonstrated that p63 stimulates ectodermal cell proliferation and is necessary for epidermal commitment. We provided further evidence that this unique cellular model provides a powerful tool to identify the molecular mechanisms controlling normal skin development and to investigate human ectodermal dysplasia congenital pathologies linked to p63 (in p63-ectodermal dysplasia human congenital pathologies). Epidermal stem cell activity has been used for years to repair skin injuries, but ex vivo keratinocyte amplification has limitations and grafted skin homeostasis is not totally satisfactory. Human ES cells raise hopes that the understanding of developmental steps leading to the generation of epidermal stem cells will once be translated into therapeutic benefit. We recently demonstrated that human embryonic stem cells can give rise to a stable somatic ectodermal cell population. Its finite population doubling, normal cell cycle kinetics and the absence of teratoma formation strongly suggest that, although derived from human embryonic stem cells, these ectodermal cells represent a clinically safe somatic cell population. They could thus be particularly useful as a source for committed, homogeneous, non-tumorigenic cell populations to be employed in clinical trials for epithelial stem cell loss.  相似文献   

3.
Embryonic stem (ES) cells can be differentiated into many cell types in vitro, thus providing a potential unlimited supply of cells for cognitive in vitro studies and cell-based therapy. We recently reported the efficient derivation of ectodermal and epidermal cells from murine ES cells. These differentiated ES cells were able to form, in culture, a multilayered epidermis coupled with an underlying dermal compartment, similar to native skin. We clarified the function of BMP-4 in the binary neuroectodermal choice by stimulating sox-1(+) neural precursors to undergo specific apoptosis while inducing epidermal differentiation through DeltaNp63 gene activation. We further demonstrated that DeltaNp63 enhances ES-derived ectodermal cell proliferation and is necessary for epidermal commitment. This unique cellular model further provides a powerful tool for identifying the molecular mechanisms controlling normal skin development and for investigating p63-ectodermal dysplasia human congenital pathologies.  相似文献   

4.
Within the epidermis and dermis of the skin, cells secrete and are surrounded by the extracellular matrix(ECM), which provides structural and biochemical support. The ECM of the epidermis is the basement membrane, and collagen and other dermal components constitute the ECM of the dermis. There is significant variation in the composition of the ECM of the epidermis and dermis, which can affect "cell to cell" and "cell to ECM" interactions. These interactions, in turn, can influence biological responses, aging, and wound healing; abnormal ECM signaling likely contributes toskin diseases. Thus, strategies for manipulating cellECM interactions are critical for treating wounds and a variety of skin diseases. Many of these strategies focus on epidermal stem cells, which reside in a unique niche in which the ECM is the most important component; interactions between the ECM and epidermal stem cells play a major role in regulating stem cell fate. As they constitute a major portion of the ECM, it is likely that integrins and type Ⅳ collagens are important in stem cell regulation and maintenance. In this review, we highlight recent research-including our previous work-exploring the role that the ECM and its associated components play in shaping the epidermal stem cell niche.  相似文献   

5.
Despite numerous elegant transgenic mice experiments, the absence of an appropriate in vitro model system has hampered the study of the early events responsible for epidermal and dermal commitments. Embryonic stem (ES) cells are derived from the pluripotent cells of the early mouse embryo. They can be expanded infinitely in vitro while maintaining their potential to spontaneously differentiate into any cell type of the three germ layers, including epidermal cells. We recently reported that ES cells have the potential to recapitulate the reciprocal instructive ectodermal-mesodermal commitments, which are characteristic of embryonic skin formation. Derivation of epidermal cells from murine ES cells has been successfully established by exposing the cells to precisely controlled instructive influences normally found in the body, including extracellular matrix and the morphogen BMP-4. These differentiated ES cells are able to form, in culture, a multilayered epidermis coupled with an underlying dermal compartment similar to native skin. This bioengineered skin provides a powerful tool for studying the molecular mechanisms controlling skin development and epidermal stem cell properties.  相似文献   

6.
A number of homeobox genes have been found to be expressed in skin and its appendages, such as scale and feather, and appear to be candidates for the regulation of the development of these tissues. We report that the proline-rich divergent homeobox gene Hex is expressed during development of chick embryonic skin and its appendages (scale and feather). In situ hybridization analysis revealed that, during development of the skin, a transient expression of the Hex gene was observed. While the expression of Hex in the dermis was closely correlated with proliferation activity of epidermal basal cells, that in the epidermis was related to a suppression of epidermal differentiation. When dermal fibroblasts were transfected with Hex, stimulation of both DNA synthesis and proliferation of the epidermal cells followed by two-fold scale ridge elongation and increase in epidermal area was observed during culture of the skin, whereas epidemal keratinization was not affected. This is the first study to demonstrate that Hex is expressed during development of the skin and its appendages and that its expression in the dermal cells regulates epidermal cell proliferation through epithelial mesenchymal interaction.  相似文献   

7.
Keratinocytes have the ability to adhere to extracellular matrix rapidly. With this in mind, in this study we isolated keratinocytes known as rapidly adhering (RA) cells. To compare epidermal regenerative abilities, skin substitutes were reconstructed by adding keratinocytes or RA cells to two groups of bioengineered dermis made by fibroblasts and hair follicle dermal cells respectively. After transplantation, the results illustrated that the skin substitutes including RA cells were integrated into the host tissue. Furthermore, with hair follicle dermal cells' influences, the RA cells could form structures very similar to normal hair follicles. These results indicate that RA cells are predominately comprised of epidermal stem cells. The results also demonstrated that besides the reciprocal interaction of epidermal stem cells with dermal cells, the interaction of epidermal stem cells with keratinocytes were critical in epidermis morphogenesis and self-renewal, and application of RA cells could optimize engineering of skin substitutes.  相似文献   

8.
Hair follicle development and growth are regulated by Wnt signalling and depend on interactions between epidermal cells and a population of fibroblasts at the base of the follicle, known as the dermal papilla (DP). DP cells have a distinct gene expression signature from non-DP dermal fibroblasts. However, their origins are largely unknown. By generating chimeric mice and performing skin reconstitution assays we show that, irrespective of whether DP form during development, are induced by epidermal Wnt activation in adult skin or assemble from disaggregated cells, they are polyclonal in origin. While fibroblast proliferation is necessary for hair follicle formation in skin reconstitution assays, mitotically inhibited cells readily contribute to DP. Although new hair follicles do not usually develop in adult skin, adult dermal fibroblasts are competent to contribute to DP during hair follicle neogenesis, irrespective of whether they originate from skin in the resting or growth phase of the hair cycle or skin with β-catenin-induced ectopic follicles. We propose that during skin reconstitution fibroblasts may be induced to become DP cells by interactions with hair follicle epidermal cells, rather than being derived from a distinct subpopulation of cells.  相似文献   

9.
Fibroblasts are a major cell type in the dermis. When skin is wounded in various ways such as by abrasions, cuts or diabetic ulcer, proliferation and migration of dermal fibroblasts is necessary for cutaneous wound healing. Numerous studies have shown that adult stem cells secrete paracrine factors and these are able to promote wound healing by activating migration and proliferation of effector cells such as dermal fibroblasts. However, the paracrine factors secreted from pluripotent stem cells and the effect of these on dermal fibroblast proliferation and migration have been poorly characterized. In this study we cultured human induced pluripotent stem cells without any animal-derived components including feeder cells, and investigated the effect of stem cell-conditioned medium (iPSC-CM) on dermal fibroblast proliferation and migration. Results showed that the proliferation of mouse embryonic fibroblasts (STO cells) and human dermal fibroblasts (HDFs) were significantly stimulated by iPSC-CM. We determined that the optimal concentration of iPSC-CM in promoting the proliferation of HDFs was a 75% dilution. Scratch wound assay and transwell migration assay also demonstrated the stimulatory effect of iPSC-CM on the migration of HDFs. iPSC-CM is believed to have advantages because of the unique capabilities of iPSCs, which include infinite self-renewal, pluripotency and variety of donor cells. Thus, iPSC-CM is anticipated to be a valuable source of paracrine factors which can potentially be used for wound healing applications.  相似文献   

10.
Aging in the epidermis is marked by a gradual decline in barrier function, impaired wound healing, hair loss, and an increased risk of cancer. This could be due to age‐related changes in the properties of epidermal stem cells and defective interactions with their microenvironment. Currently, no biochemical tools are available to detect and evaluate the aging of epidermal stem cells. The cellular glycosylation is involved in cell–cell communications and cell–matrix adhesions in various physiological and pathological conditions. Here, we explored the changes of glycans in epidermal stem cells as a potential biomarker of aging. Using lectin microarray, we performed a comprehensive glycan profiling of freshly isolated epidermal stem cells from young and old mouse skin. Epidermal stem cells exhibited a significant difference in glycan profiles between young and old mice. In particular, the binding of a mannose‐binder rHeltuba was decreased in old epidermal stem cells, whereas that of an α2‐3Sia‐binder rGal8N increased. These glycan changes were accompanied by upregulation of sialyltransferase, St3gal2 and St6gal1 and mannosidase Man1a genes in old epidermal stem cells. The modification of cell surface glycans by overexpressing these glycogenes leads to a defect in the regenerative ability of epidermal stem cells in culture. Hence, our study suggests the age‐related global alterations in cellular glycosylation patterns and its potential contribution to the stem cell function. These glycan modifications detected by lectins may serve as molecular markers for aging, and further functional studies will lead us to a better understanding of the process of skin aging.  相似文献   

11.
In vitro generated skin models find growing interest as promising tools in basic research and clinical application in regenerative medicine. Here, we present further details of an improved long-term skin equivalent (SE) enabling mechanistic studies on skin reconstruction and epidermal function. Growth conditions of fibroblasts in a 3D scaffold were analysed to optimise the dermal microenvironment by providing an authentic dermal matrix for regular tissue reconstruction and function of cocultured keratinocytes. These SEs demonstrate sustained epidermal viability - over 12 weeks - with regular differentiation as substantiated by in vivo-like patterns of all differentiation products, exemplified here by the cornified envelope components loricrin and repetin. The continuous expression of all major tight junction components in the granular layer, shown here for ZO-1 in coherence with the presence of epidermal barrier lipids, and ultrastructural accumulation of lamellar bodies, collectively indicate proper epidermal barrier structures. Remarkably, cocultured keratinocytes exerted an ongoing proliferation-stimulating effect on fibroblasts colonising the scaffold comparable to a cocktail of fibroblast growth factors. Consequently, precultivation of dermal equivalents (DEs) in basal or growth factor-enriched media had only minor effects on the quality of epidermal regeneration in cocultures. As to the role of fibroblast numbers, complete absence of dermal cells resulted in atrophic epithelia but the effect of cell numbers as low as 5 x 10(4)cells/cm(2) on epidermal tissue quality equalled that of the standard density (2 x 10(5)cells/cm(2)). Surprisingly, precultivation of fibroblasts in the DEs for 7 days (standard) showed no better effect on epidermal tissue reformation as compared to 2 days whereas a precultivation period of 14 days resulted in atrophic epidermal and dermal tissue development. These data demonstrate, (i) the strict dependence of epidermal tissue regeneration on the presence of fibroblasts, (ii) the mutual keratinocyte-fibroblast interactions for cell proliferation and organogenesis, and (iii) the importance of the proper microenvironment for epidermal tissue function and supposedly for establishment of a stem cell niche in vitro.  相似文献   

12.
Cell migration is a rate-limiting event in skin wound healing. In unwounded skin, cells are nourished by plasma. When skin is wounded, resident cells encounter serum for the first time. As the wound heals, the cells experience a transition of serum back to plasma. In this study, we report that human serum selectively promotes epidermal cell migration and halts dermal cell migration. In contrast, human plasma promotes dermal but not epidermal cell migration. The on-and-off switch is operated by transforming growth factor (TGF) beta3 levels, which are undetectable in plasma and high in serum, and by TGFbeta receptor (TbetaR) type II levels, which are low in epidermal cells and high in dermal cells. Depletion of TGFbeta3 from serum converts serum to a plasmalike reagent. The addition of TGFbeta3 to plasma converts it to a serumlike reagent. Down-regulation of TbetaRII in dermal cells or up-regulation of TbetaRII in epidermal cells reverses their migratory responses to serum and plasma, respectively. Therefore, the naturally occurring plasma-->serum-->plasma transition during wound healing orchestrates the orderly migration of dermal and epidermal cells.  相似文献   

13.
Dermal fibroblasts are required for structural integrity of the skin and for hair follicle development. Uniform Wnt signaling activity is present in dermal fibroblast precursors preceding hair follicle initiation, but the functional requirement of dermal Wnt signaling at early stages of skin differentiation and patterning remains largely uncharacterized. We show in mice that epidermal Wnt ligands are required for uniform dermal Wnt signaling/β-catenin activity and regulate fibroblast cell proliferation and initiation of hair follicle placodes. In the absence of dermal Wnt signaling/β-catenin activity, patterned upregulation of epidermal β-catenin activity and Edar expression are absent. Conversely, forced activation of β-catenin signaling leads to the formation of thickened dermis, enlarged epidermal placodes and dermal condensates that result in prematurely differentiated enlarged hair follicles. These data reveal functional roles for dermal Wnt signaling/β-catenin in fibroblast proliferation and in the epidermal hair follicle initiation program.  相似文献   

14.
The multifaceted adult epidermal stem cell   总被引:11,自引:0,他引:11  
Adult epidermal stem cells renew the epithelial compartment of the skin throughout life and are the most accessible of all adult stem cells. Most importantly, epidermal stem cells can be efficiently cultivated and transplanted, a significant advantage for cell and gene therapy. Recent work has pointed to the hair follicle as the main repository of multipotent stem cells in skin. Hair follicles, which are often affected in the mouse by spontaneous or man-made mutations, have become superb model systems to study the cellular and molecular factors that regulate the proliferation, migration and fate of adult stem cells.  相似文献   

15.
We aim to evaluate environmental and genetic effects on the expansion/proliferation of committed single cells during embryonic development, using melanoblasts as a paradigm to model this phenomenon. Melanoblasts are a specific type of cell that display extensive cellular proliferation during development. However, the events controlling melanoblast expansion are still poorly understood due to insufficient knowledge concerning their number and distribution in the various skin compartments. We show that melanoblast expansion is tightly controlled both spatially and temporally, with little variation between embryos. We established a mathematical model reflecting the main cellular mechanisms involved in melanoblast expansion, including proliferation and migration from the dermis to epidermis. In association with biological information, the model allows the calculation of doubling times for melanoblasts, revealing that dermal and epidermal melanoblasts have short but different doubling times. Moreover, the number of trunk founder melanoblasts at E8.5 was estimated to be 16, a population impossible to count by classical biological approaches. We also assessed the importance of the genetic background by studying gain- and loss-of-function β-catenin mutants in the melanocyte lineage. We found that any alteration of β-catenin activity, whether positive or negative, reduced both dermal and epidermal melanoblast proliferation. Finally, we determined that the pool of dermal melanoblasts remains constant in wild-type and mutant embryos during development, implying that specific control mechanisms associated with cell division ensure half of the cells at each cell division to migrate from the dermis to the epidermis. Modeling melanoblast expansion revealed novel links between cell division, cell localization within the embryo and appropriate feedback control through β-catenin.  相似文献   

16.
The nail is a continuous skin appendage. Cells located around the nails, which display coordinated homeostatic dynamics and release a flow of stem cells in response to regeneration, have been identified in mice. However, very few studies regarding human nail stem cells exist in the literature. Using specimens isolated from humans, we detected an unreported population of cells within the basal layer of postnatal human nail proximal folds (NPFs) and the nail matrix around the nail root. These cells were multi-expressing and expressed stem cell markers, such as keratin 15 (K15), keratin 14 (K14), keratin 19 (K19), CD29, CD34, and leucine-rich repeat-containing G protein-coupled receptor 6 (Lgr6). These cells were very similar to mouse nail stem cells in terms of cell marker expression and their location within the nail. We also found that the putative nail stem cells maintained their abundance with advancing age, but cell proliferation and nail growth rate were decreased on comparison of young and aged specimens. To summarize, we found a putative population of stem cells in postnatal human nails located at NPFs and the nail matrix. These cells may have potential for cell differentiation and be capable of responding to injury, and were retained, but may be hypofunctional during aging.  相似文献   

17.
A population of neonatal mouse keratinocytes (epidermal basal cells) was obtained by gentle, short-term trypsin separation of the epidermal and dermal skin compartments and discontinuous Ficoll gradient purification of the resulting epidermal cells. Over 4--6 wk of culture growth at 32--33 degrees C, the primary cultures formed a complete monolayer that exhibited entire culture stratification and upper cell layer shedding. Transmission and scanning electron microscopy demonstrated that the keratinocyte cultures progressed from one to two cell layers through a series of stratification and specialization phenomena to a six to eight cell layer culture containing structures characteristic of epidermal cells and resembling in vivo epidermal development. The temporal development of primary epidermal cell culture specialization was confirmed by use of two histological techniques which differentially stain the specializing upper cell layers of neonatal mouse skin. No detectable dermal fibroblast co-cultivation was demonstrated by use of the leucine aminopeptidase histochemical technique and routine electron microscope surveillance of the cultures. Incorporation of [3H]thymidine ([3H]Tdr) was greater than 85% into DNA and was inhibited by both 20 micron cytosine arabinoside (Ara-C) and low temperature. Autoradiography and 90% inhibition of [3H]Tdr incorporation by 2 mM hydroxyurea indicated that keratinocyte culture DNA synthesis was scheduled (not a repair phenomenon). The primary keratinocytes showed an oscillating pattern of [3H]Tdr incorporation into DNA over the initial 23--25 days of growth. Autoradiography demonstrated that the cultures contained 10--30% proliferative stem cells from days 2-25 of culture. The reproducibility of both the proliferation and specialization patterns of the described primary epidermal cell culture system indicates that these cultures are a useful tool for investigations of functioning epidermal cell homeostatic control mechanisms.  相似文献   

18.
Epidermal cell lineage.   总被引:26,自引:0,他引:26  
The epidermis is a stratified squamous epithelium, which is under a constant state of proliferation, commitment, differentiation, and elimination so that the functional integrity of the tissue is maintained. The intact epidermis has the ability to respond to diverse environmental stimuli by continuous turnover to maintain its normal homeostasis throughout an organism's life. This is achieved by a tightly regulated balance between stem cell self-renewal and the generation of a population of cells that undergo a limited number of more rapid (amplifying) transit divisions before giving rise to nonproliferative, terminally differentiating cells. This process makes it an excellent model system to study lineage, commitment, and differentiation, although neither the identity of epidermal stem cells nor the precise steps and regulators that lead to mature epidermal cells have yet been determined. Furthermore, the identities of genes that initiate epidermal progenitor commitment to the epidermal lineage, from putative epidermal stem cells, are unknown. This is mainly due to the lack of an in vitro model system, as well as the lack of specific reagents, to study the early events in epidermal lineage. Our recent development of a differentiating embryonic stem cell model for epidermal lineage now offers the opportunity to analyze the factors that regulate epidermal lineage. These studies will provide new insight into epidermal lineage and lead to a better understanding of various hyperproliferative skin diseases such as psoriasis and cancer.  相似文献   

19.
Human skin contains epidermal Langerhans cells (LCs) and dermal dendritic cells (DCs) that are key players in induction of adaptive immunity upon infection. After major burn injury, suppressed adaptive immunity has been observed in patients. Here we demonstrate that burn injury affects adaptive immunity by altering both epidermal LC and dermal DC functions. We developed a human ex vivo burn injury model to study the function of DCs in thermally injured skin. No differences were observed in the capacity of both LCs and dermal DCs to migrate out of burned skin compared to unburned skin. Similarly, expression levels of co-stimulatory molecules were unaltered. Notably, we observed a strong reduction of T cell activation induced by antigen presenting cell (APC) subsets that migrated from burned skin through soluble burn factors. Further analyses demonstrated that both epidermal LCs and dermal DCs have a decreased T cell stimulatory capacity after burn injury. Restoring the T cell stimulatory capacity of DC subsets might improve tissue regeneration in patients with burn wounds.  相似文献   

20.
Understanding the contribution of the dermis in skin aging is a key question, since this tissue is particularly important for skin integrity, and because its properties can affect the epidermis. Characteristics of matched pairs of dermal papillary and reticular fibroblasts (Fp and Fr) were investigated throughout aging, comparing morphology, secretion of cytokines, MMPs/TIMPs, growth potential, and interaction with epidermal keratinocytes. We observed that Fp populations were characterized by a higher proportion of small cells with low granularity and a higher growth potential than Fr populations. However, these differences became less marked with increasing age of donors. Aging was also associated with changes in the secretion activity of both Fp and Fr. Using a reconstructed skin model, we evidenced that Fp and Fr cells do not possess equivalent capacities to sustain keratinopoiesis. Comparing Fp and Fr from young donors, we noticed that dermal equivalents containing Fp were more potent to promote epidermal morphogenesis than those containing Fr. These data emphasize the complexity of dermal fibroblast biology and document the specific functional properties of Fp and Fr. Our results suggest a new model of skin aging in which marked alterations of Fp may affect the histological characteristics of skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号