首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The metabolic fate of translation initiation factor after inhibition of protein synthesis by different means has been investigated. We have found a decay in initiation factor activity when protein synthesis is blocked by chloramphenicol but not during arginine starvation of PA1 (Rel) or PA2 (Rel+) strains or during puromycin incubation. These results suggest that inactivation of certain initiation factors occurs when the regeneration of ribosomal subunits from polysomes is inhibited in the cells.Complementation experiments indicate that IF3 factor activity is preferentially affected during chloramphenicol treatment.Same preferential inhibition of IF3 activity seems to occur during in vitro incubation of crude IF. 70S ribosomes or 30S subunits protect this factor against the inactivation. Preliminary results seem tosuggest that ATP is implicated in this in vitro inactivation process.  相似文献   

2.
3.
1. The synthesis of nucleic acids and the content of purine nucleotides have been studied in selected purine-requiring strains of Escherichia coli including a purB(-) strain and a purB(-)guaA(-) strain. 2. When the exogenous purines can be converted into GTP but not into ATP, RNA is synthesized at the expense of intracellular ATP, ADP and AMP. 3. Net synthesis of RNA as measured by the incorporation of uracil can be correlated with the availability of GTP except when ATP falls to a very low concentration. 4. Nicotinamide nucleotides are not an important reservoir of adenine nucleotides for RNA synthesis.  相似文献   

4.
5.
Crystals of UDP-N-acetylglucosamine O-acyltransferase (lpxA) fromEscherichia coli have been obtained from solutions of sodium/potassium phosphate and dimethylsulfoxide. These crystals belong to the cubic space group P213 (a = 99.0 Å), diffract X-raysto approximately 2.5 Å resolution and contain one subunit of the enzyme in the asymmetric unit. © 1995 Wiley-Liss, Inc.  相似文献   

6.
7.
Ferritin-conjugated specific antibodies have been used to localize beta-galactosidase and both the monomer and active dimer of alkaline phosphatase in frozen thin sections of cells of Escherichia coli O8 strain F515. The even distribution of the ferritin marker throughout cells that had been induced for beta-galactosidase synthesis, frozen, sectioned, and exposed to ferritin-anti-beta-galactosidase conjugate showed that this enzyme was present throughout the cytoplasm of these cells. Frozen thin sections of cells that had been derepressed for the synthesis of alkaline phosphatase were exposed to both ferritin-anti-alkaline phosphatase monomer and ferritin-anti-alkaline phosphatase dimer conjugates, and the ferritin markers showed a peripheral distribution of both the monomer and the dimer of this enzyme. This indicates that alkaline phosphatase is present only in the peripheral regions of the cell and argues against the existence of a cytoplasmic pool of inactive monomers of this enzyme. This peripheral location of both the monomers and dimers of alkaline phosphatase supports the developing concensus that this enzyme is, like other wall-associated enzymes, synthesized in association with the cytoplasmic membrane and vectorially transported to the periplasmic area, where it assumes its tertiary and quaternary structure and acquires its enzymatic activity.  相似文献   

8.
Mutants of Escherichia coli defective in the HemA protein grow extremely poorly as the result of heme deficiency. A novel hemA mutant was identified whose rate of growth was dramatically enhanced by addition to the medium of low concentrations of translational inhibitors, such as chloramphenicol and tetracycline. This mutant (H110) carries mutation at position 314 in the hemA gene, which resulted in diminished activity of the encoded protein. Restoration of growth of H110 upon addition of the drugs mentioned above was due to activation of the synthesis of porphyrin. However, this activation was not characteristic exclusively of cells with this mutant hemA gene since it was also observed in a heme-deficient strain bearing the wild-type hemA gene. The activation did not depend on the promoter activity of the hemA gene, as indicated by studies with fusion genes. It appears that partial inhibition of protein synthesis via inhibition of peptidyltransferase can promote the synthesis of porphyrin by providing an increased supply of Guamyl-tRNA for porphyrin synthesis. Glutamyl-tRNA is the common substrate for peptidyltransferase and HemA.  相似文献   

9.
Biogenesis of ribosomes: free ribosomal protein pools in Escherichia coli   总被引:3,自引:0,他引:3  
Proteins from ribosomal subunits (30 s and 50 s) have been fractionated into split (SP-30 and SP-50) and core (core-30 and eore-50) proteins. Antisera prepared in rabbit against them are shown to be highly group-specific as judged by the Ouchterlony (1967) double diffusion test and by precipitin reaction in solution. Various parameters which influence the immuno-precipitation of these proteins by specific antisera have been investigated. It is demonstrated that under controlled conditions this provides a sensitive and reliable method for characterization and quantitative estimation of free ribosomal proteins. The technique has been successfully applied in the investigations of various properties of free ribosomal protein pools existing in Escherichia coli. It is concluded that free ribosomal proteins in E. coli may constitute 8 to 14% of total soluble proteins under different growth conditions. Relative pool sizes of four classes of proteins expressed as a percentage of the total soluble proteins in bacteria grown in L broth (doubling period, 30 min) are estimated to be core-30, 2.1; core-50, 3.4; SP-30, 3.6; SP-50, 5.0. From the studies on bacteria grown in different media (doubling period, 30, 42 and 60 min), we further conclude that the amount of free proteins increases with the growth rate so as to constitute a constant fraction (7 to 9%) of total ribosomal proteins. Relative pool-sizes corresponding to four classes of ribosomal proteins, however, remain unaltered by different growth rate.  相似文献   

10.
The nucleoside triphosphate pools of Escherichia coli minicells are different from those in parental cells. The growth phase in which minicells accumulate significantly affects the pool sizes.  相似文献   

11.
12.
plsA mutants of Escherichia coli are temperature-sensitive strains which possess two enzymes of abnormal thermolability, sn-glycerol 3-phosphate acyltransferase and adenylate kinase. Phospholipid synthesis is inhibited after shift of plsA mutants to temperatures at the lower end of the nonpermissive temperature range. This inhibition is not due to inactivation of the adenylate kinase activity since nucleic acid (and hence adenosine 5'-triphosphate) synthesis is inhibited only slightly. These results show that in vivo inactivation of the sn-glycerol 3-phosphate acyltransferase can be observed under conditions which allow normal adenylate kinase function.  相似文献   

13.
In Escherichia coli BB26-36, the inhibition of net phospholipid synthesis during glycerol starvation affected cell duplication in a manner that was similar in some respects to that observed during the inhibition of protein synthesis. Ongoing rounds of chromosome replication continued, and cells in the D period divided. The initiation of new rounds of chromosome replication and division of cells in the C period were inhibited. Unlike the inhibition of protein synthesis, however, the accumulation of initiation potential in dnaA and dnaC mutants at the nonpermissive temperature was not affected by the inhibition of phospholipid synthesis. Furthermore, proteins synthesized during the inhibition of phospholipid synthesis can be utilized later for division. The results are consistent with a dual requirement for protein and phospholipid synthesis for both the inauguration of new rounds of chromosome replication and the initiation of septum formation. Once initiated, both processes progress to completion independent of continuous phospholipid and protein synthesis.  相似文献   

14.
After inhibition of protein synthesis, the number of nuclear bodies (nucleoids) visible in cells of Escherichia coli B/rA corresponded closely to the number of completely replicated chromosomes. We calculated that nucleoid partition follows almost immediately after replication forks reach the chromosome terminus. We show that such a partition is dependent on protein synthesis and that this may reflect the requirement that cells must achieve a certain minimum length before partition (and subsequent cell division) can take place.  相似文献   

15.
16.
We have found that L-canavanine inhibited the synthesis of polyamines in T4-infected Escherichia coli. These polyamines are known to be required for T4 DNA synthesis and may be involved in phage morphogenesis. The new data indicate that the inhibition of polyamine synthesis is not primarily responsible for the L-conavanine-mediated inhibition of DNA synthesis nor does it seem to be involved in the induction of lollipops. L-Canavanine does influence the relative amounts of putrescine and spermidine found in the phage particle, but it does not influence the amount of DNA phosphate neutralized by polyamines.  相似文献   

17.
Synchronous cells of the thermosensitive division-defective Escherichia coli strain MACI (divA) divided at the restrictive temperature (42 degrees C) if they were allowed to grow at 42 degrees C for a certain period before protein synthesis was inhibited by adding chloramphenicol (CAP) or rifampicin. The completion of chromosome replication was not required for such divA-independent division. Synchronous cells of strain MACI divided in the presence of an inhibitor of DNA synthesis, nalidixic acid, if they were shifted to 42 degrees C and CAP or rifampicin was added after some time; cells of the parent strain MC6 (div A+) treated in the same way did not divide. These data suggest that coupling of cell division to DNA synthesis depends on the divA function. The ability to divide at 42 degrees C, whether or not chromosome termination was allowed, was directly proportional to the mean cell volume of cultures at the time of CAP addition, suggesting that cells have to be a certain size to divide under these conditions. The period of growth required for CAP-induced division had to be at the restrictive temperature; when cells were grown at 30 degrees C, in the presence of nalidixic acid to prevent normal division, they did not divide on subsequent transfer to 42 degrees C followed, after a period, by protein synthesis inhibition. A model is proposed in which the role of divA as a septation initiator gene is to differentiate surface growth sites by converting a primary unregulated structure, with the capacity to make both peripheral wall and septum, to a secondary structure committed to septum formation.  相似文献   

18.
Escherichia coli Q13 was infected with bacteriophage Q beta and subjected to energy source shift-down (from glucose-minimal to succinate-minimal medium) 20 min after infection. Production of progeny phage was about fourfold slower in down-shifted cultures than in the cultures in glucose medium. Shift-down did not affect the rate of phage RNA replication, as measured by the rate of incorporation of [14C]uracil in the presence of rifampin, with appropriate correction for the reduced entry of exogenous uracil into the UTP pool. Phage coat protein synthesis was three- to sixfold slower in down-shifted cells than in exponentially growing cells, as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The polypeptide chain propagation rate in infected cells was unaffected by the down-shift. Thus, the reduced production of progeny phage in down-shifted cells appears to result from control of phage protein synthesis at the level of initiation of translation. The reduction in the rate of Q beta coat protein synthesis is comparable to the previously described reduction in the rate of synthesis of total E. coli protein and of beta-galactosidase, implying that the mechanism which inhibits translation in down-shifted cells is neither messenger specific nor specific for 5' proximal cistrons. The intracellular ATP pool size was nearly constant after shift-down; general energy depletion is thus not a predominant factor. The GTP pool, by contrast, declined by about 40%. Also, ppGpp did not accumulate in down-shifted, infected cells in the presence of rifampin, indicating that ppGpp is not the primary effector of this translational inhibition.  相似文献   

19.
UDP-N-acetylglucosamine (UDP-GlcNAc) acyltransferase (LpxA) catalyzes the reversible transfer of an R-3-hydroxyacyl chain from R-3-hydroxyacyl-acyl carrier protein to the glucosamine 3-OH of UDP-GlcNAc in the first step of lipid A biosynthesis. Lipid A is required for the growth and virulence of most Gram-negative bacteria, making its biosynthetic enzymes intriguing targets for the development of new antibacterial agents. LpxA is a member of a large family of left-handed beta-helical proteins, many of which are acyl- or acetyltransferases. We now demonstrate that histidine-, lysine-, and arginine-specific reagents effectively inhibit LpxA of Escherichia coli, whereas serine- and cysteine-specific reagents do not. Using this information in conjunction with multiple sequence alignments, we constructed site-directed alanine substitution mutations of conserved histidine, lysine, and arginine residues. Many of these mutant LpxA enzymes show severely decreased specific activities under standard assay conditions. The decrease in activity corresponds to decreased k(cat)/K(m,UDP-GlcNAc) values for all the mutants. With the exception of H125A, in which no activity is seen under any assay condition, the decrease in k(cat)/K(m,UDP-GlcNAc) mainly reflects an increased K(m,UDP-GlcNAc). His(125) of E. coli LpxA may therefore function as a catalytic residue, possibly as a general base. LpxA does not catalyze measurable UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc hydrolysis or UDP-GlcNAc/UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc exchange, arguing against a ping-pong mechanism with an acyl-enzyme intermediate.  相似文献   

20.
The theory describing the effect of inhibition of initiation of rounds of deoxyribonucleic acid (DNA) replication on the accumulation of DNA is derived, and an analysis is presented which allows the determination of the time C taken to replicate the bacterial chromosome from the kinetic changes in the accumulation of DNA. This analysis is applied to experiments in which inhibition of initiation was achieved by inhibiting protein or protein and ribonucleic acid synthesis with chloramphenicol or rifampin. The results for both antibiotics are identical and indicate that there is a delay of 6 to 11 min in the effect of the antibiotics on initiation of rounds of replication. If this delay is taken into account, then the value of the C period estimated from such experiments agrees with values obtained by other methods, whereas by conventional data evaluation of such experiments the C period would be overestimated. In the low thymine-requiring derivative of Escherichia coli B/r ATCC 12407 used here, the C period was found to be between 38 and 41 min for cultures growing with a mass doubling time of 29 min in glucose-amino acids medium, supplemented with 20 micrograms of thymine/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号