首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time-lapse cinemicrography was used to record the active movements of cells in living intact sponges. Each of the three main cell types (pinacocytes, mesohyl cells, and choanocytes) continuously moved and rearranged themselves so that the internal anatomy of the sponge was continuously remodeled. The shape and appearance of the sponges anatomical structures often changed substantially within a few hours. The most motile were the mesohyl cells, with many moving as fast as one cell-length per minute (15 microns/min). Mesohyl cell locomotion was often accompanied by displacements of spicules, canals, and choanocyte chambers; the patterns of these displacements suggested that the mesohyl cells were providing the motive forces for these rearrangements. The locomotion of the pinacocytes varied according to position: those along the outer sponge margins were most active, whereas those in other parts of the surface moved relatively little. Choanocytes were never observed to undergo independent locomotion but were always found grouped together in choanocyte chambers. These choanocyte chambers interacted with pinacocytes and mesohyl cells to form excurrent canals, which continuously moved, fused with, and branched from one another. These observations suggest that the experimental phenomenon of sponge cell-reaggregation and reconstitution, discovered by H. V. Wilson, represents an extreme version of morphogenetic processes that normally go on continuously within intact sponges. The results from the present study also suggest that these cellular rearrangements are controlled by active cell movements and behavioral responses that include but are not limited to selective cell adhesion.  相似文献   

2.
Bacterial communities associated with the surfaces of several Mediterranean sponge species (Agelas oroides, Chondrosia reniformis, Petrosia ficiformis, Geodia sp., Tethya sp., Axinella polypoides, Dysidea avara, and Oscarella lobularis) were compared to those associated with the mesohyl of sponges and other animate or inanimate reference surfaces as well as with those from bulk seawater. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified bacterial 16S ribosomal RNA genes obtained from the surfaces and tissues of these sponges demonstrated that the bacterial communities were generally different from each other. The bacterial communities from sponges were different from those on reference surfaces or from bulk seawater. Additionally, clear distinctions in 16S rDNA fingerprint patterns between the bacterial communities from mesohyl samples of "high-microbial abundance (HMA) sponges" and "low-microbial abundance sponges" were revealed by DGGE and cluster analysis. A dominant occurrence of particularly GC-rich 16S ribosomal DNA (rDNA) fragments was found only in the DGGE banding pattern obtained from the mesohyl of HMA sponges. Furthermore, sequencing analysis of 16S rDNA fragments obtained from mesohyl samples of HMA sponges revealed a dominant occurrence of sponge-associated bacteria. The bacterial communities within the mesohyl of HMA sponges showed a close relationship to each other and seem to be sponge-specific.  相似文献   

3.
《Zoology (Jena, Germany)》2014,117(4):282-291
Although sponges are still often considered to be simple, inactive animals, both larvae and adults of different species show clear coordination phenomena triggered by extrinsic and intrinsic stimuli. Chondrosia reniformis, a common Mediterranean demosponge, lacks both endogenous siliceous spicules and reinforcing spongin fibers and has a very conspicuous collagenous mesohyl. Although this species can stiffen its body in response to mechanical stimulation when handled, almost no quantitative data are available in the literature on this phenomenon. The present work was intended to quantify the dynamic response to mechanical stimulation both of intact animals and isolated tissue samples in order to evaluate: (i) the magnitude of stiffening; (ii) the relationship between the amount of stimulation and the magnitude of the stiffening response; (iii) the ability of the whole body to react to localized stimulation; (iv) the possible occurrence of a conduction mechanism and the role of the exopinacoderm (outer epithelium). Data on mesohyl tensility obtained with mechanical tests confirmed the difference between stimulated and non-stimulated isolated tissue samples, showing a significant relationship between ectosome stiffness and the amount of mechanical stimulation. Our experiments revealed a significant difference in tensility between undisturbed and maximally stiffened sponges and evidence of signal transmission that requires a continuous exopinacoderm. We also provide further evidence for the presence of a chemical factor that alters the interaction between collagen fibrils, thereby changing the mechanical properties of the mesohyl.  相似文献   

4.
Mutations in human spastin (SPG4) cause an autosomal dominant form of hereditary spastic paraplegia. Sequence analysis revealed that spastin contains the AAA (ATPases associated with diverse cellular activities) domain in the C-terminal region. Recently, it was reported that spastin interacts dynamically with microtubules and displays microtubule-severing activity. A plausible Caenorhabditis elegans homologue of spastin (SPAS-1) has been identified by homology search and phylogenetic analyses. To understand the function of the spastin homologue, we characterized the spas-1 deletion mutant and analyzed spas-1 expression regulation in C. elegans. SPAS-1 was localized with cytoskeletons at the perinuclear region. We found that microtubules were intensely stained at the centrosomal region in the deletion mutant. Furthermore, overexpression of SPAS-1 caused disassembly of microtubule network in cultured cells, while ATPase-deficient SPAS-1 did not. These results indicate that C. elegans SPAS-1 plays an important role in microtubule dynamics. We also found that two kinds of products were generated from spas-1 by alternative splicing in a developmental stage-dependent manner.  相似文献   

5.
In previous work we have demonstrated that the microtubule-associated protein 2 (MAP 2) molecule consists of two structural parts. One part of the molecule, referred to as the assembly-promoting domain, binds to the microtubule surface and is responsible for promoting microtubule assembly; the other represents a filamentous projection observed on the microtubule surface that may be involved in the interaction of microtubules with other cellular structures. MAP 2 is known to be specifically phosphorylated as the result of a protein kinase activity that is present in microtubule preparations. We have now found that the activity copurifies with the projection portion of MAP 2 itself. Kinase activity coeluted with MAP 2 when microtubule protein was subjected to either gel- filtration chromatography on bio-gel A-15m or ion-exchange chromatography on DEAE- Sephadex. The activity was released from microtubules by mild digestion with chymotrypsin in parallel with the removal by the protease of the MAP 2 projections from the microtubule surface. The association of the activity with the projection was demonstrated directly by gel filtration chromatography of the projections on bio-gel A-15m. Three protein species (M(r) = 39,000, 55,000, and 70,000) cofractionated with MAP 2, and two of these (M(r) = 39,000 and 55,000) may represent the subunits of an associated cyclic AMP- dependent protein kinase. The projection-associated activity was stimulated 10-fold by cyclic AMP and was inhibited more than 95 percent by the cyclic AMP-dependent protein kinase inhibitor from rabbit skeletal muscle. It appeared to represent the only significant activity associated with microtubules, almost no activity being found with tubulin, other MAPs, or the assembly-promoting domain of MAP 2, and was estimated to account for 7-22 percent of the total brain cytosolic protein kinase activity. The location of the kinase on the projection is consistent with a role in regulating the function of the projection, though other roles for the enzyme are also possible.  相似文献   

6.
Strain F8, a bacterial isolate from 'river snow', was found to produce extracellular fibres in the form of a filamentous network. These extracellular filaments, which were previously shown to be composed of DNA, have been studied for the first time by ultrastructural and electron energy-loss spectroscopy in the present work. 'Whole mount' preparations of strain F8 indicate these polymers are ultrastructurally homogeneous and form a network of elemental filaments, which have a width of 1.8-2.0 nm. When incubated at pH 3.5 with colloidal cationic ThO(2) tracers they become intensely stained (electron dense), affording direct evidence that the fibres are negatively charged and thus acidic chemically. Elemental analysis of the extracellular filaments by Energy-filtered Transmission Electron Microscopy revealed phosphorus to be the main element present and, because pretreatment of F8 cells with DNase prevented thorium labelling, the fibres must be composed of extracellular DNA (eDNA). Neither ultrathin sections nor 'whole mount negative stain' caused DNA release by general cell lysis. Additionally, cells infected with phages were never observed in ultrathin sections and phage particles were never detected in whole mount samples, which rules out the possibility of phages being directly involved in eDNA release.  相似文献   

7.
Extraction of doublet microtubules from the sperm flagella of the sea urchin Strongylocentrotus purpuratus with sarkosyl (0.5%)-urea (2.5 M) yields a highly pure preparation of "tektin" filaments that we have previously shown to resemble intermediate filament proteins. They form filaments 2-3 nm in diameter as seen by negative stain electron microscopy and are composed of approximately equal amounts of three polypeptide bands with apparent molecular weights of 47,000, 51,000, and 55,000, as determined by SDS PAGE. We prepared antibodies to this set of proteins to localize them in the doublet microtubules of S. purpuratus and other species. Tektins and tubulin were antigenically distinct when tested by immunoblotting with affinity-purified antitektin and antitubulin antibodies. Fixed sperm or axonemes from several different species of sea urchin showed immunofluorescent staining with antitektin antibodies. We also used antibodies coupled to gold spheres to localize the proteins by electron microscopy. Whereas a monoclonal antitubulin (Kilmartin, J.V., B. Wright, and C. Milstein, 1982, J. Cell Biol. 93:576-582) decorates intact microtubules along their lengths, antitektins labeled only the ends of intact microtubules and sarkosyl-insoluble ribbons. However, if microtubules and ribbons attached to electron microscope grids were first extracted with sarkosyl-urea, the tektin filaments that remain were decorated by antitektin antibodies throughout their length. These results suggest that tektins form integral filaments of flagellar microtubule walls, whose antigenic sites are normally masked, perhaps by the presence of tubulin around them.  相似文献   

8.
We have raised a rabbit antiserum to a synthetic peptide corresponding to the C terminus (residues 400-416) of the Rh30A polypeptide. The rabbit antiserum reacted with the Rh30B (D30) polypeptide in addition to the Rh30A (C/c and/or E/e) polypeptide(s), indicating that these proteins share homology at their C termini. The antiserum did not react with erythrocyte membranes from an individual with Rh(null) syndrome. The rabbit antiserum immunoprecipitated Rh polypeptides from erythrocyte membranes and alkali-stripped membranes, but not from intact erythrocytes. Treatment of intact red cells with carboxypeptidase Y did not affect the reactivity of the antiserum, whereas treatment of alkali-stripped and unsealed erythrocyte ghost membranes resulted in the loss of antibody binding. Carboxypeptidase A treatment of intact erythrocytes and alkali-stripped membranes had no effect on antibody binding, indicating that the C-terminal domains of the Rh polypeptides contain lysine, arginine, proline, or histidine residues. These results show that the C termini of the Rh polypeptides are located toward the cytoplasmic face of the erythrocyte membrane. Treatment of intact radioiodinated erythrocytes with bromelain followed by immunoprecipitation with monoclonal anti-D gave a band of M(r) 24,000-25,000, indicating that the Rh30B (D30) polypeptide is cleaved at an extracellular domain close to the N or C terminus, with loss of the major radioiodinated domain. Immunoblotting of bromelain treated D-positive erythrocyte membranes with the rabbit antiserum to the C-terminal peptide revealed a new band of M(r) 6000-6500, indicating that the extracellular bromelain cleavage site is located near the C terminus of the molecule. The band of M(r) 6000-6500 was not obtained in erythrocyte membranes derived from bromelain treated D-negative erythrocytes. Erythrocytes of the rare -D- phenotype appear to either totally lack, or have gross alterations in, the Cc/Ee polypeptide(s), since the bromelain treatment of these cells resulted in the total loss of staining in the M(r) 35,000-37,000 region and the concomitant appearance of the new band of M(r) 6000-6500.  相似文献   

9.
Hemonectin is a lineage-specific cytoadhesive protein that may be involved in the developmentally regulated adhesion of granulocytic cells to bone marrow stroma. Immunoblot analysis using an anti-hemonectin antibody recognizes two distinct immunoreactive species in endothelial cell lysates (approximately M(r) 65,000) and human serum (approximately M(r) 55,000). Initial characterization of the 55-kDa protein has now been completed by isolating the cDNA from a human endothelial cell expression library. Sequence analysis of overlapping clones identifies a composite sequence spanning 2030 nucleotides with an open reading frame of 1173 base pairs. No significant sequence similarity was observed on analysis of current GenBank databases. The open reading frame was expressed as a recombinant protein in Escherichia coli and used as an immunogen for the production of a specific polyclonal antibody. Immunoblotting with this antibody identifies a single immunoreactive species of apparent M(r) 55,000 in HUVEC lysates and human serum, confirming that a secreted form normally circulates as a serum constituent protein. This antibody fails to recognize purified hemonectin, suggesting that the M(r) 55,000 protein is not hemonectin. Cross-species Southern blot analysis reveals persistent hybridizing fragments in all species tested, suggestive of a developmentally conserved function. Northern blot analysis demonstrates expression limited to endothelial and bone marrow stromal cells, but not poly(A) RNA from monkey liver, spleen, brain, lung, and kidney. On this basis, we have designated this novel protein MSE55, for marrow stromal/endothelial cell protein with a molecular mass of 55,000 daltons. Its tissue-specific expression may suggest a functional role in hematopoiesis.  相似文献   

10.
Summary Dimorphic yeastTrigonopsis variabilis is a unique species that can form either an ellipsoidal or a triangular cell depending upon nutritional conditions. This fluorescence microscopic study was intended to correlate morphological changes of mitochondria in the triangular cells with the distribution of the cytoskeleton. In addition, unique features in the behavior of the cytoskeleton were also examined during triangular cell formation. In log-phase cells stained with 4,6-diamidino-2-phenylindole, mitochondrial nucleoids appeared as a string of beads throughout the vegetative growth. The profile of mitochondria stained by 3,3-dihexyloxacarbocyanine iodide showed a network corresponding to the fluorescence images of mitochondrial nucleoids in both mother and daughter cells. Cell-cycle-dependent fragmentation of mitochondria was not discerned. As the culture reached stationary phase, a network of mitochondria gradually changed to form unique rings that were located near the angles of triangular cells. When examined by immunofluorescence microscopy with anti-tubulin antibody, microtubules were found to be well developed along the sides of cells in the cytoplasm ofT. variabilis interphase cells. Although distributions of microtubules and mitochondria are different during cell cycle as a whole, cytoplasmic microtubules frequently extended along a part of the mitochondria in budded cells, suggesting correlation of microtubules and mitochondria. Rhodamine-phalloidin staining revealed both actin patches and cables. Actin cables elongated from mother cells into the buds and showed close proximity to mitochondria, although complete overlapping of both structures was rare. Moreover, actin patches localized on the mitochondrial network at a frequency of 65%. These results suggested that actin cables and patches, as well as microtubules, participated in the distribution of mitochondria. The localization of actin patches separated towards opposite ends at a bud tip when the bud grew to medium size. The unique localization of actin patches is responsible for bi-directional growth of the bud, forming triangular cells.  相似文献   

11.
The importance of intact microtubules in the processing, storage and regulated secretion of von Willebrand factor (vWf) from Weibel-Palade bodies in endothelial cells was investigated. Human umbilical vein endothelial cells treated for 1 h with colchicine (10(-6) M) or nocodozole (10(-6) M) lost their organized microtubular network. Stimulation of these cells with secretagogues (A23187, thrombin) produced only 30% release of vWf in comparison to control cells containing intact microtubules. The nocodazole treatment was reversible. One-hour incubation in the absence of the drug was sufficient for microtubules to reform and restore the full capacity of the cells to release vWf. Long-term incubation (24 h) of endothelial cells with microtubule-destabilizing agents had a profound effect on vWf distribution. In control cells, vWf was localized to organelles in the perinuclear region (i.e., endoplasmic reticulum and Golgi apparatus) and to Weibel-Palade bodies. In drug-treated cells vWf staining was dispersed throughout the cytoplasm, and Weibel-Palade bodies were absent. The vWf synthesized in the absence of microtubules contained significantly less large multimers than that produced by control cells. Since Weibel-Palade bodies specifically contain the large multimers, we hypothesize that the structural defect in vWf secreted by cells in the absence of microtubules is due to the lack of Weibel-Palade bodies in these cultures.  相似文献   

12.
NESP55 (neuroendocrine secretory protein of M(r) 55,000) is a paternally imprinted proteoglycan, expressed specifically in endocrine cells and the nervous system. We investigated the subcellular localization and secretion of NESP55 in AtT-20 cells. NESP55 accumulated in the medium linearly over 24 h exceeding its intracellular content 3.7-fold by that time. Incubation of cells at 16 degrees C, to block protein export, inhibited basal secretion by 79%. Stimulation of AtT-20 cells with 8-Br-cAMP increased secretion of NESP55 by only 45%. The NESP55 secretory vesicles sedimented at a density of 1.2-1.4 M, which is slightly lighter than that of the large dense core vesicles. Immunofluorescence studies revealed immunoreactivity in the Golgi apparatus and a punctuate staining of processes or neurites. Our data demonstrate that NESP55 is mainly sorted to and released from a population of constitutive secretory vesicles, which are transported out of the perikarya into processes or axons. In addition, some NESP55 is also routed to the regulated pathway. The signal peptide of NESP55, as determined with peptide antisera, is 46 amino acids long and represents the best conserved region of this molecule suggesting that the signal peptide may have a function of its own. The subcellular localization and export of NESP55 from cells are reminiscent of neuronal proteoglycans forming the extracellular matrix, which are implicated in the development and maintenance of neuronal circuits and mechanisms of axonal guidance.  相似文献   

13.
The high-molecular-weight dendritic cytoskeletal protein known as microtubule-associated protein (MAP)-2 displays the capacity to stimulate tubulin polymerization and to associate with microtubules. Serine proteases cleave MAP-2 into a C-terminal M(r) 28,000-35,000 microtubule-binding fragment and a larger N-terminal M(r) 240,000 projection-arm region. We now show that human immunodeficiency virus (HIV) proteinase also progressively degrades purified MAP-2 in vitro. This proteolysis reaction is characterized by transient accumulation of at least six intermediates, and most abundant of these is an M(r) 72,000 species that retains the ability to associate with taxol-stabilized microtubules. Treatment of this M(r) 72,000 species with thrombin releases the same M(r) 28,000 component as that derived from thrombin action on intact high-molecular-weight MAP-2, indicating that the viral aspartoproteinase action preferentially occurs further toward the N-terminus. The association of the M(r) 72,000 component with microtubules can be disrupted by the presence of a 21-amino acid peptide analogue of the second repeated sequence in the MAP-2 microtubule-binding region. We also studied HIV proteinase action on MAP-2 in the presence of tubulin and other MAPs that recycle with tubulin, and contrary to other published studies we found no effect of such treatment on microtubule self-assembly behavior. Cleavage of isolated MAP-2 by the HIV enzyme at high salt concentrations, followed by desalting and addition of tubulin, also resulted in microtubule assembly, albeit with slightly reduced efficiency.  相似文献   

14.
Planctomycetes are ubiquitous in marine environment and were reported to occur in association with multicellular eukaryotic organisms such as marine macroalgae and invertebrates. Here, we investigate planctomycetes associated with the marine sponge Niphates sp. from the sub-tropical Australian coast by assessing their diversity using culture-dependent and -independent approaches based on the 16S rRNA gene. The culture-dependent approach resulted in the isolation of a large collection of diverse planctomycetes including some novel lineages of Planctomycetes from the sponge as well as sediment and seawater of Moreton Bay where this sponge occurs. The characterization of these novel planctomycetes revealed that cells of one unique strain do not possess condensed nucleoids, a phenotype distinct from other planctomycetes. In addition, a culture-independent clone library approach identified unique planctomycete 16S rRNA gene sequences closely related to other sponge-derived sequences. The analysis of tissue of the sponge Niphates sp. showed that the mesohyl of the sponge is almost devoid of microbial cells, indicating this species is in the group of ‘low microbial abundant’ (LMA) sponges. The unique planctomycete 16S rRNA gene sequences identified in this study were phylogenetically closely related to sequences from LMA sponges in other published studies. This study has revealed new insights into the diversity of planctomycetes in the marine environment and the association of planctomycetes with marine sponges.  相似文献   

15.
We have obtained several hybridoma clones producing antibodies to microtubule-associated proteins (MAPs) from bovine brain. Interaction of one of these antibodies, named RN 17, with cultured cells was studied by indirect immunofluorescence and immunoelectron microscopy. RN 17 antibody recognized both high molecular weight (HMW) MAPs, MAP 1 and MAP 2, in immunoblotting reaction with brain microtubules. In lysates of cultured cells, it bound to a protein doublet with a molecular weight of 100 kD. By immunofluorescence microscopy we showed that RN 17 antibody stained cytoplasmic fibrils, mitotic spindles and small particles in the cytoplasm of various cultured cells. The cytoplasmic fibrils were identified as both microtubules and intermediate filaments by double fluorescence microscopy and by their response to colcemid and 0.6 M KCl. This identification was confirmed by immunoelectron microscopy which also showed that the particles stained by RN 17 antibody are coated vesicles. Thus, cultured non-neural cells may contain a novel protein that binds to microtubules, intermediate filaments, and coated vesicles.  相似文献   

16.
The common demosponge Chondrosia reniformis possesses the capacity to undergo an unusual creep process which results in the formation of long outgrowths from the parent body. These shape changes, which have been interpreted as adaptive strategies related to environmental factors, asexual reproduction or localised locomotor phenomena, are due mainly to the structural and mechanical adaptability of the collagenous mesohyl. This contribution describes the morphological correlates of mesohyl plasticisation in C. reniformis. The microscopic anatomy of the mesohyl was examined when it was in different physiological conditions: (1) standard ”resting” condition, (2) ”stiffened” condition and (3) dynamic ”creep” condition. In this last case four representative regions of the sponge body were analysed: the parent region, the elongation region, the transition region and the propagule region. The results show that the histological modification of the sponge mesohyl during plasticisation is limited and localised. The most significant structural changes involve mainly cytological features of specific cellular components characterised by granule inclusions (i.e. the spherulous cells) and the arrangement and density of the collagenous extracellular framework, though the integrity of the collagen fibrils themselves is not affected. Morphological and functional aspects of mesohyl plasticisation invite comparison with the mutable collagenous tissue of echinoderms. Possible functional analogies between these two tissues are hypothesised. Accepted: 29 June 2001  相似文献   

17.
One of the monoclonal antibodies raised against mitotic HeLa cells (termed as mH3) recognized a 27-kDa protein and stained microtubules in the mitotic spindles of HeLa cells. Immunoscreening of a HeLa cDNA library revealed that mH3 antigen is a small heat shock protein, HSP27. Immunoprecipitation analysis using mH3 suggested that both alpha- and beta-tubulin are associated with HSP27. Further, sucrose-cushioned ultra centrifugation revealed that HSP27 is co-sedimented with taxol-stabilized microtubules. These results indicate that HSP27 associates with tubulin/microtubules in HeLa cells.  相似文献   

18.
Summary Organizational changes in the microtubules of isolated generative cells of Allemanda neriifolia during mitosis were examined using anti--tubulin and confocal laser scanning microscopy. Due to an improved resolution and a lack of out-of-focus interference, the images of the mitotic cytoskeleton obtained using the confocal microscope are much clearer than those obtained using the non-confocal fluorescence systems. In the confocal microscope one can see clearly that the spindle-shaped interphase cells contain a cage-like cytoskeleton consisting of numerous longitudinally oriented microtubule bundles and some associated smaller bundles. At prophase, the shape of the cells invariably becomes spherical. The microtubule cytoskeleton inside the cells concomitantly changes into a less organized form — consisting of thick bundles, patches, and dots. This structural form is not very stable, and soon afterwards the cytoskeleton changes into a reticulate network. Then the nuclear envelope breaks down, and the microtubules become randomly dispersed throughout the cell. Afterwards, the microtubules reorganize themselves into a number of half-spindle-like structures, each possessing a microtubule-nucleating center. The locations of these centres mark out the positions of the presumptive spindle poles. Numerous microtubules radiate from these centres toward the opposite pole. At metaphase, the microtubules form a number of bipolar spindles. Each spindle has two half-spindles, and each half-spindle has a sharply focused microtubule centre at the pole region. From the centres, kinetochore and non-kinetochore microtubules radiate toward the opposite half-spindle. At anaphase A, sister chromatids separate, the cells elongate, and the kinetochore microtubules disappear; the non-kinetochore microtubules, however, remain, and a new array of microtubules, in the form of a cage, appears. The peripheral cage bundles and the non-kinetochore bundles coverge into a sharp point at the pole region. Later, at anaphase B the microtubule cytoskeleton undergoes reorganization giving rise to a new array of longitudinally oriented microtubule bundles in the cell centre and a cage-like cytoskeleton in the periphery. At telophase, some of the cells elongate further, but some become spherical. The microtubules in the central region of the elongated cell become partially disrupted due to the formation of a phragmoplast-junction-like structure in the mid-interzone region. The microtubule bundles at the periphery are spirally organized, and they appear not to be disrupted by the phragmoplast-like junction. The microtubules in the spherical telophase cells (unlike those seen in the elongated telophase cells) are arranged differently, and no phragmoplast-junction-like structure forms in the spherical cells. The structural and functional significances of some of these new features of the organization of the microtubule cytoskeleton as revealed by the confocal microscope are discussed.  相似文献   

19.
Microtubule accessory proteins were isolated from porcine brain microtubules by phosphocellulose chromatography, and the high molecular weight protein (HMW protein), purified from this microtubule-associated fraction by electrophoretic elution from SDS gels, was used to raise antisera in rabbits. In agarose double diffusion tests, the antiserum obtained forms precipitin lines with purified HMW protein but not with tau protein or tubulin. When rat glial cells (strain C6) are examined by indirect immunofluorescence, this serum specifically stains a colchicine-sensitive filamentous cytoplasmic network in interphase cells, a network indistinguishable from that seen when cells are treated with antitubulin serum. In dividing cells, specific staining of the mitotic spindle and the stem body is observed with the antiserum to HMW protein. These studies indicate that HMW protein, like tau protein, is associated with microtubules in intact cells.  相似文献   

20.
M20, the small subunit of PP1M,binds to microtubules   总被引:1,自引:0,他引:1  
Myosinlight chain phosphatase (PP1M) is composed of three subunits, i.e.,M20, MBS, and a catalytic subunit. Whereas MBS is assigned as a myosinbinding subunit, the function of M20 is unknown. In the present study,we found that M20 binds to microtubules. The binding activity wasrevealed by cosedimentation of M20 with microtubules and binding oftubulin to M20 affinity resin. Green fluorescent protein (GFP)-taggedM20 (M20-GFP) was expressed in chicken primary smooth muscle cells andCOS-7 cells and was used as a probe for studying the associationbetween M20 and microtubules in living cells. M20-GFP was localized onfilamentous structures in both cell types. Colocalization analysisrevealed that M20-GFP colocalized with tubulin. Treatment withnocodazole, but not cytochalasin B, abolished the filamentous structureof M20-GFP. These results indicate that M20-GFP associates withmicrotubules in cells. Microinjection of rhodamine-tubulin into theM20-expressing cells revealed that incorporation of rhodamine-tubulininto microtubules was significantly facilitated bymicrotubule-associated M20. Consistent with this result, M20 enhancedthe rate of tubulin polymerization in vitro and produced elongatedmicrotubules. These results suggest that M20 has a microtubule bindingactivity and plays a role in regulating microtubule dynamics.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号