首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The v-abl transforming protein P160v-abl and the P210c-abl gene product of the translocated c-abl gene in Philadelphia chromosome-positive chronic myelogenous leukemia cells have tyrosine-specific protein kinase activity. Under similar assay conditions the normal c-abl gene products, murine P150c-abl and human P145c-abl, lacked detectable kinase activity. Reaction conditions were modified to identify conditions which would permit the detection of c-abl tyrosine kinase activity. It was found that the Formalin-fixed Staphylococcus aureus formerly used for immunoprecipitation inhibits in vitro abl kinase activity. In addition, the sodium dodecyl sulfate and deoxycholate detergents formerly used in the cell lysis buffer were found to decrease recovered abl kinase activity. The discovery of assay conditions for c-abl kinase activity now makes it possible to compare P150c-abl and P145c-abl kinase activity with the altered abl proteins P160v-abl and P210c-abl. Although all of the abl proteins have in vitro tyrosine kinase activity, they differ in the way they utilize themselves as substrates in vitro. Comparison of in vitro and in vivo tyrosine phosphorylation sites of the abl proteins suggests that they function differently in vivo. The development of c-abl kinase assay conditions should be useful in elucidating c-abl function.  相似文献   

2.
Antibodies against phosphotyrosine are a powerful tool with which to identify proteins phosphorylated on tyrosine residues, such as viral oncogene-encoded transforming proteins and their cellular protein substrates. Probed on human leukemia cell lines, phosphotyrosine antibodies recognized a 210,000-molecular-weight protein (p210) in K562 cells, a cell line derived from a Philadelphia (Ph)'-positive chronic myelogenous leukemia (CML), but recognized no protein in control Ph'-negative non-CML leukemia cells. The p210 protein was also recognized by antisera against v-abl-encoded polypeptides and displayed kinase activity, phosphorylating itself on tyrosine, in an immunocomplex kinase assay. These data are consistent with reported findings of the expression of a recombined bcr-abl gene in Ph'-positive CML cells, leading to the synthesis of an altered p210c-abl protein endowed with tyrosine kinase activity. Phosphotyrosine antibodies also detected the expression of the p210c-abl protein in fresh bone marrow cells harvested from CML patients in blast crisis. Besides the p210c-abl protein kinase, phosphotyrosine antibodies recognized other proteins with molecular weights of 110,000, 68,000, and 36,000 (p110, p68, and p36) in K562 cells. When [gamma-32P]ATP was added to nonionic detergent-extracted cells, these proteins became phosphorylated on tyrosine, as confirmed by phosphoamino acid analysis. A comparison with fibroblasts transformed by the v-abl, v-src, and v-fps oncogenes suggested the identity of the p36 protein with the common 36-kilodalton protein substrate of viral oncogene-encoded tyrosine kinases. Enhanced tyrosine phosphorylation of cellular proteins is thus a feature shared by cells transformed by v-abl and cells expressing a rearranged bcr-abl gene.  相似文献   

3.
Chronic myelogenous leukemia and one type of acute lymphoblastic leukemia are characterized by a 9;22 chronosome translocation in which 5' sequences of the bcr gene become fused to the c-abl proto-oncogene. The resulting chimeric genes encode bcr/abl fusion proteins which have deregulated tyrosine kinase activity and appear to play an important role in induction of these leukemias. A series of bcr/abl genes were constructed in which nested deletions of the bcr gene were fused to the c-abl gene. The fusion proteins encoded by these genes were assayed for autophosphorylation in vivo and for differences in subcellular localization. Our results demonstrate that bcr sequences activate two functions of c-abl; the tyrosine kinase activity and a previously undescribed microfilament-binding function. Two regions of bcr which activate these functions to different degrees have been mapped: amino acids 1 to 63 were strongly activating and amino acids 64 to 509 were weakly activating. The tyrosine kinase and microfilament-binding functions were not interdependent, as a kinase defective bcr/abl mutant still associated with actin filaments and a bcr/abl mutant lacking actin association still had deregulated kinase activity. Modification of actin filament functions by the bcr/abl tyrosine kinase may be an important event in leukemogenesis.  相似文献   

4.
R Dikstein  D Heffetz  Y Ben-Neriah  Y Shaul 《Cell》1992,69(5):751-757
The enhancers of several distinct viruses contain a common functional element, termed EP. This element binds ubiquitous cellular proteins and generates specific complexes in gel retardation analysis. Ultraviolet cross-linking and Southwestern analysis showed that a 140 kd polypeptide is the major EP DNA-binding protein. Using a combination of DNA binding and immunological techniques, we have identified the c-abl protein in a nuclear complex that binds to the EP element. abl was found to have both a specific and high affinity DNA binding activity. The ability to bind DNA is abolished in the mutant abl protein, p210bcr-abl, consistent with its cytoplasmic localization in chronic myelogenous leukemia.  相似文献   

5.
6.
We report our molecular characterization of the Drosophila melanogaster Abelson gene (abl), a gene in which recessive loss-of-function mutations result in lethality at the pupal stage of development. This essential gene consists of 10 exons extending over 26 kilobase pairs of genomic DNA. The DNA sequence encodes a protein of 1,520 amino acids with strong sequence similarity to the human c-abl proto-oncogene beginning in the type lb 5' exon and extending through the region essential for tyrosine kinase activity. When the tyrosine kinase homologous region was expressed in Escherichia coli, phosphorylation of proteins on tyrosine residues was observed with an antiphosphotyrosine antibody. These results show that the abl gene is highly conserved through evolution and encodes a functional tyrosine protein kinase required for Drosophila development.  相似文献   

7.
The Abelson gene in Drosophila (abl) consists of ten exons extending over 26 kb of genomic DNA. The DNA sequence encodes a protein of 1520 amino acids with sequence homology to the human c-abl proto-oncogene product, beginning at the amino terminus and extending 656 amino acids through the region essential for tyrosine kinase activity. Mutant lesions in the abl gene were identified first by their failure to complement chromosomal deletions that overlap the abl DNA sequence and then by rescue of the mutant phenotypes with an abl minigene in transgenic flies. Elimination of abl zygotic function by mutations produces some recessive lethality at the pharate adult pupal stage, and mutant adults with reduced longevity, reduced fecundity, and an irregular pattern of retinal cells.  相似文献   

8.
The v-abl protein of Abelson murine leukemia virus is a tyrosine-specific kinase. Its normal cellular homolog, murine c-abl, does not possess detectable tyrosine kinase activity in vitro. Previously, we have detected tyrosine kinase activity in vitro for an altered c-abl gene product (c-abl P210) in the K562 human chronic myelogenous leukemia cell line. The expression of this variant c-abl gene product correlates with chromosomal translocation and amplification of the c-abl gene in K562 cells. Like v-abl, c-abl P210 is a fusion protein containing non-abl sequences near the amino terminus of c-abl. We compared the in vitro tyrosine kinase activity of c-abl P210 with that of wild-type murine v-abl. The remarkable similarities of these two proteins with respect to cis-acting autophosphorylation, trans-acting phosphorylation of exogenous substrates, and kinase inhibition, using site-directed abl-specific antisera, suggested that c-abl P210 could function similarly to v-abl in vivo. In addition, c-abl P210 possessed an associated serine kinase activity in immunoprecipitates. The serine kinase activity was not inhibited by site-directed, abl-specific antisera that inhibit the tyrosine kinase activity, suggesting that the serine kinase activity is not an intrinsic property of c-abl P210. Thus, the activation of the c-abl gene in a human leukemia cell line may have functional consequences analogous to activation of the c-abl gene in Abelson murine leukemia virus.  相似文献   

9.
R Alitalo 《FEBS letters》1987,222(2):293-298
Tyrosine kinase activity is associated with the transforming potential of several oncogenes. Human chronic myeloid leukemia (CML) cells and cell lines have been shown to contain an active bcr-c-abl p210 tyrosine kinase as a consequence of the Philadelphia chromosomal translocation. In the present work the activity of the c-abl and c-src oncogene-encoded tyrosine kinase was investigated during phorbol diester (TPA) induced differentiation of the K562 CML cells. The high tyrosine kinase activity of p210bcr-c-abl is strongly reduced during the initial 24 h of TPA treatment. In contrast, the activity of the c-src tyrosine kinase is not changed. No change occurs in the expression of the c-abl-specific RNAs during this period. Following the reduction of bcr-c-abl kinase activity, cell proliferation is arrested and megakaryoblastic antigens appear on the cells. Sodium butyrate caused a slight decrease in growth rate and of bcr-c-abl kinase activity during erythroid differentiation whereas no changes in c-src or c-abl tyrosine kinase activities were seen in DMSO-treated control cells.  相似文献   

10.
11.
Chronic myelogenous leukemia (CML) is characterized by a translocation involving the c-abl protein-tyrosine kinase gene. A chimeric mRNA is formed containing sequences from a chromosome 22 gene (bcr) at its 5' end and all but the variable exon 1 of c-abl sequence. The product of this mRNA, p210bcr-abl, has constitutively high protein-tyrosine kinase activity. We examined K562 cells and other lines established from CML patients for the presence of phosphotyrosine (P-Tyr)-containing proteins which might be p210bcr-abl substrates. Two-dimensional gel separation of 32P-labeled proteins followed by phosphoamino acid analysis of 25 phosphoproteins, which comprised the major alkali-stable phosphoproteins, indicated that three related proteins of 41 kDa are the most prominent P-Tyr-containing proteins detected by this method. The 41-kDa phosphoproteins are found in two other CML lines that we examined but not in lines of similar lineage isolated from patients with distinct leukemic disease. A protein that comigrates with the major form of pp41 (pp41A) and contains P-Tyr is also found in murine fibroblasts and B-lymphoid cells transformed by Abelson murine leukemia virus, which encodes the v-abl protein, and in platelet-derived growth factor-treated fibroblasts, in which it has been described previously. We analyzed three pairs of Epstein-Barr virus-immortalized B-cell lines from individual CML patients and found that only the lines in which active p210bcr-abl was present contained detectable pp41. We also performed immunoblotting with anti-P-Tyr antibodies on the same CML cell lines and detected at least four other putative substrates of p210bcr-abl, which were undetected with use of the two-dimensional gel technique.  相似文献   

12.
W M Franz  P Berger    J Y Wang 《The EMBO journal》1989,8(1):137-147
The requirements for the oncogenic conversion of the c-abl proto-oncogene have been determined by the expression of N-terminal deleted forms and viral gag-fused forms of the c-abl proteins from a selectable retroviral vector. To activate the transforming potential of c-abl, it is necessary that (i) specific N-terminal amino acids are deleted to release the kinase from negative regulation in vivo; (ii) an N-terminal myristylation site is part of the activated kinase; (iii) the fatty-acylated, activated kinase is overproduced. The N-terminal amino acids found to be necessary for the cellular inhibition of c-abl tyrosine phosphorylation are part of a homologous region present in many non-receptor tyrosine kinases, the v-crk oncogene and phospholipase C-II. Overproduction of a deregulated and myristylated c-abl tyrosine kinase induces the transformation of NIH 3T3 cells.  相似文献   

13.
The c-abl proto-oncogene encodes a cytoplasmic tyrosine kinase which is homologous to the src gene product in its kinase domain and in the upstream kinase regulatory domains SH2 (src homology region 2) and SH3 (src homology region 3). The murine v-abl oncogene product has lost the SH3 domain as a consequence of N-terminal fusion of gag sequences. Deletion of the SH3 domain is sufficient to render the murine c-abl proto-oncogene product transforming when myristylated N-terminal membrane localization sequences are also present. In contrast, the human BCR/ABL oncogene of the Philadelphia chromosome translocation has an intact SH3 domain and its product is not myristylated at the N terminus. To analyze the contribution of BCR-encoded sequences to BCR/ABL-mediated transformation, the effects of a series of deletions and substitutions were assessed in fibroblast and hematopoietic-cell transformation assays. BCR first-exon sequences specifically potentiate transformation and tyrosine kinase activation when they are fused to the second exon of otherwise intact c-ABL. This suggests that BCR-encoded sequences specifically interfere with negative regulation of the ABL-encoded tyrosine kinase, which would represent a novel mechanism for the activation of nonreceptor tyrosine kinase-encoding proto-oncogenes.  相似文献   

14.
Viral transduction and chromosomal translocations of the c-abl gene result in the synthesis of abl proteins with structurally altered amino termini. These altered forms of the abl protein, but not the c-abl proteins, are detectably phosphorylated on tyrosine in vivo. In contrast, all forms of the abl protein are phosphorylated on serine following in vivo labeling with Pi. Treatment of NIH-3T3 cells with protein kinase C activators resulted in a four- to eightfold increase in the phosphorylation of murine c-abl due to modification of two serines on the c-abl protein. Purified protein kinase C phosphorylated all abl proteins at the same two sites. Both sites are precisely conserved in murine and human abl proteins. The sites on the abl proteins were found near the carboxy terminus. In contrast, for the epidermal growth factor receptor (T. Hunter, N. Ling, and J. A. Cooper, Nature [London] 311:480-483, 1984) and pp60src (K. L. Gould, J. R. Woodgett, J. A. Cooper, J. E. Buss, D. Shalloway, and T. Hunter, Cell 42:849-857, 1985), the sites of protein kinase C phosphorylation are amino-terminal to the kinase domain. The abl carboxy-terminal region is not necessary for the tyrosine kinase activity or transformation potential of the viral abl protein and may represent a regulatory domain. Using an in vitro immune complex kinase assay, we were not able to correlate reproducible changes in c-abl activity with phosphorylation by protein kinase C. However, the high degree of conservation of the phosphorylation sites for protein kinase C between human and mouse abl proteins suggests an important functional role.  相似文献   

15.
Hardy-Zuckerman 2 feline sarcoma virus (HZ2-FeSV), isolated from a multicentric feline fibrosarcoma is a replication-defective acute transforming feline retrovirus which originated by transduction of feline c-abl sequences with feline leukemia virus (FeLV) and is known to encode a 110-kilodalton gag-abl fusion protein with tyrosine-specific protein kinase activity (P. Besmer, W. D. Hardy, E. E. Zuckerman, P. J. Bergold, L. Lederman, and H. W. Snyder, Nature (London) 303:825-828, 1983). The nucleotide sequence of the abl segment in the HZ2-FeSV genome was determined and compared with the murine and human v-abl and c-abl sequences. The predicted transforming protein consists of 344 amino acids (aa) of FeLV gag origin, 439 aa of abl origin, and at least 200 aa of FeLV pol origin (p110gag-abl-pol). The 1,317-base-pair HZ2-FeSV v-abl segment (fv-abl) corresponds to 5' abl sequences which include the region known to specify the protein kinase domain. The 5' 189 base pairs of fv-abl correspond to 5' c-abl sequences not contained in Abelson murine leukemia virus (MuLV) v-abl. The mouse c-abl exon which contains these segments was identified, and its nucleotide sequence was determined. Comparison of the predicted amino acid sequence of fv-abl with those of Abelson MuLV v-abl and c-abl revealed five aa differences. The 5' junction between FeLV and abl was found to involve a preferred region in FeLV gag p30 (P. Besmer, J. E. Murphy, P. C. George, F. H. Qiu, P. J. Bergold, L. Lederman, H. W. Snyder, D. Brodeur, E. E. Zuckerman, and W. D. Hardy, Nature (London) 320:415-421, 1986). A six-base homology exists at the recombination site between the parental FeLV and the c-abl sequences. The 3' junction between fv-abl and FeLV pol predicts an in-frame fusion of fv-abl and FeLV pol. A transformed cell line containing a truncated gag-abl-pol protein, p85, that lacks most of the FeLV pol sequences was obtained by transfection of NIH 3T3 mouse cells. This result implies that the pol sequences of the p110gag-abl-pol protein are dispensable for fibroblast transformation. To assess whether the fv-abl segment specifies the unique biological properties of HZ2-FeSV, we constructed a Moloney MuLV-based version of HZ2-FeSV, Mo-MuLV(fv-abl), in which the fv-abl sequences were contained in a genetic context similar to that in HZ2-FeSV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Monoclonal antibodies to the p15 and p12 gag proteins were used to detect the P120gag-abl transforming protein of Abelson murine leukemia virus in nonproductively transformed normal rat kidney fibroblast cells. The results demonstrate that, in addition to the prominent plasma membrane location, P120gag-abl was associated with points of adhesion between the cell and the substratum. The localization of P120gag-abl was qualitatively similar to that reported for pp60src in the same normal rat kidney fibroblast cells and suggests that these transforming proteins may share some common transformation features.  相似文献   

17.
The mouse c-abl locus: molecular cloning and characterization   总被引:44,自引:0,他引:44  
J Y Wang  F Ledley  S Goff  R Lee  Y Groner  D Baltimore 《Cell》1984,36(2):349-356
The mouse c-abl gene, part of the sequence of which was captured in Moloney murine leukemia virus to generate the transforming gene (v-abl) of the Abelson murine leukemia virus, has been isolated and characterized. The c-abl locus spans 40 kb in the mouse genome with the v-abl homologies distributed in no less than ten clusters along 25 kb of the cloned DNA. Partial sequence of the v-abl homologous regions indicates that v-abl derived from c-abl mainly by splicing of multiple exons of the c-abl gene. The c-abl sequences can be subdivided into two regions: a tyrosine kinase coding sequence distributed among eight small clusters on the 5' end of the gene and a C-terminal portion consisting of one small and one large cluster, which are needed neither for the tyrosine kinase activity nor for the transforming ability of v-abl. Apparent exon/intron boundaries in the homologous kinase-coding regions of c-abl and c-src are at different locations.  相似文献   

18.
Molecular analysis of the human trk oncogene, a transforming gene isolated from a colon carcinoma biopsy, revealed the existence of a novel member of the tyrosine kinase gene family. This locus, which we now designate the trk proto-oncogene, codes for a protein of 790 amino acid residues that has several features characteristic of cell surface receptors. They include (i) a 32-amino-acid-long putative signal peptide, (ii) an amino-terminal moiety (residues 33 to 407) rich in consensus sites for N-glycosylation, (iii) a transmembrane domain, (iv) a kinase catalytic region highly related to that of other tyrosine kinases, and (v) a very short (15 residue) carboxy-terminal tail. Residues 1 to 392 were absent in the trk oncogene, as they were replaced by tropomyosin sequences. However, no other differences were found between the transforming and nontransforming trk alleles (residues 392 to 790), suggesting that no additional mutations are required to activate the transforming potential of this gene. The human trk proto-oncogene codes for a 140,000-dalton glycoprotein, designated gp140proto-trk. However, its primary translational product is a 110,000-dalton glycoprotein which becomes immediately glycosylated, presumably during its translocation into the endoplasmic reticulum. This molecule, designated gp110proto-trk, is further glycosylated to yield the mature form, gp140proto-trk. Both gp110proto-trk and gp140proto-trk proteins possess in vitro kinase activity specific for tyrosine residues. Finally, iodination of intact NIH 3T3 cells expressing trk proto-oncogene products indicated that only the mature form, gp140proto-trk, cross the plasma membrane, becoming exposed to the outside of the cell. These results indicate that the product of the human trk locus is a novel tyrosine kinase cell surface receptor for an as yet unknown ligand.  相似文献   

19.
J B Konopka  S M Watanabe  O N Witte 《Cell》1984,37(3):1035-1042
The v-abl protein is known to be a tyrosine-specific protein kinase. However, its normal cellular homolog, c-abl P150, is not detectably phosphorylated on tyrosine in vivo or in vitro. The lack of associated tyrosine kinase activity for the c-abl protein seems paradoxical since it is the c-abl-derived sequences of the v-abl protein that encode the kinase activity. We have detected an altered human c-abl protein (P210) with associated tyrosine kinase activity in the K562 leukemia cell line. K562 cells are known to have a 9:22 chromosomal translocation involving the c-abl locus and have amplified the c-able gene 4 to 8 fold. The altered P210 human c-abl is serologically and structurally related to the normal c-abl protein. A structural alteration of the human c-abl protein. K562 cells may have unmasked its associated tyrosine kinase activity. This altered c-abl protein may have important implications for a mechanism of activation of this oncogene.  相似文献   

20.
The neu oncogene was originally identified in cell lines derived from rat neuroectodermal tumors. neu is related to but distinct from the c-erbB gene, which encodes the epidermal growth factor (EGF) receptor. neu encodes a protein, designated p185, that is serologically related to the EGF receptor. Identification of the normal homolog of p185 encoded by the neu proto-oncogene enabled us to compare the product of the neu proto-oncogene with the mutated version specified by the neu oncogene and with the EGF receptor. The normal form of p185 was structurally similar to its transforming counterpart, indicating that activation of the neu oncogene did not cause major structural alterations in the gene product. Both normal and transforming forms of p185 were associated with tyrosine kinase activity, supporting the idea that normal p185 functions as a growth factor receptor. p185 differed both structurally and functionally from the EGF receptor. p185 and the EGF receptor had distinct electrophoretic mobilities when synthesized under normal culture conditions or in the presence of tunicamycin. EGF did not stimulate increased turnover of p185 and did not bind quantitatively to p185. A number of other growth factors failed to stimulate degradation of p185 or tyrosine phosphorylation of p185 and are therefore unlikely to be ligands for p185.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号