首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proteinases in the midguts of three scarab white grub species, Lepidiota noxia, L. negatoria, and Antitrogus consanguineus, were investigated to classify the proteinases present and to determine the most effective proteinase inhibitor for potential use as an insect control agent. pH activity profiles indicated the presence of serine proteinases and the absence of cysteine proteinases. This was confirmed by the lack of inhibition by specific cysteine proteinase inhibitors. Trypsin, chymotrypsin, elastase, and leucine aminopeptidase activities were detected by using specific synthetic substrates. A screen of 32 proteinase inhibitors produced 9 inhibitors of trypsin, chymotrypsin, and elastase which reduced proteolytic activity by greater than 75%. © 1995 Wiley-Liss, Inc.  相似文献   

2.
The major proteinase activities in the larval midgut of a common poplar tree borer, Anoplophora glabripennis, were characterised. Overall digestive capacity, as measured by casein hydrolysis, showed a pH optimum between 10 and 11.5, suggestive of serine endopeptidase activity. Trypsin, chymotrypsin, and chymotrypsin-like activities were detected using specific p-nitroanilide synthetic substrates and by use of specific serine endopeptidase inhibitors. These activities also showed pH optima in the extreme alkaline range. The absence of cysteine, aspartic, and metallo-endopeptidases were confirmed using class specific proteinase inhibitors. The dominant exopeptidase in the midgut is leucine aminopeptidase with a pH optimum of 7–9. Carboxypeptidase a and b activity were barely detectable. A large range of serine endopeptidase inhibitors were screened and were found to vary widely in their ability to inhibit casein hydrolysis. Potato proteinase inhibitor 1 (a chymotrypsin inhibitor) and wheat-germ trypsin inhibitor 1 inhibited particularly effectively in tandem and represent possible candidates for gene transformation to produce plants tolerant to this pest. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Digestive proteinases and carbohydrases of Ectomyelois ceratoniae (Zeller) larvae were investigated using appropriate substrates and inhibitors. Midgut pH in larvae was determined to be slightly alkaline. Midgut extracts showed optimum activity for proteolysis of hemoglobin at pH 9–12. Midgut proteinases also hydrolyzed the synthetic substrates of trypsin, chymotrypsin, and elastase at pH 8–11. Maximum digestive α-amylase activity was also observed at pH 8–11. However, optimum activity for α- and β-glucosidase occurred at pH 5–8. Alpha- and β-galactosidases optimum activities occurred at pH 5 and pH 6, respectively. Inhibitors of serine proteases were effective on midgut serine proteases (trypsin and chymotrypsin proteases). Zymogram analyses revealed at least five bands of total proteolytic activity in the larval midgut. Protease-specific zymogram analyses revealed at least four, two, and one isozymes for trypsin-, chymotrypsin-, and elastase-like activities respectively. Two α-amylase isozymes were found in the midgut of fifth instar larvae and in the whole bodies of 1st through 5th instar larvae. Zymogram studies also revealed the presence of one and two bands of activity for β- and α-glucosidase, respectively. Recycling of α-amylase and proteases in the larval midgut was not complete. At least one isozyme of trypsin, chymotrypsin, elastase, and α-amylase were not recycled and were observed in the larval hindgut.  相似文献   

4.
Abstract  The protein digestive capability of the larvae of the longhorn beetle ( Oemona hirta , Coleoptera: Cerambycidae, Fabricius, 1775) was investigated. This species feeds only on wood where there is a high proportion of vascular tissue. The pH of the midgut, the major digestive organ, was alkaline and protein hydrolysis was maximal at alkaline pH. Use of specific synthetic peptide substrates showed that the major protease activities were the endopeptidases, trypsin and chymotrypsin-like activity, and the exopeptidase, leucine aminopeptidase and the pH curves corresponded to that with protein substrate. Studies using a range of serine protease inhibitors as well as specific inhibitors of metalloproteases, cysteine proteases and aspartate proteases confirmed a serine protease-based digestive system similar to earlier reports of sapwood-feeding Cerambycids. Control of these insect pests using protease inhibitors is discussed.  相似文献   

5.
Larval midgut extracts from the noctuid Sesamia nonagrioides Lef. were assayed for protease activity. Total proteolytic activity, as measured by azocasein hydrolysis, showed a pH optimum in the range 10.0 to 11.5, suggesting a digestive system based largely on serine-like proteases. The ability of midgut extracts to hydrolyze specific synthetic substrates, the elucidation of the pH at which maximal hydrolysis occurs, and their sensitivity to protease inhibitors confirmed the presence of the serine endoproteases: trypsin, chymotrypsin, and elastase; and the exopeptidases: carboxypeptidase A, carboxypeptidase B, and leucine aminopeptidase. The distribution of these digestive proteases along the gut sections and among the different midgut regions was examined. All types of endoproteases and exopeptidases were mainly located in the midgut, with less than 5% of the activity in the foregut and hindgut. When the two halves of the midgut were compared, all proteolytic activities were higher in the anterior portion of the midgut. Trypsin, chymotrypsin, elastase, and carboxypeptidase B activities were mainly located in the endoperitrophic space of the midgut, with some activity in the ectoperitrophic space, whereas aminopeptidase and carboxypeptidase A activities were preferentially located in the midgut epithelium. © 1996 Wiley-Liss, Inc.  相似文献   

6.
《Insect Biochemistry》1989,19(3):221-231
The major proteases of the grass grub (Costelytra zealandica) larval midgut have been identified, partially purified and characterized. Identification was made initially on the basis of hydrolysis of synthetic substrates (blocked and partially blocked esters and amides of specific amino acids), thus classifying the activities into different classes of endo- and exopeptidases. A range of inhibitors specific to different classes of proteases were used to confirm the presence of trypsin, chymotrypsin, elastase, leucine aminopeptidase and carboxypeptidases A and B and to establish the absence of thiol- and metallo-endopeptidases. The dominant endopeptidase in the midgut is trypsin, which is present in four forms, distinguishable by net charge, but indistinguishable either in terms of Michaelis-Menten parameters (Km and kcat) or in molecular weight (23,000). The pH optimum lies between pH 9–10. Leucine aminopeptidase has a molecular weight of 91,000 and a pH optimum at pH 8.0. Carboxypeptidase A has a molecular weight of 43,000 and a pH optimum at pH 8.5. All enzymes retained substantial activity at pH 7.0–7.1, the pH of the midgut lumen, where the bulk of the activity was located. Protease levels in the hindgut (or fermentation sac) were 1–5% of those in the midgut. The range of enzymes appears sufficient for complete breakdown of ingested protein.  相似文献   

7.
Three variants of a chymotrypsin-like protease were purified from scallop digestive glands successively by ion-exchange, gel filtration and high-performance liquid chromatographies. Enzyme activity was detected using succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as a specific synthetic substrate for chymotrypsin. This proteinase was inhibited by chymostatin, diisopropylfluorophosphate and phenylmethylsulfonyl fluoride. Estimated molecular mass of the purified enzyme is around 32 kDa. These isoenzymes exhibit very low activities in hydrolyzing small synthetic specific substrates used for trypsic, elastolytic and collagenolytic measurements and referred mainly to a chymotrypsin-like proteinase. Very few differences were measured concerning pH profiles among the three isoenzymes. Stability is higher at low temperature for two variants. An N-terminal analysis was performed on one variant (B) among the three isoenzymes. The alignment of the N-terminal amino acid sequence indicates some homologies with abalone chymotrypsin-like protein and arthropod chymotrypsin proteases as well as with vertebrate serine protease counterparts (trypsin, chymotrypsin and elastase).  相似文献   

8.
Using gel filtration through Sephadex G-100 and bioaffinity chromatography on contrical-Sepharose, cathepsin G and elastase were isolated from pig peripheral blood neutrophil granules and purified to homogeneity. Both enzymes hydrolyzed the total histone from calf thymus as well as synthetic substrates--tert-butoxy-L-alanine p-nitrophenyl ester (elastase) and benzoyltyrosine ethyl ester (cathepsin G). The use of natural and synthetic protease inhibitors showed that both enzymes were related to the group of serine proteases. The molecular mass of the cathepsin G subunit as determined by SDS polyacrylamide gel electrophoresis is 28-29 kD, that of elastase--30-31 kD. The pH optima for the hydrolysis of proteinaceous and synthetic substrates for cathepsin G and elastase are 8.0-8.5 and 7.0-7.5, respectively. The isoelectric points for elastase and cathepsin G are 9.7-10.0 and greater than 10, respectively; the temperature optima--30-40 degrees C and 50-60 degrees C, respectively. The amino acid composition of the two enzymes from pig granulocytes revealed a high content of arginine and was similar to that of human granulocytes.  相似文献   

9.
Protease inhibitors cause mortality in a range of insects, and transgenic plants expressing protease inhibitors have been protected against pest attack, particularly internal feeders that are not amenable to control by conventional means. A study of luminal proteases in Conogethes punctiferalis Guenée was performed to identify potential targets for proteinaceous biopesticides, such as protease inhibitors. The midgut protease profile of the gut lumen from C. punctiferalis was studied to determine the conditions for optimal protein hydrolysis. Optimum conditions for peptidase activity were found to be in 50 mm Tris-HCl, pH 10 containing 20 mm CaCl2; incubation for 30 min at 40 degrees C. Four synthetic substrates, i.e. benzoyl-arg-p-nitroanilide, benzoyl-tyr-p-nitroanilide, succinyl-ala-ala-pro-leu-p-nitroanilide (SAAPLpNA) and leu-p-nitroanilide were hydrolysed by C. punctiferalis gut proteases in Tris-HCl buffer pH 10. Trypsin and elastase-like chymotrypsin were the prominent digestive proteases, and age-related modulation of midgut proteases existed for trypsin, chymotrypsin, elastase-like chymotrypsin and leucine aminopeptidase. Serine protease inhibitors such as aprotinin, soybean trypsin inhibitor and phenylmethanesulfonyl fluoride inhibited peptidase activity. Some metal ions such as Ca(2+), Mg(2+), Pb(2+) and Co(2+) enhanced BApNA-ase activity whereas others like Mn(2+), Zn(2+), Cu(2+), Fe(2+) and Hg(2+) were inhibitory at 6 mm concentration. Trypsin and elastase-like chymotrypsin were significantly inhibited by 94% and 29%, respectively, by aprotinin (150 nm) under in vitro conditions. A possible incorporation of protease inhibitors into transgenic plants is discussed.  相似文献   

10.
The interactions of mouse murinoglobulin and alpha-macroglobulin with several proteinases were investigated by filtration and by assays of amidolytic activity towards synthetic substrates in the presence of proteinaceous enzyme inhibitors as well as assays of the inhibition of proteolytic activity. Mouse alpha-macroglobulin formed complexes with thrombin, clotting factor Xa, plasmin, pancreatic kallikrein, plasma kallikrein, submaxillary gland trypsin-like proteinase, neutrophil elastase, and pancreatic elastase. These complexes lost the proteolytic activities against high-molecular-weight substrates, but protected the active sites of the enzymes from inactivation by their proteinaceous inhibitors. Mouse murinoglobulin showed essentially the same properties except (i) that it did not form a complex with the clotting factor Xa, and (ii) that it did not protect plasma kallikrein, neutrophil elastase or submaxillary proteinase from inactivation by their proteinaceous inhibitors, although it formed complexes with these proteinases. No interaction was detected between Clostridium histolyticum collagenase and murinoglobulin or alpha-macroglobulin. These results indicate (i) that murinoglobulin has a proteinase-binding spectrum similar to that of alpha-macroglobulin, but is weaker in the ability to protect the bound proteinases from inactivation by the proteinaceous inhibitors than alpha-macroglobulin and (ii) that mouse alpha-macroglobulin has essentially the same inhibitory spectrum as the human homologue.  相似文献   

11.
Sperm binding to the vitelline envelope in dejellied Xenopus laevis eggs was effectively inhibited by inhibitors for trypsin (soybean trypsin inhibitor and p-toluenesulfonyl-L-lysine chloroethyl ketone) and aminopeptidase B (o-phenanthroline, bestatin, and arphamenine B). Likewise, synthetic 4-methylcoumaryl-7-amide (MCA) substrates (t-butoxycarbonyl-GlyArgArg-MCA, benzyloxycarbonyl-ArgArg-MCA, and Arg-MCA) inhibited binding. Consistently, when jellied eggs were inseminated in the presence of these substrates or inhibitors for proteases, fertilization was effectively blocked. The medium in which live sperm or the sperm membrane fraction were suspended exhibited hydrolyzing activities against the synthetic substrates mentioned above, and these activities were effectively inhibited by the protease inhibitors. Ultracentrifugal fractionation of the sperm suspension following induction of the acrosome reaction by a calcium ionophore, A23187, indicated that a considerable amount of the total tryptic and aminopeptidase B activity was released into the medium. On this occasion, part of the tryptic and aminopeptidase B activity was definitely estimated to be discharged in association with a vesiculated membrane, supporting the notion that the proteases involved in binding to the vitelline envelope are present on the sperm plasma membrane.  相似文献   

12.
Protease activities of rumen protozoa.   总被引:3,自引:1,他引:2       下载免费PDF全文
Intact, metabolically active rumen protozoa prepared by gravity sedimentation and washing in a mineral solution at 10 to 15 degrees C had comparatively low proteolytic activity on azocasein and low endogenous proteolytic activity. Protozoa washed in 0.1 M potassium phosphate buffer (pH 6.8) at 4 degrees C and stored on ice autolysed when they were warmed to 39 degrees C. They also exhibited low proteolytic activity on azocasein, but they had a high endogenous proteolytic activity with a pH optimum of 5.8. The endogenous proteolytic activity was inhibited by cysteine proteinase inhibitors, for example, iodoacetate (63.1%) and the aspartic proteinase inhibitor, pepstatin (43.9%). Inhibitors specific for serine proteinases and metalloproteinases were without effect. The serine and cysteine proteinase inhibitors of microbial origin, including antipain, chymostatin, and leupeptin, caused up to 67% inhibition of endogenous proteolysis. Hydrolysis of casein by protozoa autolysates was also inhibited by cysteine proteinase inhibitors. Some of the inhibitors decreased endogenous deamination, in particular, phosphoramidon, which had little inhibitory effect on proteolysis. Protozoal and bacterial preparations exhibited low hydrolytic activities on synthetic proteinase and carboxypeptidase substrates, although the protozoa had 10 to 78 times greater hydrolytic activity (per milligram of protein) than bacteria on the synthetic aminopeptidase substrates L-leucine-p-nitroanilide, L-leucine-beta-naphthylamide, and L-leucinamide. The aminopeptidase activity was partially inhibited by bestatin. It was concluded that cysteine proteinases and, to a lesser extent, aspartic proteinases are primarily responsible for proteolysis in autolysates of rumen protozoa. The protozoal autolysates had high aminopeptidase activity; low deaminase activity was observed on endogenous amino acids.  相似文献   

13.
Intact, metabolically active rumen protozoa prepared by gravity sedimentation and washing in a mineral solution at 10 to 15 degrees C had comparatively low proteolytic activity on azocasein and low endogenous proteolytic activity. Protozoa washed in 0.1 M potassium phosphate buffer (pH 6.8) at 4 degrees C and stored on ice autolysed when they were warmed to 39 degrees C. They also exhibited low proteolytic activity on azocasein, but they had a high endogenous proteolytic activity with a pH optimum of 5.8. The endogenous proteolytic activity was inhibited by cysteine proteinase inhibitors, for example, iodoacetate (63.1%) and the aspartic proteinase inhibitor, pepstatin (43.9%). Inhibitors specific for serine proteinases and metalloproteinases were without effect. The serine and cysteine proteinase inhibitors of microbial origin, including antipain, chymostatin, and leupeptin, caused up to 67% inhibition of endogenous proteolysis. Hydrolysis of casein by protozoa autolysates was also inhibited by cysteine proteinase inhibitors. Some of the inhibitors decreased endogenous deamination, in particular, phosphoramidon, which had little inhibitory effect on proteolysis. Protozoal and bacterial preparations exhibited low hydrolytic activities on synthetic proteinase and carboxypeptidase substrates, although the protozoa had 10 to 78 times greater hydrolytic activity (per milligram of protein) than bacteria on the synthetic aminopeptidase substrates L-leucine-p-nitroanilide, L-leucine-beta-naphthylamide, and L-leucinamide. The aminopeptidase activity was partially inhibited by bestatin. It was concluded that cysteine proteinases and, to a lesser extent, aspartic proteinases are primarily responsible for proteolysis in autolysates of rumen protozoa. The protozoal autolysates had high aminopeptidase activity; low deaminase activity was observed on endogenous amino acids.  相似文献   

14.
The intestinal fluid of Locusta migratoria was purified by ionexchange chromatography on a DEAE-cellulose column. Four fractions (PI–PIV) with endopeptidase activity have been obtained and characterized in further studies. All proteolytic fractions were found to react with PMSF. Therefore, they seem to be typical serine proteases. Two of them, PI and PIV, resemble bovine trypsin and bovine chymotrypsin, respectively. These proteases hydrolyse the B-chain of oxidized insulin and the synthetic substrates BTEE,2 APNE and BAEE, BANA with a specificity very similar to the bovine enzymes. Moreover, they show similar inhibition characteristics and pH activity profiles. Their molecular weights were found to be 17,000 and 18,200, respectively, according to gel filtration. Fraction PIII did not hydrolyse any of the applied synthetic substrates, PII was active only with GluPNA. The pH optima of these enzymes lay near neutrality. Their molecular weights were found to be 27,000 and 32,000, respectively. Probably they belong to a type of proteases hitherto scarcely described and not to be found in vertebrates.  相似文献   

15.
An electrophoretically homogeneous trypsin-like proteinase, two homogeneous proteases (presumably metal-containing) and two elastases, possessing the ATEE-esterase activity, were isolated from protofradin, a protease preparation from Actinomyces fradiae 119, using fractionation on KM-cellulose K-32. The trypsin like proteinase of protofradin possesses the esterase activity, equal to the activity of pancreatic trypsin. Protofradin elastases differ in their pH optima, response to EDTA, stability upon storage and the degree of elastin hydrolysis. The specificity of elastase is probably the same, since in elastin both enzymes hydrolyze the peptide bonds, formed by the NH2-group of glycine and alanine residues, found in elastin in large amounts. The end products of elastin hydrolysis are tripeptides.  相似文献   

16.
Membrane-bound alkaline proteases from the midgut epithelia of the silkworm, Bombyx mori, were solubilized with 1% Lubrol-WX, at pH 11.2. They were purified by gel filtration on Sepharose 6B and Ultrogel AcA-202 columns and a preparative polyacrylamide gel electrophoresis. Two proteases, caseinolytic (6B3-Tc) and benzoyl-arginine-p-nitroanilide-lytic (6B3-Tb) were obtained. Both enzymes were homogeneous as judged by polyacrylamide electrophoresis. These enzymes showed high pH optima, 11.2, and pI values, above 11, and were extremely stable over a wide range of pH. The Km values for 6B3-Tb and Tc were 0.476 mM and 2.5 mg/ml respectively. Hammarsten casein and mulberry leaf protein were rapidly hydrolyzed by Tc, whereas the hydrolytic activity of Tb for Azocoll was higher than that of Tc. The protease Tb was strongly inhibited by diisopropylfluorophosphate, p-chloromercuribenzoate, benzamidine, leupeptin, and soybean trypsin inhibitor; Tc was inhibited by diisopropylfluorophosphate, tosyl phenylalanine chloromethylketone and chymostatin, but not by tosyl lysine chloromethylketone, p-chloromercuribenzoate, or iodoacetamide. The molecular weights of the proteases were estimated to be 12,800 (Tb) and 13,300 (Tc) by Sephacryl S-300 gel filtration. The amino acid analyses showed that both proteases contain a large number of acidic amino acids but a relatively small number of basic amino acids.  相似文献   

17.
Two serine proteinases from the midgut of Helicoverpa armigera have been partially purified and characterized. One proteinase, HGP-1, was capable of hydrolyzing a synthetic substrate of elastase and was inhibited by elastatinal. The second proteinase, HGP-2, was inhibited by a trypsin inhibitor. Molecular weights of HGP-1 and HGP-2 were approximately 26.0 and 29.0kDa, respectively. Both the proteinases exhibited alkaline pH optima in the range of 10-11. Furthermore, interaction of HGP-1 and HGP-2 with proteinase inhibitors (PIs) from host and non-host plants was studied. HGP-1 was not only insensitive to a PI from chickpea (host) but was also able to degrade it. The same PI from chickpea was able to inhibit over 50% activity of HGP-2. On the contrary, PIs from potato (non-host) showed strong inhibition of both, HGP-1 and HGP-2 and also demonstrated protection of chickpea seed proteins from digestion by both the HGPs. These results could provide important clues in designing strategies for sustainable use of plant PIs in developing insect-tolerant transgenic plants.  相似文献   

18.
Porcine pancreatic hydrolases in juice and homogenate surveyed by electrophoretic separation in agarose gel, at pH 8.6 and subsequently characterized using substrates of various specificity, either directly in the gel or after transfer to nitrocellulose (enzymoblotting) showed: Anodal and cathodal trypsin with Bz-Arg-pNA. Chymotrypsin A, B, and C with similar, but not identical, activities to Suc-Ala-Ala-Pro-Phe-pNA, Bz-Tyr-pNA, Suc-Phe-pNA and Ac-Phe-beta NE and with differences in their molecular weights and electrophoretical charges. Elastase I and protease E with Suc-(Ala)3-pNA and MeO-Suc-Ala-Ala-Pro-Val-pNA and elastase I also with elastin. Elastase II with the chymotrypsin substrates and with elastin. Carboxypeptidase A with CN-Phe. Amylase with blue starch polymer.  相似文献   

19.
Eleven proteinase activity bands were detected in American cockroach (Periplaneta americana) gut. These were partially purified and characterized using a gel X-ray film contact print method. Cockroach gut proteinases (CGPs) show activity over a broad range of pH with maximum activity between pH 6 and 10, and optimal activity at 50-70 degrees C. CGPs were partially purified by preparative gel electrophoresis and analyzed using synthetic substrates and inhibitors. Four of the proteases exhibited chymotrypsin-like (C1 to C4) activity and seven trypsin-like (T1 to T7) activity. Accuracy of the gel X-ray film contact print method is confirmed by including bovine chymotrypsin in CGP analysis. Inhibition of CGPs with different plant proteinaceous proteinase inhibitors allowed identification of potential CGP inhibitors. Our results imply that presence of several CGP activity bands, and their stability and activity over a broad pH and temperature range might contribute to adaptation of P. americana to extreme environmental conditions and the polyphagous nature of the species.  相似文献   

20.
Insect midgut proteases are excellent targets for insecticidal agents such as Bacillus thuringiensis Cry toxins and protease inhibitors. The midgut proteases of Achaea janata have been characterized and Casein zymograms indicated at least five distinct activities corresponding to approx 17, 20, 29 and 80, and 90 kDa. Using a combination of synthetic substrates and specific inhibitors in casein zymograms, photometric assays and activity blots, three trypsin-like and one elastase-like serine proteases were identified but no chymotrypsin-like activity. Various proteinase inhibitors displayed differential inhibitory effects towards the midgut proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号