首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Cell host & microbe》2022,30(1):97-109.e5
  1. Download : Download high-res image (151KB)
  2. Download : Download full-size image
  相似文献   

2.
3.
《Cell host & microbe》2022,30(4):485-488.e3
  1. Download : Download high-res image (169KB)
  2. Download : Download full-size image
  相似文献   

4.
《Cell》2023,186(11):2392-2409.e21
  1. Download : Download high-res image (215KB)
  2. Download : Download full-size image
  相似文献   

5.
BackgroundSince universal vaccinations represents the most effective strategy to mitigate coronavirus disease 2019 (COVID-19), baseline assessment and post-vaccine monitoring of anti-SARS-CoV-2 neutralizing antibodies are essential to vaccination programs. Therefore, this study aimed to compare data of five commercial anti-SARS-CoV2 immunoassays after administration of an mRNA vaccine.MethodsVenous blood was collected from three healthcare workers, receiving a double (30 g) dose of BNT162b2 mRNA Covid-19 vaccine (Comirnaty, Pfizer), on the day of the first vaccine dose and then at fixed intervals for the following 2 months. Anti-SARS-CoV-2 neutralizing antibody response was assayed with Roche Total Ig anti-RBD (receptor binding domain), DiaSorin TrimericS IgG (spike trimer), Beckman Coulter IgG anti-RBD, SNIBE IgG anti-RBD and Technogenetics IgG anti-N/S1.ResultsA total number of 45 samples were drawn at the end of the 2-month study period. The Spearman''s correlations of absolute anti-SARS-CoV-2 antibodies were always excellent (all p<0.001), comprised between 0.967-0.994. Satisfactory results were also observed when absolute antiSARS-CoV-2 antibodies values of the five methods were compared with the mean consensus value, with correlations always higher than 0.979 (all p<0.001). The agreement of anti-SARS-CoV-2 antibodies positivity versus the consensus median positivity ranged between 0.764 and 1.000 (always p<0.001), but become always >0.900 after readjustment of one assay cutoff.ConclusionsAll the immunoassays evaluated in this study appear suitable for monitoring anti-SARS-CoV-2 neutralizing antibodies response in subjects undergoing mRNA COVID-19 vaccination.  相似文献   

6.
7.
In-depth analysis of SARS-CoV-2 quasispecies is pivotal for a thorough understating of its evolution during infection. The recent deployment of COVID-19 vaccines, which elicit protective anti-spike neutralizing antibodies, has stressed the importance of uncovering and characterizing SARS-CoV-2 variants with mutated spike proteins. Sequencing databases have allowed to follow the spread of SARS-CoV-2 variants that are circulating in the human population, and several experimental platforms were developed to study these variants. However, less is known about the SARS-CoV-2 variants that are developed in the respiratory system of the infected individual. To gain further insight on SARS-CoV-2 mutagenesis during natural infection, we preformed single-genome sequencing of SARS-CoV-2 isolated from nose-throat swabs of infected individuals. Interestingly, intra-host SARS-CoV-2 variants with mutated S genes or N genes were detected in all individuals who were analyzed. These intra-host variants were present in low frequencies in the swab samples and were rarely documented in current sequencing databases. Further examination of representative spike variants identified by our analysis showed that these variants have impaired infectivity capacity and that the mutated variants showed varied sensitivity to neutralization by convalescent plasma and to plasma from vaccinated individuals. Notably, analysis of the plasma neutralization activity against these variants showed that the L1197I mutation at the S2 subunit of the spike can affect the plasma neutralization activity. Together, these results suggest that SARS-CoV-2 intra-host variants should be further analyzed for a more thorough characterization of potential circulating variants.  相似文献   

8.
9.
10.
BACKGROUND:Patients receiving in-centre hemodialysis are at high risk of exposure to SARS-CoV-2 and death if infected. One dose of the BNT162b2 SARS-CoV-2 vaccine is efficacious in the general population, but responses in patients receiving hemodialysis are uncertain.METHODS:We obtained serial plasma from patients receiving hemodialysis and health care worker controls before and after vaccination with 1 dose of the BNT162b2 mRNA vaccine, as well as convalescent plasma from patients receiving hemodialysis who survived COVID-19. We measured anti–receptor binding domain (RBD) immunoglobulin G (IgG) levels and stratified groups by evidence of previous SARS-CoV-2 infection.RESULTS:Our study included 154 patients receiving hemodialysis (135 without and 19 with previous SARS-CoV-2 infection), 40 controls (20 without and 20 with previous SARS-CoV-2 infection) and convalescent plasma from 16 patients. Among those without previous SARS-CoV-2 infection, anti-RBD IgG was undetectable at 4 weeks in 75 of 131 (57%, 95% confidence interval [CI] 47% to 65%) patients receiving hemodialysis, compared with 1 of 20 (5%, 95% CI 1% to 23%) controls (p < 0.001). No patient with nondetectable levels at 4 weeks developed anti-RBD IgG by 8 weeks. Results were similar in non-immunosuppressed and younger individuals. Three patients receiving hemodialysis developed severe COVID-19 after vaccination. Among those with previous SARS-CoV-2 infection, median anti-RBD IgG levels at 8 weeks in patients receiving hemodialysis were similar to controls at 3 weeks (p = 0.3) and to convalescent plasma (p = 0.8).INTERPRETATION:A single dose of BNT162b2 vaccine failed to elicit a humoral immune response in most patients receiving hemodialysis without previous SARS-CoV-2 infection, even after prolonged observation. In those with previous SARS-CoV-2 infection, the antibody response was delayed. We advise that patients receiving hemodialysis be prioritized for a second BNT162b2 dose at the recommended 3-week interval.

Patients with end-stage kidney disease receiving incentre hemodialysis have been uniquely vulnerable during the COVID-19 pandemic. For these patients, unlike for most other people, self-isolation to avoid exposure to SARS-CoV-2 is impossible. Most patients receiving hemodialysis must leave their homes 3 times weekly to receive their life-saving treatments, often in shared spaces for hours at a time. COVID-19 case fatality rates are 20%–30% for patients receiving hemodialysis —10 times higher than in the general population.1,2 Advanced age, multiple comorbidities and blunted immune response likely all contribute to the high COVID-19 death rates in this population. Some hemodialysis centres have thus prioritized these patients for vaccination.To facilitate wider vaccine distribution during current shortages, 3 the National Advisory Committee on Immunization of Canada has recommended delaying the second dose of the BNT162b2 vaccine from 3 to 16 weeks.4 In a randomized controlled trial (RCT), the clinical efficacy of the BNT162b2 was reported to be greater than 80% at 3 weeks after the first dose.5 However, no patients receiving hemodialysis were enrolled in this trial.5 Patients with end-stage kidney disease receiving hemodialysis often have impairments in both humoral and cellular immune responses6 and are noted to have lower antibody responses to other vaccines.7 Whether patients receiving hemodialysis develop robust immune responses after vaccination against SARS-CoV-2 remains uncertain.8 Data are required to better inform Canadian public health policy on whether second doses of vaccine can be safely delayed in this population.Usually, once clinical trials are completed, antibody levels can be used as surrogate measures of vaccine efficacy, such as with hepatitis B9 and influenza.10 With respect to the novel coronavirus SARS-CoV-2, although there is increasing understanding of the antibodies that best correlate with viral neutralization and T-cell responses,11,12 assays vary from laboratory to laboratory and as yet there are no internationally accepted standards defining what antibody levels constitute immunity.13 The only way to evaluate vaccine efficacy using antibody levels, therefore, is through direct experimental comparison with controls who are known to reliably develop immunity after vaccination (i.e., healthy individuals similar to those enrolled in the RCT showing vaccine efficacy5) or who have developed immunity after natural infection (i.e., survivors of COVID-19).We sought to determine whether short-term antibody responses after a single dose of the BNT162b2 mRNA vaccine are comparable between patients receiving hemodialysis and healthy individuals, and how this compares with antibody responses in patients receiving hemodialysis who survived natural infection with SARS-CoV-2.  相似文献   

11.
Background:Differences in immunogenicity between mRNA SARS-CoV-2 vaccines have not been well characterized in patients undergoing dialysis. We compared the serologic response in patients undergoing maintenance hemodialysis after vaccination against SARS-CoV-2 with BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna).Methods:We conducted a prospective observational cohort study at 2 academic centres in Toronto, Canada, from Feb. 2, 2021, to July 20, 2021, which included 129 and 95 patients who received the BNT162b2 and mRNA-1273 SARS-CoV-2 vaccines, respectively. We measured SARS-CoV-2 immunoglobulin G antibodies to the spike protein (anti-spike), receptor binding domain (anti-RBD) and nucleocapsid protein (anti-NP) at 6–7 and 12 weeks after the second dose of vaccine and compared those levels with the median convalescent serum antibody levels from 211 controls who were previously infected with SARS-CoV-2.Results:At 6–7 weeks after 2-dose vaccination, we found that 51 of 70 patients (73%) who received BNT162b2 and 83 of 87 (95%) who received mRNA-1273 attained convalescent levels of anti-spike antibody (p < 0.001). In those who received BNT162b2, 35 of 70 (50%) reached the convalescent level for anti-RBD compared with 69 of 87 (79%) who received mRNA-1273 (p < 0.001). At 12 weeks after the second dose, anti-spike and anti-RBD levels were significantly lower in patients who received BNT162b2 than in those who received mRNA-1273. For anti-spike, 70 of 122 patients (57.4%) who received BNT162b2 maintained the convalescent level versus 68 of 71 (96%) of those who received mRNA-1273 (p < 0.001). For anti-RBD, 47 of 122 patients (38.5%) who received BNT162b2 maintained the anti-RBD convalescent level versus 45 of 71 (63%) of those who received mRNA-1273 (p = 0.002).Interpretation:In patients undergoing hemodialysis, mRNA-1273 elicited a stronger humoral response than BNT162b2. Given the rapid decline in immunogenicity at 12 weeks in patients who received BNT162b2, a third dose is recommended in patients undergoing dialysis as a primary series, similar to recommendations for other vulnerable populations.

Patients with end-stage kidney disease who are receiving maintenance hemodialysis (HD) are at increased risk for severe COVID-19, with mortality rates ranging from 9% to 28%.1,2 Highly effective vaccines have been developed against SARS-CoV-2, with 94.1%–95% efficacy in reducing the risk of severe COVID-19 (D614G strain) as confirmed by 2 large randomized controlled trials; however, these studies included limited numbers of patients with kidney disease.3,4 Humoral response to vaccination appears to be heterogeneous in dialysis patients in comparison with the general population, and a review of 35 studies involving dialysis patients found that in the 1-month period after 2-dose vaccination, seroconversion rates ranged from 70% to 96%.5The BNT162b2 (Pfizer BioNTech) and mRNA-1273 (Moderna) SARS-CoV-2 vaccines are both lipid nanoparticle-encapsulated, nucleoside-modified mRNA encoding for the full-length SARS-CoV-2 spike protein stabilized in its prefusion conformation. The BNT162b2 vaccine is administered as a 30 μg dose 21 days apart and mRNA-1273 is administered as a 100 μg dose 28 days apart.3,4 The spike protein and its receptor-binding domain of SARS-CoV-2 are antigens that are targeted by the currently available vaccines and are used as measures of humoral response to vaccination or natural infection. An antibody response to the amount of nucleocapsid protein (NP), which is not targeted by mRNA SARS-CoV-2 vaccines, may be used as a marker of natural exposure to SARS-CoV-2.Recognition of the high morbidity and mortality from COVID-19 and reduced immunogenicity to vaccination against SARS-CoV-2 in patients undergoing HD has resulted in the prioritization of vaccination of this population in many jurisdictions.1,6 However, differences in immunogenicity among SARS-CoV-2 vaccines have not been well characterized in this vulnerable population. Therefore, we conducted a prospective observational study in a cohort of patients undergoing dialysis who received either the mRNA-1273 or BNT162b2 vaccine to evaluate humoral response through comparison of spike and receptor-binding domain antibodies in response to 2-dose vaccination.  相似文献   

12.
《Cell》2021,184(23):5699-5714.e11
  1. Download : Download high-res image (199KB)
  2. Download : Download full-size image
  相似文献   

13.
BackgroundSafety monitoring of coronavirus disease 2019 (COVID-19) vaccines is crucial during mass vaccination rollout to inform the choice of vaccines and reduce vaccine hesitancy. Considering the scant evidence directly comparing the safety profiles of mRNA and inactivated SARS-CoV-2 vaccines, this territory-wide cohort study aims to compare the incidence of various adverse events of special interest (AESIs) and all-cause mortality between CoronaVac (inactivated vaccine) and BNT162b2 (mRNA-based vaccine). Our results can help vaccine recipients make an informed choice.Methods and findingsA retrospective, population-based cohort of individuals who had received at least 1 dose of BNT162b2 or CoronaVac from 23 February to 9 September 2021 in Hong Kong, and had data linkage to the electronic medical records of the Hong Kong Hospital Authority, were included. Those who had received mixed doses were excluded. Individuals were observed from the date of vaccination (first or second dose) until mortality, second dose vaccination (for first dose analysis), 21 days after vaccination, or 30 September 2021, whichever came first. Baseline characteristics of vaccinated individuals were balanced between groups using propensity score weighting. Outcome events were AESIs and all-cause mortality recorded during 21 days of post-vaccination follow-up after each dose, except anaphylaxis, for which the observation period was restricted to 2 days after each dose. Incidence rate ratios (IRRs) of AESIs and mortality comparing between CoronaVac and BNT162b2 recipients were estimated after each dose using Poisson regression models. Among 2,333,379 vaccinated individuals aged 18 years or above, the first dose analysis included 1,308,820 BNT162b2 and 955,859 CoronaVac recipients, while the second dose analysis included 1,116,677 and 821,560 individuals, respectively. The most frequently reported AESI among CoronaVac and BNT162b2 recipients was thromboembolism (first dose: 431 and 290 per 100,000 person-years; second dose: 385 and 266 per 100,000 person-years). After the first dose, incidence rates of overall AESIs (IRR = 0.98, 95% CI 0.89–1.08, p = 0.703) and mortality (IRR = 0.96, 95% CI 0.63–1.48, p = 0.868) associated with CoronaVac were generally comparable to those for BNT162b2, except for Bell palsy (IRR = 1.95, 95% CI 1.12–3.41, p = 0.018), anaphylaxis (IRR = 0.34, 95% CI 0.14–0.79, p = 0.012), and sleeping disturbance or disorder (IRR = 0.66, 95% CI 0.49–0.89, p = 0.006). After the second dose, incidence rates of overall AESIs (IRR = 0.97, 95% CI 0.87–1.08, p = 0.545) and mortality (IRR = 0.85, 95% CI 0.51–1.40, p = 0.516) were comparable between CoronaVac and BNT162b2 recipients, with no significant differences observed for specific AESIs. The main limitations of this study include residual confounding due to its observational nature, and the possibility of its being underpowered for some AESIs with very low observed incidences.ConclusionsIn this study, we observed that the incidences of AESIs (cumulative incidence rate of 0.06%–0.09%) and mortality following the first and second doses of CoronaVac and BNT162b2 vaccination were very low. The safety profiles of the vaccines were generally comparable, except for a significantly higher incidence rate of Bell palsy, but lower incidence rates of anaphylaxis and sleeping disturbance or disorder, following first dose CoronaVac versus BNT162b2 vaccination. Our results could help inform the choice of inactivated COVID-19 vaccines, mainly administered in low- and middle-income countries with large populations, in comparison to the safety of mRNA vaccines. Long-term surveillance on the safety profile of COVID-19 vaccines should continue.

In a retrospective study, Carlos King Ho Wong, Kristy Tsz Kwan Lau, and colleagues study adverse events reported following COVID-19 vaccination in Hong Kong.  相似文献   

14.
15.
BackgroundMost studies on immune response after coronavirus disease 2019 (COVID-19) vaccination focused on serum IgG antibodies and cell-mediated immunity, discounting the role of anti-SARS-CoV-2 neutralizing IgA antibodies in preventing viral infection. This study was aimed to quantify serum IgG and IgA neutralizing antibodies after mRNA COVID-19 vaccination in baseline SARS-CoV-2 seronegative healthcare workers.MethodsThe study population consisted of 181 SARSCoV-2 seronegative healthcare workers (median age 42 years, 59.7% women), receiving two doses of Pfizer COVID-19 vaccine BNT162b2 (Comirnaty). Serum samples were collected before receiving the first vaccine dose, 21 days (before the second vaccine dose) and 50 days afterwards. We then measured anti-spike trimeric IgG (Liaison XL, DiaSorin), anti-spike receptor binding domain (RBD) IgG (Access 2, Beckman Coulter) and anti-spike S1 subunit IgA (ELISA, Euroimmun). Results were presented as median and interquartile range (IQR).ResultsVaccine administration elicited all anti-SARS-CoV2 antibodies measured. Thirty days after the second vaccine dose, 100% positivization occurred for anti-spike trimeric IgG and anti-spike RBD IgG, whilst 1.7% subjects remained anti-spike S1 IgA negative. The overall increase of antibodies level ratio over baseline after the second vaccine dose was 576.1 (IQR, 360.7-867.8) for anti-spike trimeric IgG, 1426.0 (IQR, 742.0-2698.6) for anti-spike RBD IgG, and 20.2 (IQR, 12.5-32.1) for anti-spike S1 IgA. Significant inverse association was found between age and overall increase of anti-spike trimeric IgG (r=-0.24; p=0.001) and anti-spike S1 IgA (r=-0.16; p=0.028), but not with anti-spike RBD IgG (r=-0.05; p=0.497).ConclusionsmRNA COVID-19 vaccination elicits sustained serum levels of anti-spike trimeric IgG and anti-spike RBD IgG, while also modestly but significantly increasing those of anti-spike S1 IgA.  相似文献   

16.
The dynamics of the content of thromboxane B2, 6-keto-prostaglandin F1 alpha, T- and B-lymphocytes and titers of antibodies to group polysaccharides of meningococci, groups A, B and C, have been studied in 44 patients with generalized forms of meningococcal infection. As shown in this study, in patients with the clinical course of moderate severity a decrease in the number of T-lymphocytes in the first days of infection correlates with a decrease in the concentration of thromboxane B2. In some cases the concentration of thromboxane B2 and 6-keto-prostaglandin F1 alpha has been found to correlate with the titers of antibodies to group polysaccharide of group A meningococci. The severe course of meningococcal infection is characterized by the absence of correlation between eicosanoids and the immunity factors under study.  相似文献   

17.
The recently discovered SARS-CoV-2 variant Omicron (B.1.1.529) has rapidly become a global public health issue. The substantial mutations in the spike protein in this new variant have raised concerns about its ability to escape from pre-existing immunity established by natural infection or vaccination. In this review, we give a summary of current knowledge concerning the antibody evasion properties of Omicron and its subvariants (BA.2, BA.2.12.1, BA.4/5, and BA.2.75) from therapeutic monoclonal antibodies and the sera of SARS-CoV-2 vaccine recipients or convalescent patients. We also summarize whether vaccine-induced cellular immunity (memory B cell and T cell response) can recognize Omicron specifically. In brief, the Omicron variants demonstrated remarkable antibody evasion, with even more striking antibody escape seen in the Omicron BA.4 and BA.5 sub-lineages. Luckily, the third booster vaccine dose significantly increased the neutralizing antibodies titers, and the vaccine-induced cellular response remains conserved and provides second-line defense against the Omicron.  相似文献   

18.
19.
Hundred twenty seven adult men have been examined to determine an effect of the occupational exposure to lead on the immunity. A group of 77 men occupationally exposed to lead absorbed by respiratory has been selected on the basis of the determination of exposure to lead in their working places, detection of lead deposits and its metabolites in the body. Fifty men constituted a control group. They were exposed to lead corresponding to an exposure of general population. Immunological studies have shown that high lead levels in the occupational environment produced significant disorders in all stages of both types of immunological response--a decrease in the cellular and humoral immunity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号