首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new series of 1H-pyrrole (6a–c, 8a–c), pyrrolo[3,2-d]pyrimidines (9a–c) and pyrrolo[3,2-e][1, 4]diazepines (11a–c) were designed and synthesised. These compounds were designed to have the essential pharmacophoric features of EGFR Inhibitors, they have shown anticancer activities against HCT116, MCF-7 and Hep3B cancer cells with IC50 values ranging from 0.009 to 2.195 µM. IC50 value of doxorubicin is 0.008 µM, compounds 9a and 9c showed IC50 values of 0.011 and 0.009 µM respectively against HCT-116 cells. Compound 8b exerted broad-spectrum activity against all tested cell lines with an IC50 value less than 0.05 µM. Compound 8b was evaluated against a panel of kinases. This compound potently inhibited CDK2/Cyclin A1, DYRK3 and GSK3 alpha kinases with 10–23% compared to imatinib (1–10%). It has also arrested the cell cycle of MCF-7 cells at the S phase. Its antiproliferative activity was further augmented by molecular docking into the active sites of EGFR and CDK2 cyclin A1.  相似文献   

2.
A novel series of thiazole-naphthalene derivatives as tubulin polymerisation inhibitors were designed, synthesised, and evaluated for the anti-proliferative activities. The majority of the tested compounds exhibited moderate to potent antiproliferative activity on the MCF-7 and A549 cancer cell lines. Among them, compound 5b was found to be the most active compound with IC50 values of 0.48 ± 0.03 and 0.97 ± 0.13 μM. Moreover, mechanistic studies revealed that 5b significantly inhibited tubulin polymerisation with an IC50 value of 3.3 µM, as compared to the standard drug colchicine (IC50 = 9.1 μM). Further cellular mechanism studies elucidated that 5b arrested the cell cycle at G2/M phase and induced apoptosis in MCF-7 cancer cells. Molecular modelling study indicated that 5b binds well to the colchicine binding site of tubulin. In summary, these results suggest that 5b represents a promising tubulin polymerisation inhibitor worthy of further investigation as potential anticancer agents.  相似文献   

3.
In discovery of novel HDAC inhibitory with anticancer potency, pharmacophores of phenanthridine were introduced to the structure of HDAC inhibitors. Fatty and aromatic linkers were evaluated for their solubility and activity. Both enzyme inhibitory and in vitro antiproliferative (against U937 cells) screening results revealed better activities of compounds with aromatic linker than molecules with fatty linker. Compared with SAHA (IC50 values of 1.34, 0.14, 2.58, 0.67 and 18.17 µM), molecule Fb-4 exhibited 0.87, 0.09, 0.32, 0.34 and 17.37 µM of IC50 values against K562, U266, MCF-7, U937 and HEPG2 cells, respectively. As revealed by cell cycle and apoptotic analysis, induction of G2/M phase arrest and apoptosis plays an important role in the inhibition of MCF-7 cells by Fb-4. Generally, a potent HDAC inhibitor was developed in the present study which could be utilised as a lead compound for further anticancer drug design.  相似文献   

4.
This research presents the design and synthesis of a novel series of phthalazine derivatives as Topo II inhibitors, DNA intercalators, and cytotoxic agents. In vitro testing of the new compounds against HepG-2, MCF-7, and HCT-116 cell lines confirmed their potent cytotoxic activity with low IC50 values. Topo II inhibition and DNA intercalating activities were evaluated for the most cytotoxic members. IC50 values determination demonstrated Topo II inhibitory activities and DNA intercalating affinities of the tested compounds at a micromolar level. Amongst, compound 9d was the most potent member. It inhibited Topo II enzyme at IC50 value of 7.02 ± 0.54 µM with DNA intercalating IC50 of 26.19 ± 1.14 µM. Compound 9d was then subjected to an in vivo antitumor examination. It inhibited tumour proliferation reducing solid tumour volume and mass. Additionally, it restored liver enzymes, proteins, and CBC parameters near-normal, indicating a remarkable amelioration in their functions along with histopathological examinations.  相似文献   

5.
New cyanobenzofurans derivatives 2–12 were synthesised, and their antiproliferative activity was examined compared to doxorubicin and Afatinib (IC50 = 4.17–8.87 and 5.5–11.2 µM, respectively). Compounds 2 and 8 exhibited broad-spectrum activity against HePG2 (IC50 = 16.08–23.67 µM), HCT-116 (IC50 = 8.81–13.85 µM), and MCF-7 (IC50 = 8.36–17.28 µM) cell lines. Compounds 2, 3, 8, 10, and 11 were tested as EGFR-TK inhibitors to demonstrate their possible anti-tumour mechanism compared to gefitinib (IC50 = 0.90 µM). Compounds 2, 3, 10, and 11 displayed significant EGFR TK inhibitory activity with IC50 of 0.81–1.12 µM. Compounds 3 and 11 induced apoptosis at the Pre-G phase and cell cycle arrest at the G2/M phase. They also increased the level of caspase-3 by 5.7- and 7.3-fold, respectively. The molecular docking analysis of compounds 2, 3, 10, and 11 indicated that they could bind to the active site of EGFR TK.  相似文献   

6.
A series of tertiary sulphonamide derivatives were synthesised and evaluated for their antiproliferative activity against liver cancer cell lines (SNU-475, HepG-2, and Bel-7402). Among these tertiary sulphonamides, compound 17a displayed the best anti-liver cancer activity against Bel-7402 cells with an IC50 value of 0.32 μM. Compound 17a could effectively inhibit tubulin polymerisation with an IC50 value of 1.27 μM. Meanwhile, it selectively suppressed LSD1 with an IC50 value of 63 nM. It also concentration-dependently inhibited migration against Bel-7402 cells. Importantly, tertiary sulphonamide 17a exhibited the potent antitumor activity in vivo. All these findings revealed that compound 17a might be a tertiary sulphonamide-based dual inhibitor of tubulin polymerisation and LSD1 to treat liver cancer.  相似文献   

7.
Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a critical role in cancer angiogenesis. Inhibition of VEGFR-2 activity proved effective suppression of tumour propagation. Accordingly, two series of new 3-methylquinoxaline derivatives have been designed and synthesised as VEGFR-2 inhibitors. The synthesised derivatives were evaluated in vitro for their cytotoxic activities against MCF-7and HepG2 cell lines. In addition, the VEGFR-2 inhibitory activities of the target compounds were estimated to indicate the potential mechanism of their cytotoxicity. To a great extent, the results of VEGFR-2 inhibition were highly correlated with that of cytotoxicity. Compound 27a was the most potent VEGFR-2 inhibitor with IC50 of 3.2 nM very close to positive control sorafenib (IC50 = 3.12 nM). Such compound exhibited a strong cytotoxic effect against MCF-7 and HepG2, respectively with IC50 of 7.7 and 4.5 µM in comparison to sorafenib (IC50 = 3.51 and 2.17 µM). In addition, compounds 28, 30f, 30i, and 31b exhibited excellent VEGFR-2 inhibition activities (IC50 range from 4.2 to 6.1 nM) with promising cytotoxic activity. Cell cycle progression and apoptosis induction were investigated for the most active member 27a. Also, the effect of 27a on the level of caspase-3, caspase-9, and BAX/Bcl-2 ratio was determined. Molecular docking studies were implemented to interpret the binding mode of the target compounds with the VEGFR-2 pocket. Furthermore, toxicity and ADMET calculations were performed for the synthesised compounds to study their pharmacokinetic profiles  相似文献   

8.
In the current study, we designed and synthesised a novel series of 2-(2,6-dioxopiperidin-3-yl)isoquinoline-1,3(2H,4H)-dione derivatives as cereblon (CRBN) modulators. The results of the CCK8 assay revealed potent antiproliferative activity for the selected compound 10a against NCI-H929 (IC50=2.25 µM) and U239 (IC50=5.86 µM) cell lines. Compound 10a also can inhibit the TNF-α level (IC50=0.76 µM) in LPS stimulated PMBC and showed nearly no toxicity to this normal human cell line. The TR-FRET assay showed compound 10a having potent inhibitory activity against CRBN (IC50=4.83 µM), and the docking study confirmed a nice fitting of 10a into the active sites of CRBN. Further biology studies revealed compound 10a can increase the apoptotic events, arrest the NCI-H929 cells at G0/G1 cell cycle, and induce the ubiquitination degradation of IKZF1 and IKZF3 proteins by CRL4CRBN. These preliminary results suggested that compound 10a could serve as a potential antitumor drug and worthy of further investigation.  相似文献   

9.
Discovering of new anticancer agents with potential activity against tubulin polymerisation is still a promising approach. Colchicine binding site inhibitors are the most relevant anti-tubulin polymerisation agents. Thus, new quinoline derivatives have been designed and synthesised to possess the same essential pharmacophoric features of colchicine binding site inhibitors. The synthesised compounds were tested in vitro against a panel of three human cancer cell lines (HepG-2, HCT-116, and MCF-7) using colchicine as a positive control. Comparing to colchicine (IC50 = 7.40, 9.32, and 10.41 µM against HepG-2, HCT-116, and MCF-7, respectively), compounds 20, 21, 22, 23, 24, 25, 26, and 28 exhibited superior cytotoxic activities with IC50 values ranging from 1.78 to 9.19 µM. In order to sightsee the proposed mechanism of anti-proliferative activity, the most active members were further evaluated in vitro for their inhibitory activities against tubulin polymerisation. Compounds 21 and 32 exhibited the highest tubulin polymerisation inhibitory effect with IC50 values of 9.11 and 10.5 nM, respectively. Such members showed activities higher than that of colchicine (IC50 = 10.6 nM) and CA-4 (IC50 = 13.2 nM). The impact of the most promising compound 25 on cell cycle distribution was assessed. The results revealed that compound 25 can arrest the cell cycle at G2/M phase. Annexin V and PI double staining assay was carried out to explore the apoptotic effect of the synthesised compounds. Compound 25 induced apoptotic effect on HepG-2 thirteen times more than the control cells. To examine the binding pattern of the target compounds against the tubulin heterodimers active site, molecular docking studies were carried out.  相似文献   

10.
A series of thieno[2,3-d]pyrimidine-based hydroxamic acid hybrids was designed and synthesised as multitarget anti-cancer agents, through incorporating the pharmacophore of EGFR, VEGFR2 into the inhibitory functionality of HDAC6. Three compounds (12c, 15b and 20b) were promising hits, whereas (12c) exhibited potent VEGFR2 inhibition (IC50=185 nM), potent EGFR inhibition (IC50=1.14 µM), and mild HDAC6 inhibition (23% inhibition). Moreover, compound (15c) was the most potent dual inhibitor among all the synthesised compounds, as it exhibited potent EGFR and VEGFR2 inhibition (IC50=19 nM) and (IC50=5.58 µM), respectively. While compounds (20d) and (7c) displayed nanomolar selective kinase inhibition with EGFR IC50= 68 nM and VEGFR2 IC50= 191 nM, respectively. All of the synthesised compounds were screened in vitro for their cytotoxic effect on 60 human NCI tumour cell lines. Additionally, molecular docking studies and ADMET studies were carried out to gain further insight into their binding mode and predict the pharmacokinetic properties of all the synthesised inhibitors.  相似文献   

11.
To discover new lead compounds with anti-tumour activities, in the present study, natural diosgenin was hybridised with the reported benzoic acid mustard pharmacophore. The in vitro cytotoxicity of the resulting newly synthesised hybrids (8–10, 14a–14f, and 15a–15f) was then evaluated in three tumour cells (HepG2, MCF-7, and HeLa) as well as normal GES-1 cells. Among them, 14f possessed the most potential anti-proliferative activity against HepG2 cells, with an IC50 value of 2.26 µM, which was 14.4-fold higher than that of diosgenin (IC50 = 32.63 µM). Furthermore, it showed weak cytotoxicity against GES-1 cells (IC50 > 100 µM), thus exhibiting good antiproliferative selectivity between normal and tumour cells. Moreover, 14f could induce G0/G1 arrest and apoptosis of HepG2 cells. From a mechanistic perspective, 14f regulated cell cycle-related proteins (CDK2, CDK4, CDK6, cyclin D1 and cyclin E1) as well mitochondrial apoptosis pathway-related proteins (Bax, Bcl-2, caspase 9, and caspase 3). These findings suggested that hybrid 14f serves as a promising anti-hepatoma lead compound that deserves further research.  相似文献   

12.
A series of 6-amidinobenzothiazoles, linked via phenoxymethylene or directly to the 1,2,3-triazole ring with a p-substituted phenyl or benzyl moiety, were synthesised and evaluated in vitro against four human tumour cell lines and the protozoan parasite Trypanosoma brucei. The influence of the type of amidino substituent and phenoxymethylene linker on antiproliferative and antitrypanosomal activities was observed, showing that the imidazoline moiety had a major impact on both activities. Benzothiazole imidazoline 14a, which was directly connected to N-1-phenyl-1,2,3-triazole, had the most potent growth-inhibitory effect (IC50 = 0.25 µM) on colorectal adenocarcinoma (SW620), while benzothiazole imidazoline 11b, containing a phenoxymethylene linker, exhibited the best antitrypanosomal potency (IC90 = 0.12 µM). DNA binding assays showed a non-covalent interaction of 6-amidinobenzothiazole ligands, indicating both minor groove binding and intercalation modes of DNA interaction. Our findings encourage further development of novel structurally related 6-amidino-2-arylbenzothiazoles to obtain more selective anticancer and anti-HAT agents.  相似文献   

13.
Nine compounds (MO1–MO9) containing the morpholine moiety were assessed for their inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE). Most of the compounds potently inhibited MAO-B; MO1 most potently inhibited with an IC50 value of 0.030 µM, followed by MO7 (0.25 µM). MO5 most potently inhibited AChE (IC50 = 6.1 µM), followed by MO9 (IC50 = 12.01 µM) and MO7 most potently inhibited MAO-A (IC50 = 7.1 µM). MO1 was a reversible mixed-type inhibitor of MAO-B (Ki = 0.018 µM); MO5 reversibly competitively inhibited AChE (Ki = 2.52 µM); and MO9 reversibly noncompetitively inhibited AChE (Ki = 7.04 µM). MO1, MO5 and MO9 crossed the blood–brain barrier, and were non-toxic to normal VERO cells. These results show that MO1 is a selective inhibitor of MAO-B and that MO5 is a dual-acting inhibitor of AChE and MAO-B, and that both should be considered candidates for the treatment of Alzheimer’s disease.  相似文献   

14.
In this work, the natural piperine moiety was utilised to develop two sets of piperine-based amides (5a–i) and ureas (8a–y) as potential anticancer agents. The anticancer action was assessed against triple negative breast cancer (TNBC) MDA-MB-231, ovarian A2780CP and hepatocellular HepG2 cancer cell lines. In particular, 8q stood out as the most potent anti-proliferative analogue against TNBC MDA-MB-231 cells with IC50 equals 18.7 µM, which is better than that of piperine (IC50 = 47.8 µM) and 5-FU (IC50 = 38.5 µM). Furthermore, 8q was investigated for its possible mechanism of action in MDA-MB-231 cells via Annexin V-FITC apoptosis assay and cell cycle analysis. Moreover, an in-silico analysis has proposed VEGFR-2 as a probable enzymatic target for piperine-based derivatives, and then has explored the binding interactions within VEGFR-2 active site (PDB:4ASD). Finally, an in vitro VEGFR-2 inhibition assay was performed to validate the in silico findings, where 8q showed good VEGFR-2 inhibitory activity with IC50 = 231 nM.  相似文献   

15.
Herein, a new wave of bis([1, 2, 4]triazolo)[4,3-a:3'',4''-c]quinoxaline derivatives have been successfully designed and synthesised. The synthesised derivatives were biologically investigated for their cytotoxic activities against HepG2 and MCF-7. Also, the tested compounds were further examined in vitro for their VEGFR-2 inhibitory activity. The most promising derivative 23j was further investigated for its apoptotic behaviour in HepG2 cell lines using flow cytometric and western-plot analyses. Additional in-silico studies were performed to predict how the synthesised compounds can bind to VEGFR-2 and to determine the drug-likeness profiling of these derivatives. The results revealed that compounds 23a, 23i, 23j, 23l, and 23n displayed the highest antiproliferative activities against the two cell lines with IC50 values ranging from 6.4 to 19.4 µM. Furthermore, compounds 23a, 23d, 23h, 23i, 23j, 23l, 23 m, and 23n showed the highest VEGFR-2 inhibitory activities with IC50 values ranging from 3.7 to 11.8 nM, comparing to sorafenib (IC50 = 3.12 nM). Moreover, compound 23j arrested the HepG2 cell growth at the G2/M phase and induced apoptosis by 40.12% compared to the control cells (7.07%). As well, such compound showed a significant increase in the level of caspase-3 (1.36-fold), caspase-9 (2.80-fold), and BAX (1.65-fold), and exhibited a significant decrease in Bcl-2 level (2.63-fold).  相似文献   

16.
Based on quinazoline, quinoxaline, and nitrobenzene scaffolds and on pharmacophoric features of VEGFR-2 inhibitors, 17 novel compounds were designed and synthesised. VEGFR-2 IC50 values ranged from 60.00 to 123.85 nM for the new derivatives compared to 54.00 nM for sorafenib. Compounds 15a, 15b, and 15d showed IC50 from 17.39 to 47.10 µM against human cancer cell lines; hepatocellular carcinoma (HepG2), prostate cancer (PC3), and breast cancer (MCF-7). Meanwhile, the first in terms of VEGFR-2 inhibition was compound 15d which came second with regard to antitumor assay with IC50 = 24.10, 40.90, and 33.40 µM against aforementioned cell lines, respectively. Furthermore, Compound 15d increased apoptosis rate of HepG2 from 1.20 to 12.46% as it significantly increased levels of Caspase-3, BAX, and P53 from 49.6274, 40.62, and 42.84 to 561.427, 395.04, and 415.027 pg/mL, respectively. Moreover, 15d showed IC50 of 253 and 381 nM against HER2 and FGFR, respectively.  相似文献   

17.
Histone lysine specific demethylase 1 (LSD1) has emerged as an attractive molecule target for the discovery of potently anticancer drugs to treat leukaemia. In this study, a series of novel chalcone derivatives were designed, synthesised and evaluated for their inhibitory activities against LSD1 in vitro. Among all these compounds, D6 displayed the best LSD1 inhibitory activity with an IC50 value of 0.14 μM. In the cellular level, compound D6 can induce the accumulation of H3K9me1/2 and inhibit cell proliferation by inactivating LSD1. It exhibited the potent antiproliferative activity with IC50 values of 1.10 μM, 3.64 μM, 3.85 μM, 1.87 μM, 0.87 μM and 2.73 μM against HAL-01, KE-37, P30-OHK, SUP-B15, MOLT-4 and LC4-1 cells, respectively. Importantly, compound D6 significantly suppressed MOLT-4 xenograft tumour growth in vivo, indicating its great potential as an orally bioavailable candidate for leukaemia therapy.  相似文献   

18.
A new series of quinoline derivatives of combretastatin A-4 have been designed, synthesised and demonstrated as tubulin polymerisation inhibitors. These novel compounds showed significant antiproliferative activities, among them, 12c exhibited the most potent inhibitory activity against different cancer cell lines (MCF-7, HL-60, HCT-116 and HeLa) with IC50 ranging from 0.010 to 0.042 µM, and with selectivity profile against MCF-10A non-cancer cells. Further mechanistic studies suggest that 12c can inhibit tubulin polymerisation and cell migration, leading to G2/M phase arrest. Besides, 12c induces apoptosis via a mitochondrial-dependant apoptosis pathway and caused reactive oxygen stress generation in MCF-7 cells. These results provide guidance for further rational development of potent tubulin polymerisation inhibitors for the treatment of cancer.

Highlights

  • A novel series of quinoline derivatives of combretastatin A-4 have been designed and synthesised.
  • Compound 12c showed significant antiproliferative activities against different cancer cell lines.
  • Compound 12c effectively inhibited tubulin polymerisation and competed with [3H] colchicine in binding to tubulin.
  • Compound 12c arrested the cell cycle at G2/M phase, effectively inducing apoptosis and inhibition of cell migration.
  相似文献   

19.
A novel series of chalcone-Vitamin E-donepezil hybrids was designed and developed based on multitarget-directed ligands (MTDLs) strategy for treating Alzheimer’s disease (AD). The biological results revealed that compound 17f showed good AChE inhibitory potency (ratAChE IC50 = 0.41 µM; eeAChE IC50 = 1.88 µM). Both the kinetic analysis and docking study revealed that 17f was a mixed type AChE inhibitor. 17f was also a good antioxidant (ORAC = 3.3 eq), selective metal chelator and huMAO-B inhibitor (IC50 = 8.8 µM). Moreover, it showed remarkable inhibition of self- and Cu2+-induced Aβ1–42 aggregation with a 78.0 and 93.5% percentage rate at 25 µM, respectively, and disassembled self-induced and Cu2+-induced aggregation of the accumulated Aβ1–42 fibrils with 72.3 and 84.5% disaggregation rate, respectively. More importantly, 17f exhibited a good neuroprotective effect on H2O2-induced PC12 cell injury and presented good blood-brain barrier permeability in vitro. Thus, 17f was a promising multi-target-directed ligand for treating AD.  相似文献   

20.
Different 2,4-thiazolidinedione-tethered coumarins 5a–b, 10a–n and 11a–d were synthesised and evaluated for their inhibitory action against the cancer-associated hCAs IX and XII, as well as the physiologically dominant hCAs I and II to explore their selectivity. Un-substituted phenyl-bearing coumarins 10a, 10 h, and 2-thienyl/furyl-bearing coumarins 11a–c exhibited the best hCA IX (KIs between 0.48 and 0.93 µM) and hCA XII (KIs between 0.44 and 1.1 µM) inhibitory actions. Interestingly, none of the coumarins had any inhibitory effect on the off-target hCA I and II isoforms. The sub-micromolar compounds from the biochemical assay, coumarins 10a, 10 h and 11a–c, were assessed in an in vitro antiproliferative assay, and then the most potent antiproliferative agent 11a was tested to explore its impact on the cell cycle phases and apoptosis in MCF-7 breast cancer cells to provide more insights into the anticancer activity of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号