首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mobilization of carbohydrate and lipid reserves from the insect fat body as fuels for migratory flight activity is controlled by adipokinetic hormone (AKH), of which in Locusta migratoria three different forms occur: AKH-I, -II and -III. In fat body in vitro, each AKH is capable of activating glycogen phosphorylase and of stimulating cAMP production, but only in the presence of extracellular Ca2+. The hormones stimulate both the influx and the efflux of Ca2+, the higher influx probably causing an increase in intracellular [Ca2+]. AKH enhances the production of inositol phosphates among which inositol 1,4,5-triphosphate may mediate the mobilization of Ca2+ from intracellular stores. Evidence is presented in favor of the occurrence of a capacitative calcium entry mechanism. Results suggest that transduction of the AKH signal occurs through stimulatory G protein-coupled receptor(s). A tentative model is presented for the interactions between the AKH signaling pathways in the locust fat body cell. AKH-induced lipid mobilization during flight requires the presence in the insect blood of high-density lipophorin (HDLp) particles and apolipophorin III (apoLp-III). Both protein components are synthesized in the fat body. In the locust, the two integral, nonexchangeable HDLp apolipophorins (apoLp-I and -II) were shown to originate from a common precursor; an mRNA of 10.3 kb seems to code for this precursor protein. The models proposed for lipophorin assembly and secretion in a number of insects are not in agreement. The exchangeable apoLp-III may occur in two or more isoforms; locust apoLp-III is secreted from the fat body as one of the two isoforms and in the hemolymph converted into the truncated second one. The rationale for this process is as yet unknown.  相似文献   

2.
Neuropeptides of the adipokinetic hormone (AKH) family are among the best studied hormone peptides, but its signaling pathways remain to be elucidated. In this study, we molecularly characterized the signaling of Bombyx AKH receptor (AKHR) and its peptide ligands in HEK293 cells. In HEK293 cells stably expressing AKHR, AKH1 stimulation not only led to a ligand concentration dependent mobilization of intracellular Ca2+ and cAMP accumulation, but also elicited transient activation of extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. We observed that AKH receptor was rapidly internalized after AKH1 stimulation. We further demonstrated that AKH2 exhibited high activities in cAMP accumulation and ERK1/2 activation on AKHR comparable to AKH1, whereas AKH3 was much less effective.  相似文献   

3.
《Insect Biochemistry》1991,21(4):375-380
Inclusion of glucose or trehalose in the medium during the incubation of locust fat body in vitro leads to a reduction of the relative amount of active (AMP-independent) glycogen phosphorylase. The presence of adipokinetic hormone (AKH I) results in a rapid activation of phosphorylase, reaching a maximum within 5 min. This AKH effect is highly dependent on added Ca2+, and requires ⩾ 1 mM Ca2+ for maximal enzyme activation. Ca2+ alone has no effect on phosphorylase activity, but it does activate the enzyme when the ionophore A23187 is also included in the medium. In a cell-free system from locust fat body the activation of endogenous phosphorylase by phosphorylase kinase is stimulated by Ca2+. Activity of the latter enzyme can be increased further by high doses of calmodulin. Both in the presence and in the absence of external calmodulin, the calmodulin antagonist trifluoperazine has an inhibitory effect on phosphorylase kinase. Results are discussed in relation to the possible mechanisms underlying hormonal control of glycogenolysis.  相似文献   

4.
The regulation of human platelet responses by cyclic AMP (cAMP) has been investigated by measuring thrombin-stimulated serotonin release, Ca2+ uptake and phospholipase activity. Thrombin-induced 1,2-diacylglycerol (DG) formation as a result of phospholipase C activation was inhibited by pretreatment with dibutyryl cAMP (dbcAMP) in a dose-dependent manner. Subsequent failure to produce phosphatidic acid (PA), which is converted from 1,2-DG by phosphorylation and would serve as intracellular Ca2+ ionophore, appeared to parallel the decrease in Ca2+ uptake activity. Phospholipase A2 activity, monitored by the production of [3H]lysophosphatidylcholine and [3H]lysophosphatidylethanolamine, was also suppressed by dbcAMP. These data indicate that the intracellular cAMP level may be closely associated with Ca2+ uptake and phospholipases activation. In addition, it is suggested that alteration of intracellular cAMP regulates phospholipase activation and consequently platelet responses, perhaps by controlling available Ca2+ content.  相似文献   

5.
Hypertrehalosaemic hormones stimulate trehalogenesis while inhibiting glycolysis in cockroach fat body. Signal transduction of the hypertrehalosaemic peptide Bld HrTH was examined in isolated fat body of the Argentine cockroach Blaptica dubia with respect to its effects on the increase in trehalose production and decrease in the content of the glycolytic activator fructose 2,6-bisphosphate in the tissue. Cyclic AMP does not seem to be involved in these processes as the cAMP analogue cpt-cAMP and the phosphodiesterase inhibitor IBMX, which both permeate cell membranes, had no effect on either parameter. Octopamine at physiological concentrations (10−7 mol · l−1) was also ineffective, but at 10−5 mol · l−1 or above, octopamine stimulated trehalose production although the content of fructose 2,6-bisphosphate in fat body was not affected. Both calcium entry and the release of Ca2+ from intracellular stores seem to be involved in the action of the hormone. If Ca2+ was omitted from the incubation medium, the hormone stimulated trehalose production less, though still significantly, whereas the hormone effect on fructose 2,6-bisphosphate was completely abolished in the absence of extracellular Ca2+. With Ca2+ present in the medium, the effect of the hormone on fructose 2,6-bisphosphate could be fully mimicked by the calcium ionophore A23187, suggesting that calcium entry is a␣decisive step in this signalling pathway. Trehalose production, on the other hand, was increased by thimerosal and thapsigargin which increase cytosolic Ca2+ from intracellular stores, whereas thimerosal in the absence of extracellular Ca2+ increased rather than decreased the content of fructose 2,6-bisphosphate, thus dissociating the two effects, which are normally coordinated by the hormone. Trehalose production and the content of fructose 2,6-bisphosphate were not significantly affected by mepacrine and mellitin, which are known to inhibit, respectively stimulate, phospholipase A2. Our data suggest that the effects of Bld HrTH on the stimulation of trehalose production and reduction of fructose 2,6-bisphosphate content in fat body are mediated by Ca2+, but that different signalling pathways are involved, suggesting that the two processes, although they are functionally linked, could be regulated separately. Accepted: 10 November 1997  相似文献   

6.
Adipokinetic hormone I (AKH I) needs extracellular Ca2+ for its activating action on glycogen phosphorylase in locust fat body in vitro. TMB-8 reduces this AKH effect significantly, indicating that for a major part, hormone action also requires the mobilization of Ca2+ from intracellular stores. Using 45Ca2+, AKH was shown to stimulate both the influx and the efflux of Ca2+. Thapsigargin also enhances the influx of extracellular Ca2+ into the fat body cells, indicating that the stimulating effect of AKH on Ca2+ influx may be mediated through depletion of intracellular Ca2+ stores as well. AKH is known to enhance cAMP levels in locust fat body. We show that elevation of cAMP with forskolin or theophylline leads to activation of glycogen phosphorylase, both in the presence and in the absence of extracellular Ca2+. The present data are discussed in an attempt to elucidate further the mechanism underlying transduction of the hormonal signal in locust fat body.  相似文献   

7.
45Ca2+ uptake was detected within minutes following addition of T- and B-cell2 mitogens to mouse lymphocytes. The T-cell mitogens (Con A and PHA) gave an ~twofold increase in 45Ca2+ uptake (representing an influx of ~ 130 amol per lymphocyte, corresponding to an increase in average cellular Ca2+ of ~0.95 mM). B-cell mitogens which gave the largest 45Ca2+ uptake (~twofold) were purified LPS preparations from Salmonella minnesota R595 and Escherichia coli 0111:2125. The 45Ca2+ uptake by rabbit splenocytes using specific anti-b4 allotype antiserum was comparable to that obtained with the two purified LPS preparations. A23187, in low nontoxic doses, gave an ~sixfold increase in 45Ca2+ uptake with mouse T cells. The 45Ca2+ uptake was modulated by cyclic nucleotides showing a “yin-yang” effect. The results suggest a possible entry of 45Ca2+ from the extracellular medium through “gated Ca2+ channels” in the plasma membrane into the cytosol by passive diffusion. The Ca2+ may be sequestered in the mitochondria, and the excess Ca2+ is later effluxed into the extracellular medium. The fact that 45Ca2+ uptake appears to be one of the earliest events occurring after ligand binding to the cell, together with the demonstration of a Ca2+-dependent glucose uptake and a requirement for extracellular Ca2+ for DNA synthesis, suggest that, as it is now known to function in many other cellular responses, Ca2+ may operate as a second messenger for lymphocyte activation.  相似文献   

8.
Cyclic AMP (cAMP) is a natural chemoattractant of the social amoeba Dictyostelium discoideum. It is detected by cell surface cAMP receptors. Besides a signalling cascade involving phosphatidylinositol 3,4,5-trisphosphate (PIP3), Ca2+ signalling has been shown to have a major role in chemotaxis. Previously, we have shown that arachidonic acid (AA) induces an increase in the cytosolic Ca2+ concentration by causing the release of Ca2+ from intracellular stores and activating influx of extracellular Ca2+. Here we report that AA is a chemoattractant for D. discoideum cells differentiated for 8–9 h. Motility towards a glass capillary filled with an AA solution was dose-dependent and qualitatively comparable to cAMP-induced chemotaxis. Ca2+ played an important role in AA chemotaxis of wild-type Ax2 as ethyleneglycolbis(b-aminoethyl)-N,N,N′,N′-tetraacetic acid (EGTA) added to the extracellular buffer strongly inhibited motility. In the HM1049 mutant whose iplA gene encoding a putative Ins(1,4,5)P3-receptor had been knocked out, chemotaxis was only slightly affected by EGTA. Chemotaxis in the presence of extracellular Ca2+ was similar in both strains. Unlike cAMP, addition of AA to a cell suspension did not change cAMP or cGMP levels. A model for AA chemotaxis based on the findings in this and previous work is presented.  相似文献   

9.
The effect of agents stimulating the oxidative burst (OB) in oil-elicited guinea pig peritoneal macrophages (MPs) on cyclic adenosine 3′,5′-monophosphate (cAMP) levels was examined. We found that: (i) Phorbol myristate acetate (PMA), the Ca2+ ionophore A23187, concanavalin A (Con A), wheat germ agglutinin (WGA), N-formyl-l-methionyl-l-leucyl-l-phenylalanine (FMLP) and opsonized zymosan, elevated cAMP levels two- to fivefold; (ii) the biologically inactive PMA analog, 4-O-methyl-PMA, was proportionally less effective than PMA in stimulating cAMP accumulation; (iii) increased levels of cAMP were evident after 10 min of incubation with the stimulants, in the presence of the phosphodiesterase inhibitor 3-isobutyl methylxanthine (IBX); (iv) basal cAMP levels in MPs increased proportionally with the extracellular Ca2+ concentration; (v) the cAMP-elevating effect of all stimulants (with the exception of A23187) was more pronounced in low Ca2+ media, associated with lower basal cAMP levels. A23187 did not elevate cAMP levels in the absence of extracellular Ca2+; (vi) short-term incubation of MPs with arachidonic acid and with the arachidonic acid precursor, linoleic acid, induced an increase in the level of cAMP; (vii) the elevations in cAMP levels induced by OB stimulants were enhanced, not blocked, by mepacrine, 5,8,11,14-eicosatetraynoic acid (ETYA), indomethacin or aspirin, demonstrating that prostaglandin (PG) synthesis was not involved; (viii) the cAMP-elevating effect of arachidonic and linoleic acids was blocked by ETYA and indomethacin, indicating that it was mediated by PGs. The mechanism by which OB stimulants elevate cAMP levels could not be determined but changes in the cellular level of Ca2+ seem to play a pivotal role.  相似文献   

10.
New bone formation is associated with an increase in blood flow by the invasion of capillaries. Endothelial cells that line the capillaries can produce paracrine factors that affect bone growth and development, and in turn, could be affected by products produced by bone cells, in particular the osteoblasts. Since osteoblasts produce prostaglandins E2 and F (PGE2, PGF), it was investigated if these PGs were agonists to bone-derived endothelial cells (BBE) by assessing changes in cAMP and free cytosolic calcium concentration ([Ca2+]i) second messenger generation. We found that confluent cultures of BBE cells, a clonal endothelial cell line derived from bovine sternal bone, responded to 1 μM PGE2 by an increase in cAMP. PGF at the same concentration was less potent in stimulating an increase in cAMP production in confluent BBE cells. Subconfluent cells with a morphology similar to that of fibroblastic cells were not as sensitive to PGE2-stimulated cAMP generation. PGF failed to elicit any cAMP production in subconfluent cultures. PGE2 and PGF both stimulated an increase in [Ca2+]i concentration in a dose-dependent manner. The potency of PGE2 was similar to that of PGF in stimulating an increase in [Ca2+]i. The Ca2+ response was mostly independent of extracellular Ca+, was unchanged even with prior indomethacin treatment, was unaffected by caffeine pretreatment, but was abolished subsequent to thapsigargin pretreatment. The PG-induced increase in [Ca2+]i was also dependent on the confluency of the cells. In a subconfluent state, the responses to PGE2 or PGF were either negligible, or only small increases in [Ca2+]i were noted with high concentrations of these two PGs. Consistent, dose-dependent increases in [Ca2+]i were stimulated by these PGs only when the cells were confluent and had a cobblestoned appearance. Since it was previously demonstrated that BBE cells respond to parathyroid hormone (PTH) by the production of cAMP, we tested if bovine PTH(1-34) amide bPTH(1—34) also increased [Ca2+]i in these cells. No change in [Ca2+]i was found in response to bPTH (1—34), although bPTH (1—34) stimulated a nine to tenfold increase in cAMP. We conclude that BBE cells respond to PGE2 and PGF but not to bPTH(1—34) by an increase in [Ca2+]i probably secondary to stimulation of phospholipase C and that the cAMP and [Ca2+]i second messenger responses in BBE cells are dependent on the state of confluency of the cells. © 1994 Wiley-Liss, Inc.  相似文献   

11.
The involvement of members of the adipokinetic hormone (AKH) family in regulation of response to oxidative stress (OS) has been reported recently. However, despite these neuropeptides being the best studied family of insect hormones, their precise signaling pathways in their OS responsive role remain to be elucidated. In this study, we have used an in vitro assay to determine the importance of extra and intra-cellular Ca2 + stores as well as the involvement of protein kinase C (PKC) and cyclic adenosine 3′,5′-monophosphate (cAMP) pathways by which AKH exerts its anti-oxidative effects. Lipid peroxidation product (4-HNE) was significantly enhanced and membrane fluidity reduced in microsomal fractions of isolated brains (CNS) of Pyrrhocoris apterus when treated with hydrogen peroxide (H2O2), whereas these biomarkers of OS were reduced to control levels when H2O2 was co-treated with Pyrap-AKH. The effects of mitigation of OS in isolated CNS by AKH were negated when these treatments were conducted in the presence of Ca2 + channel inhibitors (CdCl2 and thapsigargin). Presence of either bisindolylmaliemide or chelyrythrine chloride (inhibitors of PKC) in the incubating medium also compromised the anti-oxidative function of AKH. However, supplementing the medium with either phorbol myristate acetate (PMA, an activator of PKC) or forskolin (an activator of cAMP) restored the protective effects of exogenous AKH treatment by reducing 4-HNE levels and increasing membrane fluidity to control levels. Taken together, our results strongly implicate the importance of both PKC and cAMP pathways in AKHs' anti-oxidative action by mobilizing both extra and intra-cellular stores of Ca2 +.  相似文献   

12.
Lung lamellar bodies maintain an acidic interior by an energy-dependent process. The acidic pH may affect the packaging of surfactant phospholipids, processing of surfactant proteins, or surfactant protein A-dependent lipid aggregation. The electron-probe microanalysis of lamellar body elemental composition has previously suggested that lamellar bodies contain high levels of calcium some of which may be in ionic form. In this study, we investigated the Ca2+ uptake characteristics in isolated lung lamellar bodies. The uptake of Ca2+ was measured by monitoring changes in the fluorescence of Fluo-3, a Ca2+ indicator dye. The uptake of Ca2+ in lamellar bodies was ATP-dependent and increased with increasing concentrations of Ca2+. At 100 nm Ca2+, the uptake was almost completely inhibited by bafilomycin A1, a selective inhibitor of vacuolar type H+-ATPase, or by NH4Cl, which raises the lamellar body pH, suggesting that the pH gradient regulates the uptake. The uptake of Ca2+ increased as the Ca2+ concentration was increased, but the relative contribution of bafilomycin A1-sensitive uptake decreased. At 700 nm, it comprised only 20% of the total uptake. These results suggest the presence of additional mechanism(s) for uptake at higher Ca2+ concentrations. At 700 nm Ca2+, the rate and extent of uptake were lower in the absence of K+ than in the presence of K+. The inhibitors of Ca2+-activated K+-channels, tetraethylammonium, Penitrem A, and 4-aminopyridine, also inhibited the K+-dependent Ca2+ uptake at 700 nm Ca2+. Thus the uptake of Ca2+ in isolated lung lamellar bodies appears to be regulated by two mechanisms, (i) the H+-gradient and (ii) the K+ transport across the lamellar body membrane. We speculate that lamellar bodies accumulate Ca2+ and contribute to regulation of cytosolic Ca2+ in type II cells under resting and stimulated conditions. Received: 18 August 1999/Revised: 9 November 1999  相似文献   

13.
Lau OL  Yang SF 《Plant physiology》1975,55(4):738-740
Application of kinetin and Ca2+ caused a striking synergistic increase in ethylene production by mung bean (Phaseolus aureus Roxb) hypocotyl segments. The effect of kinetin on Ca2+ uptake and of Ca2+ on the uptake and metabolism of kinetin in relation to their effect on ethylene production was studied. Tracer experiments showed that kinetin greatly increased the uptake of 45Ca2+ after 6 hours of incubation. Reciprocally, Ca2+ stimulated the uptake of kinetin-8-14C and remarkably enhanced the metabolism of kinetin-8-14C into several polar metabolites. Consequently, the quantity of free kinetin-8-14C remaining in Ca2+-treated segments was much less than in control segments. A possible mechanism accounting for the synergism between kinetin and calcium on ethylene production is discussed.  相似文献   

14.
Rat submandibular glands were digested with crude collagenase, and the intracellular calcium concentration of the cellular suspension was measured using fura-2. In the absence of extracellular magnesium and calcium ([Ca2+]o), ATP had no effect; the response to ATP peaked at 1–2.5 mM [Ca2+]o and was inhibited at 5 mM. One millimolar (mM) extracellular ATP did not increase the leak of LDH or fura-2; 10 m?M Coomassie brilliant blue G specifically inhibited the effect of ATP on [Ca2+]in. Depleting intracellular calcium pools with thapsigargin did not affect the response to ATP. Using a Ca2+-free/Ca2+ reintroduction protocol, it was shown that ATP and thapsigargin increase the uptake of extracellular calcium. The effect of the two agonists was synergistic. Removal of extracellular sodium inhibited the effect of carbachol on [Ca2+]in and the calcium uptake but potentiated the response to ATP. These results suggest that, after binding to purinergic receptors, extracellular ATP4- increases [Ca2+]in. ATP4- does not mobilize thapsigargin-sensitive intracellular calcium pools (among which is the IP3-sensitive calcium pool) but stimulates the uptake of extracellular calcium by a mechanism inhibited by extracellular sodium, probably by opening a nonselective cation channel. © 1994 Wiley-Liss, Inc.  相似文献   

15.
We have previously shown that stereospecific hydrolysis of stored triacylglycerol by a phosphorylatable triacylglycerol-lipase is the pathway for the adipokinetic hormone-stimulated synthesis of sn -1, 2-diacylglycerol in insect fat body. The current series of experiments were designed to determine whether cAMP and/or calcium are involved in the signal transduction pathway for adipokinetic hormone in the fat body. After adipokinetic hormone treatment, cAMP-dependent protein kinase activity in the fat body rapidly increased and reached a maximum after 20 min, suggesting that adipokinetic hormone causes an increase in cAMP. Forskolin (0.1 micrometer), an adenylate cyclase activator, induced up to a 97% increase in the secretion of diacylglycerol from the fat body. 8Br-cAMP (a membrane-permeable analog of cAMP) produced a 40% increase in the hemolymph diacylglycerol content. Treatment with cholera toxin, which also stimulates adenylate cyclase, induced up to a 145% increase in diacylglycerol production. Chelation of extracellular calcium produced up to 70% inhibition of the adipokinetic hormone-dependent mobilization of lipids. Calcium-mobilizing agents, ionomycin and thapsigargin, greatly stimulated DG production by up to 130%. Finally, adipokinetic hormone caused a rapid increase of calcium uptake into the fat body. Our findings indicate that the action of adipokinetic hormone in mobilizing lipids from the insect fat body involves both cAMP and calcium as intracellular messengers.  相似文献   

16.
Intact rat retinae were incubated in Krebs-Ringer media with noradrenaline (NA) in the presence (0.75 mM) or absence of extracellular Ca2+ and at relatively high (10 mM) or low (1 mM) theophylline concentrations. Depending on the incubation conditions we found that the neuroleptic fluphenazine (FLU) affected cAMP-synthesis separately from cAMP-degradation of the NA-cAMP system in the retina. The main results were: At a relatively high theophylline concentration of 10 mM, where cAMP synthesis alone is operative, and at 0.75 Ca2+ we measured with 50 μM NA a NA-response of 110 pmol cAMP/mg prot. At a low theophylline concentration of 1 mM and again at 0.75 mM Ca2+ both cAMP-synthesis and -breakdown are operative. In this condition we found the NA-response of 26 pmol cAMP/mg prot. to be raised by 10 μM FLU to 130 pmol cAMP/mg prot. This enhancing effect might be due to inhibition of degradation of NA-induced cAMP by FLU. In the absence of extracellular calcium and again at 10 mM theophylline, 10 μM FLU raised the NA response nearly 4-fold from 42 pmol cAMP/mg prot. to 153 pmol cAMP/mg prot. The lowest effective concentration for obtaining this enhancing effect was 10 μM FLU and the effect is characterized by an apparent Km of 0.5 μM. The use of 10 mM theophylline in this condition suggests that this FLU-Ca2+ effect is confined to the synthesis part of the NA-cAMP system. The effect points to a replacement of an intramembraneous Ca2+ function by FLU. In conclusion: our results suggest that FLU inhibits degradation of NA-induced synthesis of cAMP and that the neuroleptic renders the NA-response less dependent on extracellular Ca2+.  相似文献   

17.
Classic calcium hypothesis states that depolarization-induced increase in intracellular Ca2+ concentration ([Ca2+]i) triggers vesicle exocytosis by increasing vesicle release probability in neurons and neuroendocrine cells. The extracellular Ca2+, in this calcium hypothesis, serves as a reservoir of Ca2+ source. Recently we find that extracellular Ca2+per se inhibits the [Ca2+]i dependent vesicle exocytosis, but it remains unclear whether quantal size is regulated by extracellular, or intracellular Ca2+ or both [1]. In this work we showed that, in physiological condition, extracellular Ca2+per se specifically inhibited the quantal size of single vesicle release in rat adrenal slice chromaffin cells. The extracellular Ca2+ in physiological concentration (2.5 mM) directly regulated fusion pore kinetics of spontaneous quantal release of catecholamine. In addition, removal of extracellular Ca2+ directly triggered vesicle exocytosis without eliciting intracellular Ca2+. We propose that intracellular Ca2+ and extracellular Ca2+per se cooperately regulate single vesicle exocytosis. The vesicle release probability was jointly modulated by both intracellular and extracellular Ca2+, while the vesicle quantal size was mainly determined by extracellular Ca2+ in chromaffin cells physiologically.  相似文献   

18.
Glycogenolysis, in brain parenchyma an astrocyte-specific process, has changed from being envisaged as an emergency procedure to playing central roles during brain response to whisker stimulation, memory formation, astrocytic K+ uptake and stimulated release of ATP. It is activated by several transmitters and by even very small increases in extracellular K+ concentration, and to be critically dependent upon an increase in free cytosolic Ca2+ concentration ([Ca2+]i), whereas cAMP plays only a facilitatory role together with increased [Ca2+]i. Detailed knowledge about the signaling pathways eliciting glycogenolysis is therefore of interest and was investigated in the present study in well differentiated cultures of mouse astrocytes. The β-adrenergic agonist isoproterenol stimulated glycogenolysis by a β1-adrenergic effect, which initiated a pathway in which cAMP/protein kinase A activated a Gi/Gs shift, leading to Ca2+-activated glycogenolysis. Inhibition of this pathway downstream of cAMP but upstream of the Gi/Gs shift abolished the glycogenolysis. However, inhibitors operating downstream of the Ca2+-sensitive step, but preventing transactivation-mediated epidermal growth factor (EGF) receptor stimulation, a later step in the activated pathway, also caused inhibition of glycogenolysis. For this reason the effect of EGF was investigated and it was found to be glycogenolytic. Large increases in extracellular K+ activated glycogenolysis by a nifedipine-inhibited L-channel opening allowing influx of Ca2+, known to be glycogenolysis-dependent. Small increases (addition of 5 mM KCl) caused a smaller effect by a similarly glycogenolysis-reliant opening of an IP3 receptor-dependent ouabain signaling pathway. The same pathway could be activated by GABA (also in brain slices) due to its depolarizing effect in astrocytes.  相似文献   

19.
The role of calcium (Ca2+) and its dependent protease calpain in Aeromonas hydrophila-induced head kidney macrophage (HKM) apoptosis has been reported. Here, we report the pro-apoptotic involvement of calmodulin (CaM) and calmodulin kinase II gamma (CaMKIIg) in the process. We observed significant increase in CaM levels in A. hydrophila-infected HKM and the inhibitory role of BAPTA/AM, EGTA, nifedipine and verapamil suggested CaM elevation to be Ca2+-dependent. Our studies with CaM-specific siRNA and the CaM inhibitor calmidazolium chloride demonstrated CaM to be pro-apoptotic that initiated the downstream expression of CaMKIIg. Using the CaMKIIg-targeted siRNA, specific inhibitor KN-93 and its inactive structural analogue KN-92 we report CaM-CaMKIIg signalling to be critical for apoptosis of A. hydrophila-infected HKM. Inhibitor studies further suggested the role of calpain-2 in CaMKIIg expression. CaMK Kinase (CaMKK), the other CaM dependent kinase exhibited no role in A. hydrophila-induced HKM apoptosis. We report increased production of intracellular cAMP in infected HKM and our results with KN-93 or KN-92 implicate the role of CaMKIIg in cAMP production. Using siRNA to PKACA, the catalytic subunit of PKA, anti-PKACA antibody and H-89, the specific inhibitor for PKA we prove the pro-apoptotic involvement of cAMP/PKA pathway in the pathogenicity of A. hydrophila. Our inhibitor studies coupled with siRNA approach further implicated the role of cAMP/PKA in activation of extracellular signal-regulated kinase 1 and 2 (ERK 1/2). We conclude that the alteration in intracellular Ca2+ levels initiated by A. hydrophila activates CaM and calpain-2; both pathways converge on CaMKIIg which in turn induces cAMP/PKA mediated ERK 1/2 phosphorylation leading to caspase-3 mediated apoptosis of infected HKM.  相似文献   

20.
Insulin (0.1 μM) and 1 μM epinephrine each increased the uptake and phosphorylation of 2-deoxyglucose by the perfused rat heart by increasing the apparent Vmax without altering the Km. Isoproterenol (10 μM), 50 μM methoxamine and 10 mM CaCl2 also increased uptake. Lowering of the perfusate Ca2+ concentration from 1.27 to 0.1 mM Ca2+, addition of the Ca2+ channel blocker nifedipine (1 μM) or addition of 1.7 mM EGTA decreased the basal rate of uptake of 2-deoxyglucose and prevented the stimulation due to 1 μM epinephrine. Stimulation of 2-deoxyglucose uptake by 0.1 μM insulin was only partly inhibited by Ca2+ omission, nifedipine or 1 mM EGTA. Half-maximal stimulation of 2-deoxyglucose uptake by insulin occurred at 2 nM and 0.4 nM for medium containing 1.27 and 0.1 mM Ca2+, respectively. Maximal concentrations of insulin (0.1 μM) and epinephrine (1 μM) were additive for glucose uptake and lactate output but were not additive for uptake of 2-deoxyglucose. Half-maximal stimulation of 2-deoxyglucose uptake by epinephrine occurred at 0.2 μM but maximal concentrations of epinephrine (e.g., 1 μM) gave lower rates of 2-deoxyglucose uptake than that attained by maximal concentrations of insulin. The addition of insulin increased uptake of 2-deoxyglucose at all concentrations of epinephrine but epinephrine only increased uptake at sub-maximal concentrations of insulin. The role of Ca2+ in signal reversal was also studied. Removal of 1 μM epinephrine after a 10 min exposure period resulted in a rapid return of contractility to basal values but the rate of 2-deoxyglucose uptake increased further and remained elevated at 20 min unless the Ca2+ concentration was lowered to 0.1 mM or nifedipine (1 μM) was added. Similarly, removal of 0.1 μM insulin after a 10 min exposure period did not affect the rate of 2-deoxyglucose uptake, which did not return to basal values within 20 min unless the concentration of Ca2+ was decreased to 0.1 mM. Insulin-mediated increase in 2-deoxyglucose uptake at 0.1 mM Ca2+ reversed upon hormone removal. It is concluded that catecholamines mediate a Ca2+-dependent increase in 2-deoxyglucose transport from either α or β receptors. Insulin has both a Ca2+-dependent and a Ca2+-independent component. Reversal studies suggest an additional role for Ca2+ in maintaining the activated transport state when activated by either epinephrine or insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号