首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental resin composites with incorporated polytetrafluoroethylene (PTFE) particles were developed, which theoretically could improve the surface properties of the materials, including the inhibition of bacterial adherence. To assess the surface properties in relation to biofilm formation and detachment, 23.1% (wt/wt) linear PTFE particles (FL-30) and cross-linked PTFE particles (FC-30) were incorporated into pure resin composites. Pure PTFE plates and pure resin composites without PTFE (F-0) were used as control specimens. Sucrose-dependent Streptococcus mutans biofilms were formed on the specimen blocks inside an oral biofilm reactor for various time periods and analyzed with or without application of driving forces. In addition, water contact angles and surface roughness were measured. The water contact angles of FL-30 (61.2°) and FC-30 (65.8°) were larger than that of F-0 (48.5°). The largest contact angle (107°) was detected on pure PTFE plates. However, the surfaces of FL-30, FC-30, and pure PTFE plates were rougher than that of F-0. Although the surface properties of the materials differed in terms of contact angles and roughness, these factors seemed not to affect biofilm formation on the surfaces within 5 h. Pure PTFE plates harbored almost the same amounts of biofilm as F-0. However, when a very strong driving force was applied, it was clear that there were significantly smaller amounts of biofilms retained on pure PTFE plates, which showed contact angles much higher than those of the other materials. Hydrophobicity of the resin composite was improved by incorporation of PTFE fillers. However, surface resistance against biofilm formation was not improved.  相似文献   

2.
Fungal surface hydrophobicity has many ecological functions and water contact angles measurement is a direct and simple approach for its characterization. The objective of this study was to evaluate if in-vitro growth conditions coupled with versatile image analysis allows for more accurate fungal contact angle measurements. Fungal cultures were grown on agar slide media and contact angles were measured utilizing a modified microscope and digital camera setup. Advanced imaging software was adopted for contact angle determination. Contact angles were observed in hydrophobic, hydrophilic and a newly created chronoamphiphilic class containing fungi taxa with changing surface hydrophobicity. Previous methods are unable to detect slight changes in hydrophobicity, which provide vital information of hydrophobicity expression patterns. Our method allows for easy and efficient characterization of hydrophobicity, minimizing disturbance to cultures and quantifying subtle variation in hydrophobicity.  相似文献   

3.
The contact behavior of BHK cells in tissue culture was studied in order to elucidate the mechanism for their formation of parallel arrays. It was found that when two arrays of cells meet at angles of less than 55 °, they merge and form a single array. At angles of contact greater than 55 °, these arrays crisscross. This same behavior was noted when two individual cells contacted each other. At angles up to 55 ° the contacting cell alters its direction of movement so that it comes to lie parallel to the contacted cell. At angles greater than 55 °, in contrast, crisscrossing occurs. Detailed analysis at high magnification showed that this behavior is dependent upon localized contact inhibition of cell movement.  相似文献   

4.
We investigated surface selection and adhesion of motile zoospores of a green, macrofouling alga (Enteromorpha) to self-assembled monolayers (SAMs) having a range of wettabilities. The SAMs were formed from alkyl thiols terminated with methyl (CH3) or hydroxyl (OH) groups or mixtures of CH3- and OH-terminated alkyl thiols and were characterized by measuring the advancing contact angles and by X-ray photoelectron spectroscopy. There was a positive correlation between the number of spores that attached to the SAMs and increasing contact angle (hydrophobicity). Moreover, the sizes of the spore groups (adjacent spores touching) were larger on the hydrophobic SAMs. Video microscopy of a patterned arrangement of SAMs showed that more zoospores were engaged in swimming and “searching” above the hydrophobic sectors than above the hydrophilic sectors, suggesting that the cells were able to “sense” that the hydrophobic surfaces were more favorable for settlement. The results are discussed in relation to the attachment of microorganisms to substrata having different wettabilities.  相似文献   

5.
Wettability of the leaf surface, surface tension of the liquid, and stomatal morphology control penetration of stomata by liquids. The critical surface tension of the lower leaf surface of Zebrina purpusii Brückn. was estimated to be 25 to 30 dyne cm−1. Liquids having a surface tension less than 30 dyne cm−1 gave zero contact angle on the leaf surface and infiltrated stomata spontaneously while liquids having a surface tension greater than 30 dyne cm−1 did not wet the leaf surface and failed to infiltrate stomata. Considering stomata as conical capillaries, we were able to show that with liquids giving a finite contact angle, infiltration depended solely on the relationship between the magnitude of the contact angle and the wall angle of the aperture. Generally, spontaneous infiltration of stomata will take place when the contact angle is smaller than the wall angle of the aperture wall. The degree of stomatal opening (4, 6, 8, or 10 μm) was of little importance. Cuticular ledges present at the entrance to the outer vestibule and between the inner vestibule and substomatal chamber resulted in very small if not zero wall angles, and thus played a major role in excluding water from the intercellular space of leaves. We show why the degree of stomatal opening cannot be assessed by observing spontaneous infiltration of stomata by organic liquids of low surface tension.  相似文献   

6.
Marine primary fouling films, which consist of molecular organic and microbial components, have been reported to facilitate colonization of immersed surfaces by marine fouling organisms. Larvae of the cosmopolitan fouling bryozoan Bugula neritina (Linnaeus) were offered various substrata for attachment and metamorphosis. The materials were offered (a) after detergent washing, (b) after sorption of dissolved organic molecular films, and (c) after formation of primary films consisting of both microbial and adsorbed organic material. Wettability of the substrata by sea water was determined by contact angle measurements for each substratum. On washed substrata, attachment was favored with contact angles greater than ≈45° (cos contact angle <0.7). Adsorbed surface films had no effect on the low settlement of larvae on glass and high settlement on plastics. Microbial primary films, however, made glass attractive and plastics unattractive. These settlement preference changes did not correlate with the changes in wettability observed on these substrata. Dispersion of larvae over the settlement surface was random except on wettable surfaces coated with bacterial films, where settlement was strongly clustered (contagious).  相似文献   

7.

Aims

This study aimed to analyse the effect of phosphorus (P) nutritional status on wheat leaf surface properties, in relation to foliar P absorption and translocation.

Methods

Plants of Triticum aestivum cv. Axe were grown with three rates of root P supply (equivalent to 24, 8 and 0 kg P ha?1) under controlled conditions. Foliar P treatments were applied and the rate of drop retention, P absorption and translocation was measured. Adaxial and abaxial leaf surfaces were analysed by scanning and transmission electron microscopy. The contact angles, surface free energy and work-of-adhesion for water were determined.

Results

Wheat leaves are markedly non-wettable, the abaxial leaf side having some degree of water drop adhesion versus the strong repulsion of water drops by the adaxial side. The total leaf area, stomatal and trichome densities, cuticle thickness and contact angles decreased with P deficiency, while the work-of-adhesion for water increased. Phosphorous deficient plants failed to absorb the foliar-applied P.

Conclusions

Phosphorous deficiency altered the surface structure and functioning of wheat leaves, which became more wettable and had a higher degree of water drop adhesion, but turned less permeable to foliar-applied P. The results obtained are discussed within an agronomic and eco-physiological context.  相似文献   

8.
Effect of Surface-Active Pseudomonas spp. on Leaf Wettability   总被引:6,自引:1,他引:5       下载免费PDF全文
Different strains of Pseudomonas putida and P. fluorescens isolated from the rhizosphere and phyllosphere were tested for surface activity in droplet cultures on polystyrene. Droplets of 6 of the 12 wild types tested spread over the surface during incubation, and these strains were considered surface active; strains not showing this reaction were considered non-surface active. Similar reactions were observed on pieces of wheat leaves. Supernatants from centrifuged broth cultures behaved like droplets of suspensions in broth; exposure to 100°C destroyed the activity. Average contact angles of the supernatants of surface-active and non-surface-active strains on polystyrene were 24° and 72°, respectively. The minimal surface tension of supernatants of the surface-active strains was about 46 mN/m, whereas that of the non-surface-active strains was 64 mN/m (estimations from Zisman plots). After 6 days of incubation, wheat flag leaves sprayed with a dilute suspension of a surface-active strain of P. putida (WCS 358RR) showed a significant increase in leaf wettability, which was determined by contact angle measurements. Increasing the initial concentration of bacteria and the amount of nutrients in the inoculum sprayed on leaves reduced the contact angles from 138° on leaves treated with antibiotics (control) to 43° on leaves treated with surface-active bacteria. A closely related strain with no surface activity on polystyrene did not affect leaf wettability, although it was present in densities similar to those of the surface-active strain. Nutrients alone could occasionally also increase leaf wettability, apparently by stimulating naturally occurring surface-active bacteria. When estimating densities of Pseudomonas spp. underneath droplets with low contact angles, it appeared that populations on leaves treated with a surface-active strain could vary from about 104 to 106 CFU cm−2, suggesting that the surface effect may be prolonged after a decline of the population. The possible ecological implications are discussed.  相似文献   

9.
广州市常见行道树种叶片表面形态与滞尘能力   总被引:16,自引:0,他引:16  
刘璐  管东生  陈永勤 《生态学报》2013,33(8):2604-2614
以广州市常见的18种行道树为对象,通过扫描电镜观察比较了行道树的叶表面形态结构、应用接触角测定仪测定了绿化树种叶片的接触角对滞尘能力的影响.结果表明:不同树种的滞尘量差异显著,18种植物叶片雨后第26天的最大滞尘量在0.066-1.831 g/m2,物种间相差达27倍以上.叶表面具有网状结构,气孔密度较大(20<气孔密度<60个)且气孔开口较大(如芒果)容易滞留粉尘;叶表面平滑具有蜡质层,气孔排列整齐,无明显起伏(如红花羊蹄甲、桃花心木、大叶紫薇、鹅掌藤),滞尘能力较弱.植物叶片接触角与滞尘量呈负相关(r=-0.614),接触角<90°的表现为亲水性.易润湿的植物叶片雨后第26天最大滞尘量在1.0-1.831 g/m2,叶片表面的形态结构凹凸不平,具有钩状或脊状褶皱、突起等且20<气孔密度<60范围内,测得的接触角较小(芒果、重阳木、高山榕),使得粉尘与植物叶片接触面积较大,粉尘不易从叶面脱落,滞尘能力较强.而接触角较大的盆架树、麻楝、大叶紫薇、鹅掌藤和红花羊蹄甲的滞尘量均<1.0g/m2,其特殊的表面结构和疏水的蜡质使颗粒物不易吸附在植物叶片上,因此滞尘能力较弱.由此可见,植物叶表面蜡质含量和气孔密度及其叶片接触角的大小是影响植物叶片滞尘能力的主要因素,在进行城市绿化时,适当考虑选择叶表面形态有利于滞尘的绿化树种,将可提高城市植被的环境效应.  相似文献   

10.
Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) often share a common niche within the nasopharynx, both associated with infections such as bronchitis and otitis media. This study investigated how the association between NTHi and S. pneumoniae and the host affects their propensity to form biofilms. We investigated a selection of bacterial strain and serotype combinations on biofilm formation, and the effect of contact with respiratory epithelial cells. Measurement of biofilm showed that co-infection with NTHi and S. pneumoniae increased biofilm formation following contact with epithelial cells compared to no contact demonstrating the role of epithelial cells in biofilm formation. Additionally, the influence of phosphorylcholine (ChoP) on biofilm production was investigated using the licD mutant strain of NTHi 2019 and found that ChoP had a role in mixed biofilm formation but was not the only requirement. The study highlights the complex interactions between microbes and the host epithelium during biofilm production, suggesting the importance of understanding why certain strains and serotypes differentially influence biofilm formation. A key contributor to increased biofilm formation was the upregulation of biofilm formation by epithelial cell factors.  相似文献   

11.
A review of single-crystal studies shows that α-D-glucopyranose, residues of which constitute the monomeric units of amylose, is flexible within the constraints of the Cl conformation, and that the internal differences among the rings are most clearly indicated by the variety in ring-torsion angles (or conformation angles). An index of the cumulative effect of changes in these angles is provided by the length of the virtual bond, O-1—O-4, and classification of residue geometries by virtual bond-length permits a systematic selection of suitable residues for the construction of models of amylose. By the use of D-glucopyranose residues having different geometries, it is possible to build models of (a) V-amylose helices having 6, 7, and 8 residues per turn, (b) single and double helical B-amyloses, and (c) KBr-amylose, all of which satisfy reasonable stereochemical criteria. Because no single residue can satisfactorily model all of the well known polymorphs of amylose, it is suggested that structural determinations that utilize a rigid residue approximation should make use of the full range of known, residue geometries.  相似文献   

12.
We compared the abilities of media from agar plates surrounding swarming and nonswarming cells of Salmonella enterica serovar Typhimurium to wet a nonpolar surface by measuring the contact angles of small drops. The swarming cells were wild type for chemotaxis, and the nonswarming cells were nonchemotactic mutants with motor biases that were counterclockwise (cheY) or clockwise (cheZ). The latter strains have been shown to be defective for swarming because the agar remains dry (Q. Wang, A. Suzuki, S. Mariconda, S. Porwollik, and R. M. Harshey, EMBO J. 24:2034-2042, 2005). We found no differences in the abilities of the media surrounding these cells, either wild type or mutant, to wet a low-energy surface (freshly prepared polydimethylsiloxane); although, their contact angles were smaller than that of the medium harvested from the underlying agar. So the agent that promotes wetness produced by wild-type cells is not a surfactant; it is an osmotic agent.  相似文献   

13.
In high knee flexion, contact between the posterior thigh and calf is expected to decrease forces on tibiofemoral contact surfaces, therefore, thigh-calf contact needs to be thoroughly characterized to model its effect. This study measured knee angles and intersegmental contact parameters in fifty-eight young healthy participants for six common high flexion postures using motion tracking and a pressure sensor attached to the right thigh. Additionally, we introduced and assessed the reliability of a method for reducing noise in pressure sensor output. Five repetitions of two squatting, two kneeling, and two unilateral kneeling movements were completed. Interactions of posture by sex occurred for thigh-calf and heel-gluteal center of force, and thigh-calf contact area. Center of force in thigh-calf regions was farther from the knee joint center in females, compared to males, during unilateral kneeling (82 and 67 mm respectively) with an inverted relationship in the heel-gluteal region (331 and 345 mm respectively), although caution is advised when generalizing these findings from a young, relatively fit sample to a population level. Contact area was larger in females when compared to males (mean of 155.61 and 137.33 cm2 across postures). A posture main effect was observed in contact force and sex main effects were present in onset and max angle. Males had earlier onset (121.0°) and lower max angle (147.4°) with onset and max angles having a range between movements of 8° and 3° respectively. There was a substantial total force difference of 139 N between the largest and smallest activity means. Force parameters measured in this study suggest that knee joint contact models need to incorporate activity-specific parameters when estimating loading.  相似文献   

14.
A bubble contact angle method was used to determine interfacial free-energy characteristics of polystyrene substrata in the presence and absence of potential surface-conditioning proteins (bovine glycoprotein, bovine serum albumin, fatty acid-free bovine serum albumin), a bacterial culture supernatant, and a bacterial exopolymer. Clean petri dish substrata gave a contact angle of 90°, but tissue culture dish substrata were more hydrophilic, giving an angle of 29° or less. Bubble contact angles at the surfaces exposed to the macromolecular solutions varied with the composition and concentration of the solution. Modification by pronase enzymes of the conditioning effect of proteins depended on the nature of both the substratum and the protein, as well as the time of addition of the enzyme relative to the conditioning of the substratum. The effects of dissolved and substratum-adsorbed proteins on the attachment of Pseudomonas sp. strain NCMB 2021 to petri dishes and tissue culture dishes were consistent with changes in bubble contact angles (except when proteins were adsorbed to tissue culture dishes before attachment) as were alterations in protein-induced inhibition of bacterial attachment to petri dishes by treatment with pronase. Differences between the attachment of pseudomonads to petri dishes and tissue culture dishes suggested that different mechanisms of adhesion are involved at the surfaces of these two substrata.  相似文献   

15.
From φ, ψ data on eleven proteins, a 20 × 20 × 20 Table of tripeptides has been computed to evaluate the influence of nearest neighbors (n ? 1) and (n + 1) on the φ, ψ angles of amino acid (n). From this Table, having removed values for horse cytochrome c and using the sequences of 18 cytochromes c and the procedure of Kabat &; Wu (1972), an attempt was made to select a set of φ, ψ angles for positions 2 to 103 of cytochrome c and compare them with the values obtained from the atomic co-ordinates. Agreement was good for 56, intermediate for 29 and poor for 17 residues. Eleven of the 17 with poor agreement were residues contacting the heme or adjacent to a contacting residue. Moreover, 6 of the 17 poor values were in regions of the φ, ψ plot for which no occurrences in the ten known proteins were reported, and for four others known values were minimal so that no basis for selection existed. Frequency distributions on the Ramachandran plot (Ramachandran &; Sasisekharan, 1968) of all φ, ψ values in the eleven known proteins are given as well as a contour plot for such frequencies. The uses and limitations of the procedure are discussed and the need for obtaining accurate estimates of errors in experimentally determined φ, ψ angles is emphasised.  相似文献   

16.
Adler's contact pressure model for Fibonacci phyllotaxis is examined theoretically. It is shown that the model, as it stands, does not account for Fibonacci phyllotaxis, since it requires, but does not provide, a mechanism for initiating new primordia with increasingly greater precision as phyllotaxis rises. Modifications are suggested which remedy this deficiency in the model; one of these modifications involves a combination of Adler's model with Mitchison's model.From a comparison of the ranges of divergence angles permitted by Adler's model against Fujita's measurements of divergence angles in plants with low phyllotaxis, it is shown that the modified contact pressure model, if based on the concept of mechanical pressures between primordia in contact, cannot account for the divergence angles found in low phyllotaxis systems. However it is shown that this deficiency can be overcome if the contact pressure effect is regarded as a chemical phenomenon, mediated by a growth inhibitor produced by the prirnordia and moving more readily in vertical directions than in other directions.Mitchison's model, which is based on the concepts of an expanding apex and primordium initiation by existing primordia, is shown to account for Fibonacci phyllotaxis only if phyllotaxis rises sufficiently slowly; to guarantee that an Fn + Fn+1 system can develop there must already be at least Fn+1 primordia present in an Fn?1 + Fn system, at least Fn primordia in an Fn?2 + Fn?1 system, and so on down to at least three primordia in a 1 + 2 system, making a total of at least Fn+3?5 primordia (where Fn = nth term of the Fibonacci series with F1 = F2 = 1). Adler's model, modified, requires only that Fn + 1 primordia be present with divergence angles in the range 120–180° to guarantee that an Fn + Fn + 1 system can develop.  相似文献   

17.
A novel technique of “anterior offsetting” of the humeral head component to address posterior instability in total shoulder arthroplasty has been proposed, and its biomechanical benefits have been previously demonstrated experimentally. The present study sought to characterize the changes in joint mechanics associated with anterior offsetting with various amounts of glenoid retroversion using cadaver specimen-specific 3-dimensional finite element models. Specimen-specific computational finite element models were developed through importing digitized locations of six musculotendinous units of the rotator cuff and deltoid muscles based off three cadaveric shoulder specimens implanted with total shoulder arthroplasty in either anatomic or anterior humeral head offset. Additional glenoid retroversion angles (0°, 10°, 20°, and 30°) other than each specimen׳s actual retroversion were modeled. Contact area, contact force, peak pressure, center of pressure, and humeral head displacement were calculated at each offset and retroversion for statistical analysis. Anterior offsetting was associated with significant anterior shift of center of pressure and humeral head displacement upon muscle loading (p<0.05). Although statistically insignificant, anterior offsetting was associated with increased contact area and decreased peak pressure (p > 0.05). All study variables showed significant differences when compared between the 4 different glenoid retroversion angles (p < 0.05) except for total force (p < 0.05). The study finding suggests that the anterior offsetting technique may contribute to joint stability in posteriorly unstable shoulder arthroplasty and may reduce eccentric loading on glenoid components although the long term clinical results are yet to be investigated in future.  相似文献   

18.
Grandparental presence is known to correlate with the number of grandchildren born, and this effect may vary according to grandparental sex and lineage. However, existing studies of grandparental effects on fertility mostly concern traditional subsistence societies, while evidence from contemporary developed societies is both scarce and mixed. Here, we explore how grandparents affect the transition to second and subsequent children in the contemporary United Kingdom. The longitudinal Millennium Cohort Study (n = 10,295 families) was used to study the association between grandparental investment and parents’ probability of having a new child within 4.5 years. Results show that contact with paternal grandparents is associated with higher probability of parents having a second child. In contrast, contact with maternal grandparents is associated with lower probability of having a third or subsequent child. Kin may have opposite effects on fertility even in contemporary societies, which may explain the lack of consistent effects of grandparental investment on fertility in previous studies.  相似文献   

19.
Prairie cordgrass has been reported as a multi-polyploidy species having three cytotypes: tetra- (2n?=?4x?=?40), hexa- (2n?=?6x?=?60), and octoploid (2n?=?8x?=?80). A mixed-ploidy population comprising tetraploids and hexaploids was recently found at a single location in Illinois. However, adaptation and morphological differences between tetra- and hexaploids occurring in natural conditions as well as the contact zones of these cytotypes have yet to be determined. In this study, the cytotypes of 147 individuals of prairie cordgrass collected across the contact zone (4x?+?6x) were determined by flow cytometry using somatic G1 nuclei, and the results were confirmed by chromosome counts. Nineteen morphological characteristics were compared between the cytotypes. Tetra- and hexaploid plants have 2C genome sizes of 1.57 and 2.36?pg with chromosome counts of 40 and 60, respectively. This increase in polyploidy resulted in a greater variability of morphological expression in Illinois prairie cordgrass. Substantial differences in the flowering time, stomatal size, and plant morphological characteristics were observed between tetra- and hexaploids. The results indicate that the increasing of ploidy level in prairie cordgrass resulted in increased plant size in ploidy mixtures. The recent event of ploidy mixtures in prairie cordgrass natural populations offers unique opportunities for studying the formation and establishment of neopolyploidy.  相似文献   

20.
The conjugation of Mycobacterium tuberculosis with DNFB results in the formation of a haptenated preparation that induces the formation of contact sensitivity when administered subcutaneously. This contact sensitivity can be measured in vivo by topical application of the free chemical and in vitro by lymphocyte transformation. The antigens suitable for the in vitro detection are those preparations obtained by the haptenation of cell membranes. Haptenation of serum proteins, of homologous and heterologous origin, does not produce antigens suitable for in vitro assay. The antigen requirements for the in vitro transformation assay of contact sensitivity are similar for adjuvant induced sensitivity as well as for free chemical induced sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号