首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Juvenile hormone esterase activity has been found during the intramoult period of each larval stadium in Trichoplusia ni. The activity is indistinguishable from that occurring during the final larval stadium, on the basis of its four isoelectric forms and kinetic data. The 4th- to 5th-instar intramoult peak in activity also occurs in other Lepidoptera (Heliothis virescens, Spodoptera exigua, Manduca sexta and Hyphantria cunea). Further, the final species also possessed a peak of activity during the intramoult period to the penultimate larval instar. The findings have important implications for the current concept that the function of juvenile hormone esterase is, by reason of its anti-juvenile hormone action, an enzyme of the last larval instar which enables metamorphosis to begin.  相似文献   

2.
Haemolymph levels of juvenile hormone esterase, 1-naphthyl acetate esterase, and juvenile hormone were measured in synchronously staged diapause and nondiapause larvae of the European corn borer, Ostrinia nubilalis. Juvenile hormone esterase levels were monitored using juvenile hormone I as a substrate while juvenile hormone titres were measured with the Galleria bioassay. Haemolymph of nondiapause larvae showed two peaks of juvenile hormone hydrolytic activity: one near the end of the feeding phase and a smaller one just prior to pupal ecdysis. These peaks of enzyme activity correlated well with the low levels of haemolymph juvenile hormone. Juvenile hormone titres were high early in the stadium then showed a second peak during the prepupal stage coinciding with low esterase activity. Diapause haemolymph had peak juvenile hormone esterase activity nearly 4 times the nondiapause level, reaching a peak near the end of the feeding phase. Diapause-destined larvae retained high juvenile hormone titres even during the rise of the high esterase levels. 1-naphthyl acetate esterase levels did not correlate with the juvenile hormone esterase levels in either the diapause or nondiapause haemolymph. High levels of 1-naphthyl acetate esterase activity were associated with moulting periods.  相似文献   

3.
Immunohistochemical studies were conducted to determine tissue(s) which might be involved in the uptake of juvenile hormone esterase (JHE) from larval hemolymph. Purified JHE expressed by a recombinant baculovirus carrying the JHE gene from Heliothis virescens was injected into the hemolymph of second stadium larvae of Manduca sexta. Immunoreactive material detected with specific antibodies against the natural JHE purified by affinity chromatography from the hemolymph of H. virescens was localized only in the dorsal regions of whole larval mounts. Further immunohistochemical studies of whole and dissected larvae at the light and electron microscopic level showed the specific localization of JHE in pericardial cells. Western blot analysis confirmed the localization of injected JHE in pericardial cells and also indicated some apparent degradation of the incorporated JHE. Similar results were obtained with the JHE from H. virescens injected into larvae of H. virescens. These results indicate that pericardial cells are involved in the uptake of injected JHE from insect hemolymph and its degradation.  相似文献   

4.
Treatment of post-feeding (early day 3; wandering phase) last-stadium larvae of the cabbage looper, Trichoplusia ni, with the anti-juvenile hormone, fluoromevalonolactone, prevented the normal ecdysis to the pupa. It caused the formation of larval-pupal intermediates, a dose-dependent delay in the time of tanning, and a decrease in juvenile hormone esterase activity at the time of the prepupal juvenile hormone esterase peak. Fluoromevalonolactone was inactive as juvenile hormone esterase inhibitor in vitro. Conversely, juvenile hormone I accelerated the time of tanning, induced the early appearance of juvenile hormone esterase activity, and prevented adult eclosion. Although most of the larvae that were treated with fluoromevalonolactone immediately after the prepupal burst of juvenile hormone (late on day 3; post-spinning phase) still became larval-pupal intermediates, the time of tanning and juvenile hormone esterase activity were close to normal. Topical treatment of day-3 larvae with radiolabelled juvenile hormone I resulted in the rapid appearance and decline of radiolabelled juvenile hormone I in the haemolymph which was associated with the increased production of juvenile hormone I acid and the induced appearance of juvenile hormone esterase activity. Thus, in post-feeding last-stadium larvae of T. ni, juvenile hormone seems to be necessary for the proper formation of the pupa. Juvenile hormone is also involved in determining the time of pupation, and it appears to induce its own degradation.  相似文献   

5.
Juvenile hormone esterase titres were monitored in gate I and gate II last instar larvae of Trichoplusia ni using JH III as substrate. Two peaks of activity were observed for both gate I and gate II larvae, although the first and second juvenile hormone esterase peaks for the gate II larvae are extended and delayed one day, respectively. Head or thoracic ligations before the prepupal stage lower or block the appearance of both esterase peaks. Juvenile hormone I and II, as well as homo and dihomo juvenoids can induce the second juvenile hormone esterase peak in both normal and ligated larvae, and increase the esterase titre during the first peak in nonligated larvae. Induction of the juvenile hormone esterases is possible in non-ligated larvae as soon as the moult to the last instar has occurred and in ligated larvae as soon as the first esterase peak has started to decline. Distinct mechanisms of regulation are present for the first and second juvenile hormone esterase peaks. Juvenile hormone does not appear to be involved in regulating its own metabolism by directly inducing the first esterase peak; however, evidence is consistent with a brief burst of juvenile hormone which occurs prior to pupation inducing the production of the second peak of juvenile hormone esterase activity.  相似文献   

6.
The effects of juvenile hormone, antiallatotropins, selected surgical procedures and starvation on the juvenile hormone esterase levels in Galleria larvae and pupae were investigated. JH reduced JH esterase activity in larvae but induced the enzyme in 1-day-old pupae. In vitro studies confirmed that the peak of synthesis and/or release of JH esterase from the fat body of last instar larvae occurred 4 days after ecdysis. These studies also showed that fat body from JH-treated larvae released much less enzyme than controls. Antiallatotropins, precocene 2 and ZR 2646 also reduced JH esterase levels in larvae, but ZR 2646 induced JH esterase in pupae. In starved larvae, JH esterase did not increase during the first five days. A minimum of 36 hr of feeding was necessary for the larval esterase activity to increase on schedule on day 4 of the last larval stadium. When day-l larvae were ligated behind the head or the prothorax, they had lower JH esterase levels and yet showed a slight increase in the enzyme when the larvae reached the age of 4 days. The significance of these results is discussed in relation to the possible control of esterase activity during metamorphosis.  相似文献   

7.
《Insect Biochemistry》1989,19(6):557-571
Topical application of the juvenoid, epofenonane, to last stadium postwandering larvae of Trichoplusia ni caused a precocious elevation of juvenile hormone esterase (JHE) activity that was tissue speific and time dependent. This increase in enzyme activity over controls was most dramatic in the hemolymph, whereas increases in the fat body were lower. Antibodies raised against JHE reacted on Western blots with a fat body and hemolymph protein present in epofenonane treated and untreated last stadium day 3 larvae. The abundance of this protein, which comigrated with JHE, closely coincided with the temporal increases in JHE catalytic activity that occurred in response to treatment in vivo with epofenonane.The presence of epofenonane (5–10,000 nM) in the medium at the start of fat body incubations failed to shift the temporal appearance of JHE activity or boost activity levels significantly over those of controls. If larvae were treated in vivo with epofenonane before fat body tissue was removed, only a small, but significant increase in JHE activity was found in vitro. The rate of enzyme secretion was insufficient to account for the rapid increases in enzyme activity that occur in the hemolymph in response to epofenonane, even though tissue held in vitro was deemed viable by monitoring lactate dehydrogenase activity in the medium, fat body intracellular ATP, and the incorporation of [35S]methionine into fat body protein. Fat body tissue removed from various aged last stadium larvae released enzyme at different rates in vitro.  相似文献   

8.
The tissue distribution, developmental control, and induction of juvenile hormone esterase (JHE) mRNA was examined in Heliothis virescens using an 800-base pair fragment of a JHE cDNA clone. Northern hybridization analysis of poly(A)+RNA from fat body and integument of fifth stadium larvae indicated the presence of a single JHE mRNA species having an estimated length of 3 kilobases. On Day 2 of the fifth stadium (L5D2), basal JHE mRNA levels were 3-fold higher in the integument than the fat body, which correlated with the higher specific activity of the enzyme in the integument at this time. However, JHE mRNA levels in the fat body on Day 4 of the fifth stadium were 9-fold higher than on Day 2, while mRNA levels in the integument remained the same. This endogenous increase in JHE mRNA and activity in the fat body occurred at the time of peak hemolymph JHE activity. JHE mRNA was not detected in third stadium larvae which have very low levels of JHE activity. Treatment of L5D2 larvae with the juvenile hormone mimic epofenonane resulted in a 7- and 14-fold increase in the level of JHE mRNA in the integument and fat body, respectively. The mRNA induced in both tissues was of the same estimated length as the constitutively expressed message. The data indicate that the developmental regulation and induction of JHE can occur at the level of mRNA. There is evidence that the fat body secretes more JHE than does the integument and could be the major source of hemolymph JHE.  相似文献   

9.
As in the tobacco hornworm Manduca sexta, the synthetic juvenile hormone analogue ETB (ethyl 4-[2-(tert-buthylcarbonyloxy)butoxy]benzoate) showed both juvenile hormone-like and anti-juvenile hormone activities in the silkworm, Bombyx mori. When ETB was topically applied to allatectomized 4th-instar larvae, the compound counteracted the effects of allatectomy, such as induction of precocious metamorphosis and black pigmentation in the larval markings. Therefore, ETB had juvenile hormone activity, but it could neither induce brown pigmentation in the markings nor induce an extra-larval moult as can juvenile hormone.When intact 3rd-instar larvae were treated with the compound, the majority underwent precocious metamorphosis in the 4th-instar, and later formed fertile miniature adults. Some moulted into larval-pupal intermediates or 5th-instar larvae with darkened larval markings and/or with abnormality of specific regions of the silk-gland. The optimal dose for such anti-juvenile effects was about 1–10 μg/larva, and higher doses showed less activity. Such anti-juvenile hormone effects of ETB were counteracted by administration of the juvenile hormone analogue, methoprene, before a certain critical time in the 4th-instar. The corpora allata of treated larvae appeared cytologically normal, and the corpora allata from ETB-induced miniature moths secreted juvenile hormone when implanted into allatectomized 4th-instar larvae.  相似文献   

10.
Juvenile hormone (JH) esterase was purified greater than 1000-fold in one step from hemolymph and whole larval homogenates from the last larval instar of Trichoplusia ni to give a single diffuse band that migrates at Mr = 64,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purification was based on an affinity chromatography procedure that employs trifluoromethyl ketone ligands. Isoelectric focusing of the purified preparations resulted in multiple bands that coincided to all significant hydrolysis of juvenile hormone detected in this manner. Kinetic experiments using optically pure enantiomers of JH II as substrates showed the two main electromorphs of JH esterase from the hemolymph to have apparently identical kinetic parameters as well as a similar capability to distinguish between substrates that differ in the orientation of the epoxide moiety of JH. However, the enzyme could hydrolyze esters lacking the JH structure. The proteins were shown to be monomers and to have asparagine-linked oligosaccharides, most likely of hybrid structure. Immunochemical and other evidence showed that the affinity-purified proteins were responsible for all significant JH esterase activity during periods of rapid esterolysis in vivo.  相似文献   

11.
The regulation of juvenile hormone esterase in last-instar diapause and nondiapause larvae of Ostrinia nubilalis was investigated using topically applied juvenile hormone I and a juvenile hormone mimic, methoprene. The influence of the head on juvenile hormone esterase was also investigated. Both juvenile hormone and methoprene caused increases in esterase levels when applied to feeding animals. Neither the hormone nor methoprene was capable of elevating nondiapause esterase activity to levels comparable to those found in untreated prediapause larvae. The esterase levels could be elevated in the larval body, without the head, during prepupal development of nondiapause larvae and in post-feeding diapause larvae. In both cases, juvenile hormone or methoprene induced juvenile hormone esterase activity in head-ligated animals. Topically applied methoprene prolonged feeding and delayed the onset of diapause. When methoprene was applied to larvae that had entered diapause, it disrupted diapause by inducing a moult.  相似文献   

12.
Weight and time of moult during the last instar of the cabbage looper (Trichoplusia ni) were examined and used to select last instar larvae that had similar rates of development. Haemolymph protein content and titres of haemolymph esterases hydrolyzing juvenile hormone I, juvenile hormone III, and α-naphthyl acetate were monitored during the last instar using these closely timed larvae. Juvenile hormone I and juvenile hormone III esterase profiles were very similar and differed markedly from the α-naphthyl acetate esterase and protein content profiles. Two major peaks of juvenile hormone esterase activity were observed, one before ecdysone release and the other just prior to pupal ecdysis. Juvenile hormone I was hydrolyzed 15 times faster than juvenile hormone III when assayed at 5 × 10?6 M.  相似文献   

13.
Major and minor electrophoretic variants of juvenile hormone esterase (JHE) were found in the hemolymph of last instar larvae of Trichoplusia ni, both before and after metamorphic commitment. The average ratios of activity of the two major forms were similar during both last stadium peaks in activity. Immunological analysis showed that the hemolymph concentration of JHE during this stadium paralleled the level of enzymatic activity, and no putative higher molecular weight, inactive forms were detected. Immunological analysis provided the first evidence of relatedness of major and minor forms. After hormonal stimulation, the concentration of the two major forms increased concomitantly and by a similar proportion, suggesting that charge variation, at least for these two major forms, is not a point of hormonal or developmental regulation of JHE.  相似文献   

14.
Juvenile hormone esterase (JHE) activity, ecdysone titre, and developmental competence of the epidermis were determined in last instar larvae and pupae of Galleria mellonella. Haemolymph JHE activity reaches a peak before increases are observed in ecdysone titre both during larval-pupal and pupal-adult metamorphosis. JHE activity is low during the penultimate larval instar although general esterase activity is relatively high. In last instar larvae two ecdysone peaks are noted after the increase in JHE activity. Furthermore, epidermal cell reprogramming occurs just after the increase in haemolymph JHE activity and possibly before the first increase in ecdysone titre. This was tested by injection of high doses of β-ecdysone into last instar larvae of different ages resulting in rapid cuticle deposition. Reprogramming occurred if the resulting cuticle was of the pupal type. These correlative observations may increase our understanding of the relative importance of an ecdysone surge in the absence of JH in reprogramming of the insect epidermis.  相似文献   

15.
《Insect Biochemistry》1987,17(7):989-996
Juvenile hormone (JH), JH acid, and ecdysteroid titer, and JH esterase activity, were measured in hemolymph from synchronous last stadium larvae of Manduca sexta. JH and JH acids were identified and quantified by GC-MS: JH I and II (and the corresponding acids) were the predominant JH homologs detected in males or females. Maximum levels of JHs and JH acids were observed just following ecdysis to the fifth (last) stadium (day 0, 0 hr) and at the prepupal stage (day 6–day 7). JH titer (≥ 1 ng JH I or II/ml) was higher than JH acid titer (∼0.7 ng JH I acid or JH II acid/ml) in very early fifth stadium larvae. However, this was reversed at the prepupal stage when higher titers of JH acids than JH were observed. JH acid titer began to rise prior to JH titer at the prepupal stage. JH esterase activity rose significantly only after JH or JH acid titers had begun to decline; maximum JH esterase activity was observed at day 3 and day 8. Ecdysteroid titer (measured by RIA) decreased during the last larval molt to a low level by day 0 (0 hr) and to undetectable levels at day 0 (12 hr) of the fifth stadium, by which time JH and JH acid levels had also declined substantially. Just prior to wandering, a small ecdysteroid peak was noted and a slightly elevated level of ecdysteroid was maintained for a further 2 days before a surge in ecdysteroid titer occurred at the prepupal stage, in synchrony with JH and JH acid titer maxima. There was no sexual dimorphism in timing or magnitude of JH, JH acid, and ecdysteroid titer or JH esterase activity.  相似文献   

16.
17.
When tobacco hornworm (manduca sexta) larvae are starved for 5 days immediately after ecdysis to the 5th instar, then fed normal diet, they undergo a supernumerary moult instead of metamorphosis. During starvation the titre of juvenile hormone in the haemolymph increased to a maximum of 3 ng juvenile hormone I equivalents/ml (determined by the black Manduca larval bioassay) on the fourth day of starvation, then began a decline which continued through the subsequent feeding period. The changes in juvenile hormone titre were not attributable to changes in haemolymph volume during starvation (only a 5% decrease) and subsequent feeding. During starvation the esterase activity of the haemolymph declined 4-fold with a 2-fold larger decrease in the DFP-insensitive, presumably juvenile hormone specific, esterase activity. Both the total and the juvenile hormone-specific esterase activity then increased as a function of larval weight during the subsequent feeding period. As growth was slow in the prolongedly starved larvae, sufficient juvenile hormone was present at the time of prothoracicotropic hormone (PTTH) and ecdysteroid release at the beginning of the fourth day of feeding to prevent metamorphosis.  相似文献   

18.
Juvenile hormone III was identified in whole-body extracts of larval and adult Aedes aegypti. No juvenile hormone I or II was detected. The activity of juvenile hormones I, II and III, as well as two juvenile hormone analogues (methoprene, or ZR-515 and ZR-371) was examined in adults, whereas the activity of only the three naturally occurring hormones was studied in larvae. In the larval assay fourth-instar larvae were exposed to the juvenile hormones and their ability to eclose normally was measured. In the adult assay, abdomens were removed shortly after eclosion and the juvenile hormones or analogues were applied topically. Growth of the oöcytes to the resting stage was measured. In larval and adult bioassays juvenile hormone I was 10 × and 25 × more active, respectively, than juvenile hormone III. The bioassay and titre data taken together suggest that juvenile hormone III is the sole physiologically necessary juvenile hormone in Aedes.  相似文献   

19.
Normal rates of juvenile hormone synthesis, cell number and volume of corpora allata were measured in penultimate and final-instar male larvae of Diploptera punctata. The rate of juvenile hormone synthesis per corpus allatum cell was highest on the 4th day of the penultimate stadium, declined slowly for the remainder of that stadium, and rapidly after the first day of the final stadium.Regulation of the corpora allata in final-instar males was studied by experimental manipulation of the corpora allata followed by in vitro radiochemical assay of juvenile hormone synthesis. Nervous inhibition of the corpora allata during the final stadium is suggested by the observation that rates of juvenile hormone synthesis increased following denervation of the corpora allata at the start of the stadium; this operation induced a supernumerary larval instar. Juvenile hormone synthesis by corpora allata denervated at progressively later ages in the final stadium and assayed after 4 days decreased with age at operation. This suggests an increasingly unfavourable humoral environment in the final stadium, which was confirmed by the low rate of juvenile hormone synthesis of adult female corpora allata implanted into final-instar larvae. Thus, inhibitory factors or lack of stimulatory factors in the haemolymph may act with neural inhibition to suppress juvenile hormone synthesis in final-instar males.  相似文献   

20.
Juvenile hormone III levels and juvenile hormone esterase activity were measured in whole body extracts and haemolymph, respectively, of female Aedes aegypti. The amount of juvenile hormone, determined by coupled gas chromatography-mass spectrometry, rose over the first 2 days after emergence from 0.7 to 7.5 ng/g, and then slowly fell over the next 5 days in females not given a blood meal. In females fed blood, juvenile hormone levels fell during the first 3 h to 2.3 ng/g. The rate of decline then slowed so that levels had reached their lowest point (0.4 ng/g) by 24 h after the blood meal. By 48 h, levels started to rise again until 96 h when they were equivalent to pre-blood meal levels.Juvenile hormone esterase activity in the haemolymph of females was measured with a partition assay. The esterase activity showed small fluctuations in unfed animals. In females fed blood on the 3rd day after emergence, the juvenile hormone esterase activity rose slowly to a peak at 36 h. At 42 h it began to decline, and by 66 h it had returned to pre-blood meal levels. Thus, juvenile hormone levels and juvenile hormone esterase activity were inversely correlated after a blood meal. Both the ovary and fat body produce juvenile hormone esterase in organ culture.Juvenile hormone III acid was the only metabolite produced after incubation of haemolymph with racemic-labelled juvenile hormone III. Juvenile hormone acid, diol, and acid diol were the main metabolic products seen in whole animal extracts after topical application of labelled hormone. About 25% of topically applied, labelled juvenile hormone appears in the haemolymph as the acid diol, and 50% of this is excreted in the urine immediately after the blood meal. Topical application of BEPAT (S-benzyl-O-ethyl phosphoramidothiolate), a specific inhibitor of juvenile hormone esterase, resulted in the absence of juvenile hormone acid and a reduction in the acid diol. Both BEPAT and methoprene, a juvenile hormone analogue, caused a reduction in egg hatch when applied topically 30 h after a blood meal, demonstrating that the decline in juvenile hormone levels after a blood meal is necessary for normal egg development and suggesting that the decline is mediated, at least in part, by juvenile hormone esterase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号