首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estradiol cypionate (ECP) was used in beef heifers receiving a controlled internal drug release (CIDR; insertion = Day 0) device for fixed-time AI (FTAI) in four experiments. In Experiment 1, heifers (n = 24) received 1mg ECP or 1mg ECP plus 50mg commercial progesterone (CP) preparation i.m. on Day 0. Eight or 9 days later, CIDR were removed, PGF was administered and heifers were allocated to receive 0.5mg ECP i.m. concurrently (ECP0) or 24h later (ECP24). There was no effect of treatment (P = 0.6) on mean (+/-S.E.M.) day of follicular wave emergence (3.9+/-0.4 days). Interval from CIDR removal to ovulation was affected (P<0.05) only by duration of CIDR treatment (88.3+/-3.8h versus 76.4+/-4.1h; 8 days versus 9 days, respectively). In Experiment 2, 58 heifers received 100mg progesterone and either 5mg estradiol-17beta or 1mg ECP i.m. (E-17beta and ECP groups, respectively) on Day 0. Seven (E-17beta group) or 9 days (ECP group) later, CIDR were removed, PGF was administered and heifers received ECP (as in Experiment 1) or 1mg EB 24h after CIDR removal, with FTAI 58-60h after CIDR removal. Follicular wave emergence was later (P<0.02) and more variable (P<0.002) in heifers given ECP than in those given E-17beta (4.1+/-0.4 days versus 3.3+/-0.1 days), but pregnancy rate was unaffected (overall, 69%; P = 0.2). In Experiment 3, 30 heifers received a CIDR device and 5mg E-17beta, with or without 100mg progesterone (P) i.m. on Day 0. On Day 7, CIDR were removed and heifers received ECP as described in Experiment 1 or no estradiol (Control). Intervals from CIDR removal to ovulation were shorter (P<0.05) in ECP0 (81.6+/-5.0h) and ECP24 (86.4+/-3.5h) groups than in the Control group (98.4+/-5.6h). In Experiment 4, heifers (n = 300) received a CIDR device, E-17beta, P, and PGF (as in Experiment 3) and after CIDR removal were allocated to three groups (as in Experiment 2), with FTAI 54-56h (ECP0) or 56-58h (ECP24 and EB24) after CIDR removal. Pregnancy rate did not differ among groups (overall, 63.6%, P = 0.96). In summary, although 1mg ECP (with or without progesterone) was less efficacious than 5mg E-17beta plus 100mg progesterone for synchronizing follicular wave emergence, 0.5mg ECP (at CIDR removal or 24h later) induced a synchronous ovulation with an acceptable pregnancy rate to fixed-time AI.  相似文献   

2.
A series of 3 experiments were conducted to evaluate superovulatory response following exogenously controlled follicular wave emergence in cattle. In Experiment 1 the hypothesis was tested that treatments with progestogen plus estradiol-17beta (E-17beta) would result in the emergence of a wave of ovarian follicles that are as responsive to exogenous gonadotropins as those of a spontaneous follicular wave. Beef cows and heifers either received a progestogen ear implant on Day 0 (ovulation) plus 5 mg im E-17beta on Day 1 and were superstimulated on Day 5, or did not receive implants but were superstimulated on Day 8 (expected day of emergence of the second follicular wave). The cattle received 400 mg NIH-FSH-P1 of Folltropin-V, given in a single subcutaneous injection or twice daily as intramuscular injections over 4 d. No significant differences were detected between the 2 groups in the number of corpora lutea (CL), ova/embryos collected, fertilized ova and transferable embryos. In Experiment 2 superstimulatory responses to a single subcutaneous injection of Folltropin-V were compared between heifers in which follicle wave emergence was synchronized with progestogen plus E-17beta at unknown stages of the estrous cycle with those treated following a conventional method of superstimulation at middiestrus. Superstimulation 4 d after E-17beta treatment in heifers with progestogen implants resulted in a similar superovulatory response and higher fertilization rates than those initiated 8 to 12 d after estrus. In Experiment 3 the ovarian response to a single- versus multiple-injection superstimulatory treatment protocol was compared in heifers given progestogen plus E-17beta to induce synchronous wave emergence. The number of CL, ova/embryos collected, fertilized ova and viable embryos were not different between groups. Superstimulatory treatments initiated 4 d after E-17beta treatment of cattle with progestogen implants resulted in comparable ovulatory responses to treatments initiated at the time of spontaneous wave emergence or during middiestrus. Synchronizing wave emergence in a group of randomly cycling cattle obviated the need of estrus detection and synchronization prior to superstimulation.  相似文献   

3.
Three experiments were conducted to: (1) compare the effect of three oestradiol formulations on gonadotrophin release in ovariectomised cows; (2) compare the effects of either oestradiol-17beta (E-17beta) or oestradiol benzoate (EB), given at two doses, on the synchrony of ovarian follicular wave emergence in CIDR-treated beef cattle; and (3) determine the timing of ovulation of the dominant follicle of a synchronised follicular wave following administration of E-17beta or EB 24h after progesterone withdrawal. In Experiment 1, ovariectomised cows (n = 16) received a once-used CIDR on Day 0 (beginning of the experiment) and were allocated randomly to receive 5mg of E-17beta, EB or oestradiol valerate (EV) plus 100mg progesterone i.m. The CIDR inserts were removed on Day 7. There were effects of time, and a treatment-by-time interaction (P < 0.0001) for plasma concentrations of both oestradiol and FSH. Plasma oestradiol concentrations peaked 12h after treatment, with highest (P < 0.01) peak concentrations in cows given E-17beta; estradiol concentrations subsequently returned to baseline by 36 h in E-17beta-treated cows and by 96 h in EB- and EV-treated cows. Plasma FSH concentrations decreased by 12h after oestradiol treatment in all groups (P < 0.0001), reached a nadir at 24h, and increased by 60 h in all groups; plasma FSH reached higher (P < 0.02) concentrations in E-17beta-treated than in EB- or EV-treated cows. In Experiment 2, non-lactating Hereford cows (n = 29) received a new CIDR on Day 0 (beginning of the experiment), and were assigned randomly to receive 1 or 5mg of E-17beta or EB i.m. on Day 1. On Day 8, CIDR were removed and PGF was given. Transrectal ultrasonography was done once daily from 2 days before CIDR insertion to 2 days after CIDR removal, and then twice-daily to ovulation. Although there was no difference among groups in the interval from oestradiol treatment to follicular wave emergence (4.2 +/- 0.3 days; P = 0.5), 5mg of E-17beta resulted in the least variable interval to wave emergence (P < 0.005), compared with the other treatment groups which were not different (P = 0.1). For the interval from CIDR removal to ovulation, there were no differences among groups for either means (P = 0.5) or variances (P = 0.1). In Experiment 3, beef heifers (n = 32) received a once-used CIDR on Day 0 (beginning of the experiment) plus 100mg progesterone i.m. and were assigned randomly to receive 5mg E-17beta or 1mg EB i.m. On Day 7, CIDR were removed and all heifers received PGF. On Day 8 (24h after CIDR removal), each group was subdivided randomly to receive 1mg of either E-17beta or EB i.m. There was no effect of oestradiol formulation on interval from treatment to follicular wave emergence (4.1 +/- 0.2 days; P = 0.7) or on the median interval (76.6h; P = 0.7) or range (72-120 h; P = 0.08) from CIDR removal to ovulation. In summary, oestradiol treatments suppressed FSH in ovariectomised cows, with the duration of suppression dependent on the oestradiol formulation. Both E-17beta and EB effectively synchronised ovarian follicular wave emergence and ovulation in CIDR-treated cattle, and the interval from CIDR removal to ovulation did not differ in heifers given either E-17beta or EB 24h after CIDR removal.  相似文献   

4.
An experiment was designed to evaluate a) the effect of a progesterone-estradiol combined treatment on ovarian follicular dynamics in postpartum beef cows, and b) ovulation and the subsequent luteal activity after short-term calf removal and GnRH agonist treatment. Multiparous Angus cows (25 to 40 d after calving) were assigned to the following treatments: untreated (Control, n = 9); short term calf removal (CR, n = 8); progesterone (CIDR, n = 9) and progesterone plus estradiol-17 beta (CIDR + E-17 beta, n = 9). Progesterone treatment (CIDR) lasted 8 d and the day of device insertion was considered as Day 0. Cows in the CIDR + E-17 beta group also received an i.m. injection of 5 mg of E-17 beta on Day 1. On Day 8, calves were removed for 48 h (CR, CIDR and CIDR + E-17 beta groups) and 6 h before the end of calf removal these cows also received an i.m. injection of 8 micrograms of Busereline (GnRH). Anestrus was confirmed in all cows by the absence of luteal tissue and progesterone concentrations below 1 ng ml-1 at the beginning of the experiment. Although mean (+/- SEM) interval from the beginning of the experiment (Day 0) to wave emergence did not differ (P > 0.05) among treatment groups (Control, 1.9 +/- 1.0, range -2 to 7 d; CR, 3.9 +/- 0.7, range 0 to 6 d; CIDR, 2.8 +/- 0.5, range 0 to 4 d and CIDR + E-17 beta, 4.1 +/- 0.2, range 3 to 5), the variability was less (P < 0.05) in the CIDR + E-17 beta group. The proportion of cows ovulating 24 to 48 h after GnRH administration tended (P = 0.08) to be higher in cows from CIDR + E-17 beta group (8/9) than in those of CR (5/8) or CIDR (6/9) groups, respectively and was associated with a higher proportion (P < 0.05) of CIDR + E-17 beta treated cows (9/9) that had a dominant follicle in the growing/early static phase at the time of GnRH treatment compared to the other GnRH treated groups (5/8, and 4/9 for CR and CIDR groups, respectively). Two CR cows ovulated 0-24 h after GnRH and only one Control cow ovulated the day before the time of GnRH administration. Cows pretreated with progesterone had longer (P < 0.05) luteal lifespan (CIDR, 14.5 +/- 0.7, CIDR + E-17 beta, 13.9 +/- 0.6 d) than those not treated with CIDR (Control, 5, CR, 4.0 +/- 0.4). We conclude that progesterone plus estradiol treatment results in tightly synchronized wave emergence and high GnRH-induced ovulation rate with normal luteal activity in postpartum beef cattle.  相似文献   

5.
The hypothesis that, in the ewe, prostaglandin (PG) F2alpha administration on day 3 after ovulation is followed by luteolysis and ovulation was tested using 24 animals. The ewes were treated with a dose of a PGF2alpha analogue (delprostenate, 160 microg) on days 1 (n=8), 3 (n=8) or 5 (n=8) after ovulation, was established by transrectal ultrasonography. Daily scanning and blood sampling were performed to determine ovarian changes and progesterone serum concentrations by radioinmunoassay. The treatment induced a sharp decrease of progesterone concentrations followed by oestrus and ovulation in all ewes treated on days 3 and 5 and in one ewe treated on day 1 (8/8, 8/8, 1/8; P<0.05). Seven ewes treated on day 1 did not respond to PGF2alpha treatment and had an inter-ovulatory cycle of normal length (17.4 +/- 0.5 days). However, the profile of progesterone concentrations during the cycle of these ewes was delayed 1 day (P<0.05) compared with a control cycle. The overall interval between PGF2alpha and oestrus for the 17 responding ewes was 42.4 +/- 2.3 h. In 15 of these ewes the ovulatory follicle was originated from the first follicular wave and the ovulation occurred at 60.8 +/- 1.8 h after PGF2alpha treatment. The other two responding ewes ovulated an ovulatory follicle originated from the second follicular wave between 72 and 96 h after treatment. These results support the hypothesis and suggest that refractoriness to PGF2alpha of the recently formed corpus luteum (CL) may be restricted to the first 1-2 days post-ovulation.  相似文献   

6.
A series of experiments were conducted to evaluate the effects of mode and frequency of administration and estrous cycle stage on the response of the cycling ewe to PGF. The effects of dexamethasone, arachadonic acid and prostaglandin synthetase inhibitors on estrous cycle length and plasma progesterone levels were also determined.Intramuscular administration of 5 or 10 mg of PGF, on days 8 and 9 after estrus (5 ewes/group), significantly (p<.01) shortened the mean length of the estrous cycle and the interval from the end of treatment to estrus. Mean plasma progesterone levels, 24 hours after initial injection, were significantly (p<.01) lowered. When administered on day 8 only, these doses were considerably less effective in shortening estrous cycle length or lowering plasma progesterone levels. Intravaginal administration of PGF, by polyurethane tampon, was also largely ineffective.Treatment of ewes with 10 mg of PGF i.m., on days 3 and 4 of the estrous cycle, resulted in a return to estrus in 2 days in 25% of the treated animals. Plasma progesterone levels of PGF-treated ewes were significantly lower than controls on the second, third and fourth days after the start of dosing. It would appear that PGF exerts a retarding effect on developing CL functionality.The prostaglandin synthetase inhibitors, aspirin, flufenamic acid and 1-p-chlorobenzylidene-2-methyl-5-methoxy-3-indenylacetic acid, were administered orally or parenterally for 16 days beginning on day 8 of the estrous cycle. These compounds failed to prolong estrous cycle length. Parenteral administration of dexamethasone did not result in PGF release in the cycling ewe, at least not in quantities sufficient to induce luteolysis. The prostaglandin precursor, arachadonic acid, also was not luteolytic when given parenterally to cycling ewes.  相似文献   

7.
The objective was to determine the effect of dietary intake on follicle and oocyte morphology in unstimulated and superovulated ewes. Fifty-four ewes were fed grass meal at 0.5, 1.0 or 2.0 times maintenance energy requirements (M) for 32 days. Oestrous cycles were synchronized using progestagen pessaries and either unstimulated or superovulated with 200 mg pig FSH. The ewes were killed and ovaries were collected either 36 or 12 h before the anticipated LH surge. Serum progesterone concentrations in ewes on day 10 after withdrawal of the pessary were lower in ewes fed 2.0M than in ewes fed 0.5M or 1.0M (P < 0.05). LH pulse frequency tended to be higher in ewes fed 2M than 1M (1.0 +/- 0.3 versus 0.3 +/- 0.2 pulses per 8 h) on day 6 after removal of the pessary but the effect was not significant. In unstimulated ewes, more follicles (>/= 3 mm) were observed when the animals were killed in ewes fed 2.0M (3.5 +/- 0.3) than in ewes fed 0.5M (2.4 +/- 0.3) or 1.0M (2.4 +/- 0.5; P < 0. 05). Fewer follicles were observed in superovulated ewes on 0.5M (7. 5 +/- 1.2) than in ewes on 1.0M (12.0 +/- 0.5) or 2.0M (12.3 +/- 1. 4; P < 0.05). Follicular fluid progesterone concentrations were higher in ewes fed 0.5M compared with those fed 1M or 2M (P < 0.05). Insulin-like growth factor (IGF)-I concentrations were higher in follicular fluid from ewes on 1M compared with either those on 0.5M or 2M (P < 0.05), whereas IGF-II concentrations were lower in follicular fluid from ewes on 2M compared with those on 1M or 0.5M (P < 0.05). Superovulation increased follicular fluid progesterone, oestradiol, IGF-I and IGF-II concentrations (P < 0.01). Concentrations of the 34, 22 and 20 kDa IGF binding proteins were lower in follicles from superovulated ewes compared with unstimulated ewes (P < 0.05). Oocytes from superovulated ewes showed abnormalities such as premature activation of cumulus expansion and vacuolation of the nucleolus and increased frequency of detachment of interchromatin-like granules from the nucleolar remnant. Collectively, these results indicate that both high and low dietary intakes can alter systemic and follicular fluid hormone concentrations. Relative to dietary effects, the effects of superovulation were greater and involved substantial increases in follicular fluid hormone concentrations and abnormal oocyte morphology.  相似文献   

8.
The ability of human chorionic gonadotropin (HCG) to reduce the luteolytic effect of prostaglandin (PGF2α) was demonstrated in cycling ewes. As expected, treatment with 10 mg of PGF2α alone on Day 10 of the estrous cycle exerted a potent negative effect on the function and structure of corpus luteum (CL) as indicated by reduced plasma progesterone, CL progesterone, and CL weight. However, the identical PGF2α treatment failed to significantly reduce either luteal function or luteal weight when administered to ewes that were also treated with HCG on Days 9 and 10 of the estrous cycle. Treatment with HCG alone had a positive effect on CL as indicated by increased plasma progesterone, CL progesterone, and CL weight. Treatment with HCG did not render the CL totally insensitive to the negative effects of PGF2α because plasma progesterone was reduced when the dose of PGF2α was doubled. Whether CL regressed or continued to function after treatment with both HCG and PGF2α appeared to depend upon a balance between the positive and negative effects of the two hormones.  相似文献   

9.
The objective of this study was to determine if pulsatile LH secretion was needed for ovarian follicular wave emergence and growth in the anestrous ewe. In Experiment 1, ewes were either large or small (10 × 0.47 or 5 × 0.47 cm, respectively; n = 5/group) sc implants releasing estradiol-17 beta for 10 d (Day 0 = day of implant insertion), to suppress pulsed LH secretion, but not FSH secretion. Five sham-operated control ewes received no implants. In Experiment 2, 12 ewes received large estradiol-releasing implants for 12 d (Day 0 = day of implant insertion); six were given GnRH (200 ng IV) every 4 h for the last 6 d that the implants were in place (to reinitiate pulsed LH secretion) whereas six Control ewes were given saline. Ovarian ultrasonography and blood sampling were done daily; blood samples were also taken every 12 min for 6 h on Days 5 and 9, and on Days 6 and 12 of the treatment period in Experiments 1 and 2, respectively. Treatment with estradiol blocked pulsatile LH secretion (P < 0.001). In Experiment 1, implant treatment halted follicular wave emergence between Days 2 and 10. In Experiment 2, follicular waves were suppressed during treatment with estradiol, but resumed following GnRH treatment. In both experiments, the range of peaks in serum FSH concentrations that preceded and triggered follicular wave emergence was almost the same as control ewes and those given estradiol implants alone or with GnRH; mean concentrations did not differ (P < 0.05). We concluded that some level of pulsatile LH secretion was required for the emergence of follicular waves that were triggered by peaks in serum FSH concentrations in the anestrous ewe.  相似文献   

10.
We aimed to compare the effect of three estradiol benzoate (EB) doses on follicular wave emergence (FWE) and dominant follicle growth of suckled Nelore cows submitted to TAI (D0). On a random day of estrous cycle (D−10), multiparous (MULT; n=36) and primiparous (PRIM; n=20) suckled Nelore cows received an intravaginal progesterone (P4) device and were assigned in three groups. Cows in the EB-1 (n=20), EB-1.5 (n=15) or EB-2 (n=21) groups received, respectively, an im treatment with 1, 1.5 or 2 mg EB. A subgroup (n=10-13 cows/group) were subject to daily ovarian evaluations from D−10 to D0. On D−2, P4 devices were removed, and all cows received the same treatment: 1 mg estradiol cypionate, 0.53 mg sodium cloprostenol, and 300 IU eCG. Statistical analyses were performed considering only the main effects of treatment group and parity order. The proportion of cows with a synchronized FWE and the moment of the FWE did not differ (p>0.05) among the treatment groups (overall: 80% [28/35] and 4.1 ± 0.4 days); however, the FWE occurred earlier (p=0.007) in MULT (3.8 ± 0.2 days) than PRIM (5.1 ± 0.4) cows. The proportion of animals detected in estrus was greater (86% [31/36] vs. 70% [14/20]; p=0.02) and the dominant follicle was larger on D−2 (9.7 ± 0.3 mm vs. 7.8 ± 0.7 mm; p=0.006) and D0 (11.9 ± 0.4 mm vs. 10 ± 0.5 mm; p=0.008) in MULT than PRIM cows. In conclusion, the three EB doses presented similar efficiency to synchronize the FWE in suckled Nelore cows. Moreover, a delayed FWE and smaller dominant follicle is observed in PRIM cows, contributing to the reduced reproductive performance in this parity category when using similar TAI protocols of MULT cows.  相似文献   

11.
The role of progesterone in regulation of uteroovarian venous concentrations of prostaglandins F2 α (PGF2α) and E2 (PGE2) during days 13 to 16 of the ovine estrous cycle or early pregancy was examined. At estrus, ewes were either mated to a fertile ram or unmated. On day 12 postesturus, ewes were laparotomized and a catheter was inserted into a uteroovarian vein. Six mated and 7 unmated ewes received no further treatment. Fifteen mated and 13 unmated ewes were ovariectomized on day 12 and of these, 7 mated and 5 unmated ewes were given 10 mg progesteron sc and an intravaginal pessary containing 30 mg of progesterone. Uteroovarian venous samples were collected every 15 min for 3 h on days 13 to 16 postestrus. Mating resulted in higher mean daily concentrations of PGE2 in the uterovarian vein than in unmated ewes. Ovariectomy prevented the rise in PGE2 with day in mated ewes but had no effect in unmated ewes. Progesterone treatment restored PGE2 in ovariectomized, mated ewes with intact embros. Mating had no effect on mean daily concentrations of PGF2α or the patterns of the natural logarithm (ln) of the invariance of PGF2α. Ovariectomy resulted in higher mean concentrations and ln invariances of PGF2α on day 13 and lower mean concentrations and ln invariances of PGF2α on days 15 and 16. Replacement with progesterone prevented these changes in patters of mean concentrations and ln variances of PGF2α following ovariectomy. It is concluded that progesterone regulates the release of PGF2α from the uterus, maintaining high concentrations while also preventing the occurrence of the final peaks of PGF2α which are seen with falling concentrations of progesterone. This occurs in both pregnant and non-pregnant ewes. Progesterone is also needed to maintain increasing concentrations of PGE2 in mated ewes.  相似文献   

12.
Ovarian function in ewes at the onset of the breeding season   总被引:2,自引:0,他引:2  
Transrectal ultrasonography of ovaries was performed each day, during the expected transition from anoestrus to the breeding season (mid-August to early October), in six Western white-faced cross-bred ewes, to record ovarian antral follicles > or = 3 mm in size and luteal structures. Jugular blood samples were collected daily for radioimmunoassay (RIA) of follicle-stimulating hormone (FSH), oestradiol and progesterone. The first ovulation of the breeding season was followed by the full-length oestrous cycle in all ewes studied. Prior to the ovulation, all ewes exhibited a distinct increase in circulating concentrations of progesterone, yet no corpora lutea (CL) were detected and luteinized unovulated follicles were detected in only three ewes. Secretion of FSH was not affected by the cessation of anoestrus and peaks of episodic FSH fluctuations were associated with the emergence of ovarian follicular waves (follicles growing from 3 to > or = 5 mm). During the 17 days prior to the first ovulation of the breeding season, there were no apparent changes in the pattern of emergence of follicular waves. Mean daily numbers of small antral follicles (not growing beyond 3 mm in diameter) declined (P < 0.05) after the first ovulation. The ovulation rate, maximal total and mean luteal volumes and maximal serum progesterone concentrations, but not mean diameters of ovulatory follicles, were ostensibly lower during the first oestrous cycle of the breeding season compared with the mid-breeding season of Western white-faced ewes. Oestradiol secretion by ovarian follicles appeared to be fully restored, compared with anoestrous ewes, but it was not synchronized with the growth of the largest antral follicles of waves until after the beginning of the first oestrous cycle. An increase in progesterone secretion preceding the first ovulation of the breeding season does not result, as previously suggested, from the ovulation of immature ovarian follicles and short-lived CL, but progesterone may be produced by luteinized unovulated follicles and/or interstitial tissue of unknown origin. This increase in serum concentrations of progesterone does not alter the pattern of follicular wave development, hence it seems to be important mainly for inducing oestrous behaviour, synchronizing it with the preovulatory surge of luteinizing hormone (LH), and preventing premature luteolysis during the ensuing luteal phase. Progesterone may also enhance ovarian follicular responsiveness to circulating gonadotropins through a local mechanism.  相似文献   

13.
The objective of this study was to investigate the effects of eCG and temporary calf removal (TCR) associated with progesterone (P4) treatment on the dynamics of follicular growth, CL size, and P4 concentrations in cyclic (n = 36) and anestrous (n = 30) Nelore cows. Cyclic (C) and anestrous (A) cows were divided into three groups. The control group received 2 mg of estradiol benzoate via intramuscular (IM) injection and an intravaginal device containing 1.9 g of P4 on Day 0. On Day 8, the device was removed, and the animals received 12.5 mg of dinoprost tromethamine IM. After 24 hours, the animals received 1 mg of estradiol benzoate IM. In the eCG group, cows received the same treatment described for the control group but also received 400 UI of eCG at the time of device removal. In the TCR group, calves were separated from the cows for 56 hours after device removal. Ultrasound exams were performed every 24 hours after device removal until the time of ovulation and 12 days after ovulation to measure the size of the CL. On the same day as the CL measurement, blood was collected to determine the plasma P4 level. Statistical analyses were performed with a significance level of P ≤ 0.05. In cyclic cows, the presence of the CL at the beginning of protocol resulted in a smaller follicle diameter at the time of device removal (7.4 ± 0.3 mm in cows with CL vs. 8.9 ± 0.4 mm in cows without CL; P = 0.03). All cows ovulated within 72 hours after device removal. Anestrous cows treated with eCG or TCR showed follicle diameter at fixed-timed artificial insemination (A-eCG 10.2 ± 0.3 and A-TCR 10.3 ± 0.5 mm) and follicular growth rate (A-eCG 1.5 ± 0.2 and A-TCR 1.3 ± 0.1 mm/day) similar to cyclic cows (C-eCG 11.0 ± 0.6 and C-TCR 12.0 ± 0.5 mm) and (C-eCG 1.4 ± 0.2 and C-TCR 1.6 ± 0.2 mm/day, respectively; P ≤ 0.05). Despite the similarities in CL size, the average P4 concentration was higher in the A-TCR (9.6 ± 1.4 ng/mL) than in the A-control (4.0 ± 1.0 ng/mL) and C-TCR (4.4 ± 1.0 ng/mL) groups (P < 0.05). From these results, we conclude that eCG treatment and TCR improved the fertility of anestrous cows by providing follicular growth rates and size of dominant follicles similar to cyclic cows. Additionally, TCR increases the plasma concentrations of P4 in anestrous cows.  相似文献   

14.
Experiments were designed to evaluate in cyclic sheep the effects of systemic administration of a prostaglandin synthetase inhibitor (indomethacin). Indomethacin (100 mg, 3 times daily, S.C.) was administered from day 7 of the estrous cycle for 16 days to five ewes in which the cycle was synchronized as well as the cycles of five control ewes. All control ewes had cycles of approximately 17 days duration, but three of five Indomethacin treated ewes showed no estrous behavior before their slaughter at 23 days after induced ovulation. Autopsy revealed normal corpora lutea which had not undergone luteolysis, as confirmed by progesterone determination in blood. The two remaining Indomethacin treated ewes showed an estrous behavior on day 19 and 20 respectively together with a “prevulatory surge” of luteinizing hormone and prolactin which was not followed by follicular rupture. These results show that inhibition of PGF2α synthesis by systemic administration of Indomethacin to the ewe is able to prevent luteolysis.When luteolysis did occur however, it was not followed by an ovulation despite a normal gonadotropin surge, indicating that inhibition of prostaglandin synthesis by systematic administration of Indomethacin interferes with the luteolysis and follicle rupture processes.  相似文献   

15.
Data of 56 normal and 9 abnormal estrous cycles were collected from 9 Egyptian buffaloes (Bublus bublis) to describe the follicular growth wave pattern. Heat was checked twice daily while, ovaries were scanned daily to monitor the patterns of follicular waves. Day of ovulation was determined when the largest follicle was replaced by corpus haemorrhgicum (CH). Number of waves/cycle, day of emergence of the follicular wave, characteristics of the dominant follicle and corpus luteum (CL) growth features were monitored. Buffaloes displayed mainly two types of follicular waves; two (46.4%) and three (53.6%). In cycles of three wave pattern, time of emergence of the 1st wave post-heat was longer (P < 0.05) and number of recruited follicles/wave were larger (P < 0.05) compared to the corresponding values of the two wave pattern. Number of recruited follicles in early follicular waves (1st or the 2nd) had larger number (P < 0.05) compared to the subsequent ones. Follicles that reached ovulation in both types of estrous cycle had shorter life-span (P < 0.05) than the previous ones. Life-span of CH, growing and regressed CL were 3.6 ± 0.6, 11.2 ± 0.8 and 4.4 ± 0.5 days, respectively with no difference in both types of follicular wave. Three types of ovarian disorders were observed. Follicular waves and CL growth features showed unique pattern for each individual. These results demonstrate that buffaloes display two main types of follicular waves with dominance of three wave type.  相似文献   

16.
Recent studies implicate that apelin and its receptor APJ may have important role for the modulation of angiogenesis. The aim of this study was to further characterise the regulation of apelin/APJ system in bovine ovary. Experiment 1: corpora lutea (CL) were assigned to the following stages: days 1-2, 3-4, 5-7, 8-12, 13-16, >18 (after regression) of oestrous cycle and of gravidity (month <3, 3-5, 6-7 and >8). Experiment 2: Follicles during maturation were divided into granulosa cells (GC) and theca interna (TI) and were examined separately. Classification of follicles occurred by follicle size and oestradiol-17β (E2) concentration in the follicular fluid (FF) (<0.5 ng/ml, 0.5-5 ng/ml; 5-40 ng/ml; 40-180 ng/ml; >180 ng/ml). Real-time RT-PCR (qPCR) was applied to investigate mRNA expression of examined factors. In general, the expression level of apelin during the oestrous cycle was significantly higher compared to the one during pregnancy. Apelin mRNA levels were always high during the cycle with a tendency of decrease after CL regression. The APJ mRNA in the CL was significantly up regulated on days 5-7 and 8-12 followed by a decrease on days 13-16, and further on days >18. The expression of APJ does not show any significant regulation in the CL throughout pregnancy. The expression of apelin and APJ was not statistically regulated in GC, but was significantly up regulated in follicles with an E2 concentration of more than 5 ng/ml and showed an increase according to growth and maturation of follicles. In conclusion, our data suggest that apelin/APJ system is involved in the mechanism regulating angiogenesis during follicle maturation as well as during CL formation and function in the bovine ovary.  相似文献   

17.
Two experiments were done to test the effects of treatments designed to electively induce ovarian follicular wave emergence in wapiti for the purpose of group synchronization. In Experiment 1, hinds were assigned randomly to three groups and given saline im (controls; n=5), 5mg of estadiol-17ss im (n=4), or 5mg estradiol-17ss plus 100mg progesterone im (n=5). In Experiment 2, hinds were assigned randomly to two groups and given no treatment (controls; n=6), or transvaginal ultrasound-guided follicle ablation (n=7). In both experiments, ovarian follicular dynamics were monitored by daily transrectal ultrasonography from Day 0 (day of treatment) to Day 9. In Experiment 1, blood samples were collected at each examination for measurement of serum concentrations of progesterone and FSH. Both experiments were conducted during the late anestrous period (July and August). The mean (+/-S.E.M.) day of wave emergence did not differ between the control and estradiol alone groups, but tended to be later in the estradiol plus progesterone group Day 4.0+/-0.7, Day 3.5+/-0.3, and Day 5.2+/-0.2, respectively; P=0.06). The interval from treatment to wave emergence was less variable in the estradiol plus progesterone group (P<0.05) and tended to be less variable in the estradiol-alone group (P=0.07) than in the control group. The day of wave emergence was more variable (P<0.05) and tended to be later (P=0.10) in the control group compared to the ablation group (Day 2.5+/-0.8 versus Day 1.4+/-0.2). All three treatments were effective in synchronizing ovarian follicular wave emergence among a group of wapiti hinds. Follicle ablation may be an alternative method for synchronization of follicular waves in estrus synchronization and superstimulatory protocols.  相似文献   

18.
In the ewe, a rise in circulating concentrations of FSH preceding follicular wave emergence begins in the presence of growing follicles from a previous wave. We hypothesized that prostaglandin F(2alpha) (PGF(2alpha)) given at the time of an endogenous FSH peak in cyclic ewes would result in synchronous ovulation of follicles from two consecutive waves, increasing ovulation rate. Twelve Western White Face (WWF) ewes received a single i.m. injection of PGF(2alpha) (15 mg/ewe) at the expected time of a peak in FSH secretion, from Days 9 to 12 after ovulation. The mean ovulation rate after PGF(2alpha) treatment (2.3+/-0.3) did not differ (P>0.05) from the pre-treatment ovulation rate (1.7+/-0.1). Five ewes ovulated follicles from follicular waves emerging before and after PGF(2alpha) injection (3.0+/-0.6 ovulations/ewe) and seven ewes ovulated follicles only from a wave(s) emerging before PGF(2alpha) treatment (2.0+/-0.3 ovulations/ewe; P>0.05). The mean interval from PGF(2alpha) to emergence of the next follicular wave (1.0+/-0.4 and 4.0+/-0.0 d, respectively; P<0.001) and the interval from PGF(2alpha) treatment to the next FSH peak (0 and 3.5+/-0.4d, respectively; P<0.05) differed between the two groups. Six ewes ovulated after the onset of behavioral estrus, with a mean ovulation rate of 1.7+/-0.2, and six ewes ovulated both before and after the onset of estrus (3.0+/-0.5 ovulations/ewe; P<0.05). None of the ovulations that occurred before estrus resulted in corpora lutea (CL) with a full life span. At 24h before ovulation, follicles ovulating before or after the onset of estrus differed in size (4.1+/-0.3 or 5.5+/-0.4mm, respectively; P<0.05) and had distinctive echotextural characteristics. In conclusion, the administration of PGF(2alpha) at the expected time of an FSH peak at mid-cycle in ewes may alter the endogenous rhythm of FSH secretion and was not consistently followed by ovulation of follicles from two follicular waves. In non-prolific WWF ewes, PGF(2alpha)-induced luteolysis disrupted the normal distribution of the source of ovulatory follicles and may be associated with untimely follicular rupture and luteal inadequacy.  相似文献   

19.
Nineteen Corriedale ewes were treated with an im dose of a PGF2alpha during the luteal phase to synchronize estrus. After ovulation had been detected by using ultrasonography (Day 0); the ewes were randomly assigned to 2 different groups. In 11 ewes a CIDR, which had previously been used for 10 d, was inserted on the fourth day after ovulation. The ewes then received a dose of PGF2alpha on Day 5 to induce luteolysis. The CIDR remained in place until the end of the experiment (Day 9). Control ewes (n = 8) received no treatment. Blood samples were taken daily for estradiol, progesterone and FSH determinations. In the untreated ewes, 2 follicular waves were detected in all of the animals throughout the monitoring period, with a mean wave interval of 4.5 d. The total number of follicles which were > or =2 mm decreased from Day 0 to Day 4 (8.8+/-1.0 to 5.3+/-0.6; P< or =0.05) and then increased at Day 7 (7.5+/-0.9; P< or =0.05). The growth profiles of both the largest and the second largest follicles of Wave 1 showed significant divergence, while no divergence was observed in Wave 2. Serum estradiol concentrations decreased significantly from the day before to the day of ovulation and then increased again during the growing phase of the largest follicle of Wave 1. Concentrations of FSH were high on the day of emergence of both waves, but while a significant decline was observed after emergence in Wave 1, the levels remained high in Wave 2. In 8 of the 11 treated ewes, the largest follicle of Wave 1 was still present on the ninth day after ovulation (persistent follicle). In the other 3 ewes, the largest follicle of Wave 1 was already regressing on the day that the treatment was administered, and the largest follicle that was present on Day 9 originated from Wave 2 (nonpersistent follicle). In persistent follicle ewes, the largest follicle of Wave 1 prolonged its lifespan significantly, attaining the maximum diameter (Day 8.1+/-0.8) later than in untreated (Day 3.0+/-0.4) and nonpersisted follicle ewes (Day 2.0+/-0.6). The total number of follicles decreased in persistent follicle ewes between Day 0 and Day 4 (7.9+/-1.5 to 4.5+/-0.5, respectively; P< or =0.05) and remained low until the end of the experiment. Progesterone concentrations (nmol/L) between Days 6 and 9 were significantly different between untreated and persistent follicle ewes (12.8+/-1.0 vs. 9.4+/-1.0, P< or =0.02). The present study confirms that the largest follicle of Wave 1 is dominant in the ewe and that subluteal progesterone concentrations can prolong its lifespan and extend this dominance.  相似文献   

20.
Three groups of 6 ewes were laparotomized on day 9 of an estrous cycle (estrus = day 0) and the corporà lutea (CL) were marked with India ink. Indwelling cannulae were inserted into the uterine horn adjacent to the CL in groups 2 and 3. Group 1 was injected intramuscularly (i.m.) with corn oil twice daily on day 9. Group 2 received 750 ug 17β-estradiol (E2) i.m. twice daily on day 9 plus intrauterine injections of indomethacin (INDO) vehicle on days 9 through 13. Group 3 received the same estrogen treatment plus the injection of 20 mg INDO twice daily on days 9 through 13. Jugular venous samples were taken once daily on days 9 through 14 progesterone analysis. At re-laparotmy on day 14, the ovaries were examined for new ovulations, and the ovary bearing the marked CL was removed. Results showed that E2 induced premature luteal regression as indicated by decreased CL weights and plasma progesterone levels. INDO when given in conjuction with E2 effectively blocked the luteolytic action of E2. These results suggest that the luteolytic action of E2 is mediated via increased prostaglandin secretion and release from the uterus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号