首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trehalose phosphorylase (EC 2.4.1.64) from Agaricus bisporus was purified for the first time from a fungus. This enzyme appears to play a key role in trehalose metabolism in A. bisporus since no trehalase or trehalose synthase activities could be detected in this fungus. Trehalose phosphorylase catalyzes the reversible reaction of degradation (phosphorolysis) and synthesis of trehalose. The native enzyme has a molecular weight of 240 kDa and consists of four identical 61-kDa subunits. The isoelectric point of the enzyme was pH 4.8. The optimum temperature for both enzyme reactions was 30°C. The optimum pH ranges for trehalose degradation and synthesis were 6.0–7.5 and 6.0–7.0, respectively. Trehalose degradation was inhibited by ATP and trehalose analogs, whereas the synthetic activity was inhibited by Pi (Ki=2.0 mM). The enzyme was highly specific towards trehalose, Pi, glucose and α-glucose-1-phosphate. The stoichiometry of the reaction between trehalose, Pi, glucose and α-glucose-1-phosphate was 1:1:1:1 (molar ratio). The Km values were 61, 4.7, 24 and 6.3 mM for trehalose, Pi, glucose and α-glucose-1-phosphate, respectively. Under physiological conditions, A. bisporus trehalose phosphorylase probably performs both synthesis and degradation of trehalose.  相似文献   

2.
R E West  J Moss 《Biochemistry》1986,25(24):8057-8062
Turkey erythrocytes contain NAD:arginine mono-ADP-ribosyltransferases which, like cholera toxin and Escherichia coli heat-labile enterotoxin, catalyze the transfer of ADP-ribose from NAD to proteins, to arginine and other low molecular weight guanidino compounds, and to water. Two such ADP-ribosyltransferases, A and B, have been purified from turkey erythrocyte cytosol. To characterize further the class of NAD:arginine ADP-ribosyltransferases, the particulate fraction was examined; 40% of erythrocyte transferase activity was localized to the nucleus and cell membrane. Transferase activity in a salt extract of a thoroughly washed particulate preparation was purified 36,000-fold by sequential chromatography on phenyl-Sepharose, (carboxymethyl) cellulose, concanavalin A-Sepharose, and NAD-agarose. Subsequent DNA-agarose chromatography separated two activities, termed transferases C and A', which were localized to the membrane and nucleus, respectively. Transferase C, the membrane-associated enzyme, was distinguished from the cytosolic enzymes by a relative insensitivity to salt and histone; transferase C was stimulated 2-fold by 300 mM NaCl in contrast to a 20-fold stimulation of transferase A and a 50% inhibition of transferase B. Similarly, histones, which stimulate transferase A 20-fold, enhanced transferase C activity only 2-fold. Transferase A', the nuclear enzyme, was retained on DNA-agarose. It was similar to transferase A in salt and histone sensitivity. Gel permeation chromatography showed slight molecular mass differences among the group of enzymes: A, 24,300 daltons (Da); B, 32,700 Da; C, and A', 25,500 Da. The affinities of transferase C for NAD and agmatine were similar to those of the cytosolic transferases A and B.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
An amylolytic activity that converts soluble starch to α,α-trehalose (trehalose) was found in the cell homogenate of the hyperthermophilic, acidophilic archaeum Sulfolobus solfataricus KM1. Two enzymes, a glycosyltransferase and an α-amylase, which are essential for this activity, were purified to homogeneity. A glycosyltransferase catalyzed the conversion of maltooligosaccharides to glycosyltrehaloses and an α-amylase catalyzed the hydrolysis of glycosyltrehaloses to trehalose. The glycosyltransferase transferred an oligomer segment of maltooligosaccharide to the C1–OH position of glucose, located at the reducing end of the maltooligosaccharide, to produce a glycosyltrehalose having an α-1,1 linkage. The α-amylase hydrolyzed only the α-1,4 glucosidic linkage adjacent to the trehalose unit of the glycosyltrehaloses. Their activities were maximal at 70–80°C and 70–85°C, with high thermostability, respectively. The genes encoding for both enzymes were cloned and expressed in Escherichia coli. The regions highly conserved in α-amylase family exist in the amino acid sequences of these enzymes. A new process for trehalose production from starch was developed using the purified enzymes. The yield of trehalose from starch was 81.5% using these two enzymes. This review describes our efforts to reveal in detail the characters of these enzymes involved in practical trehalose production.  相似文献   

4.
Precursor and mature forms of δ-aminolevulinate (ALA) synthase were purified to near homogeneity from chicken liver mitochondria and cytosol, respectively, and their properties were compared. The enzyme purified from mitochondria had apparently the same subunit molecular weight (65,000) as that of the native mitochondrial enzyme. The enzyme purified from the cytosol fraction, however, showed a subunit molecular weight of about 71,000, which was somewhat smaller than that estimated for the native cytosolic enzyme (73,000). The enzyme purified from liver cytosol seems to have been partially degraded by some endogenous protease during the purification, but may have the major part of the signal sequence. On sucrose density gradient centrifugation, the purified mitochondrial and cytosolic ALA synthases showed an apparent molecular weight of about 140,000, indicating that both enzymes exist in a dimeric form. The ALA synthase synthesized in vitro was also shown to exist as a dimer. Apparently the extra-sequence does not interfere with the formation of dimeric form of the enzyme. The purified cytosolic ALA synthase had a specific activity comparable to that of the purified mitochondrial enzyme. Kinetic properties of the two enzymes, such as the pH optimum and the apparent Km values for glycine and succinyl-CoA, were quite similar. The extra-sequence does not appear to affect the catalytic properties of ALA synthase. The isoelectric point of the cytosolic ALA synthase was 7.5, whereas that of the mitochondrial enzyme was 7.1. This suggests that the extra-sequence in the cytosolic enzyme may be relatively rich in basic amino acids.  相似文献   

5.
α-Glucosidase activity of whole haemolymph has been investigated in adult males of the American cockroach, Periplaneta americana. Two electrophoretically distinguishable enzymes capable of hydrolysing α-glucosidic linkages are present in the serum component of the haemolymph, and one of these hydrolyses trehalose. Trehalase activity is also present in haemocytes, and the haemocyte enzyme shares an identical electrophoretic mobility and similar pH sensitivity with the serum trehalase. Furthermore, both enzymes are inhibited to the same extent by sodium ethylene diamine tetracetate (EDTA); thus it is suggested that the same enzyme may be responsible for trehalase activity in the two components. The Km of EDTA-inhibited trehalase is 3·3 mM and this value is reduced to 1·8 mM upon activation of the enzyme by calcium ions. The properties of the trehalase are discussed in light of the possible rôle of the enzyme in regulating haemolymph trehalose and glucose concentrations.  相似文献   

6.
《Experimental mycology》1986,10(2):131-143
The enzyme trehalase II ofDictyostelium discoideum is efficiently secreted into the matrix of sori along with seven known lysosomal enzymes. The vegetative form of the enzyme, trehalase I, is particulate but the enzyme is secreted prior to cell aggregation or when cells are starved in phosphate buffer under standard secretion conditions. The secreted enzyme possesses properties common to lysosomal enzymes. Polyclonal and monoclonal antibodies raised against purified lysosomalN-acetylglucosaminidase precipitate the enzyme. The enzyme is released efficiently and about 62% of the initial cellular enzyme becomes extracellular. The secretion of trehalase is slightly sensitive to cycloheximide and completely blocked by sodium azide. Secretion is enhanced in the presence of disaccharides such as sucrose, lactose, and trehalose. Electrophoretograms of intracellular and secreted enzyme reveal no major processing of the enzyme during secretion. The pI of the trehalases has been estimated to be less than 2.5.  相似文献   

7.
We have determined the crystal structure of Streptococcus mutans dextran glucosidase, which hydrolyzes the α-1,6-glucosidic linkage of isomaltooligosaccharides from their non-reducing ends to produce α-glucose. By using the mutant of catalytic acid Glu236→Gln, its complex structure with the isomaltotriose, a natural substrate of this enzyme, has been determined. The enzyme has 536 amino acid residues and a molecular mass of 62,001 Da. The native and the complex structures were determined by the molecular replacement method and refined to 2.2 Å resolution, resulting in a final R-factor of 18.3% for significant reflections in the native structure and 18.4% in the complex structure. The enzyme is composed of three domains, A, B and C, and has a (β/α)8-barrel in domain A, which is common to the α-amylase family enzymes. Three catalytic residues are located at the bottom of the active site pocket and the bound isomaltotriose occupies subsites −1 to +2. The environment of the glucose residue at subsite −1 is similar to the environment of this residue in the α-amylase family. Hydrogen bonds between Asp60 and Arg398 and O4 atom of the glucose unit at subsite −1 accomplish recognition of the non-reducing end of the bound substrate. The side-chain atoms of Glu371 and Lys275 form hydrogen bonds with the O2 and O3 atoms of the glucose residue at subsite +1. The positions of atoms that compose the scissile α-1,6-glucosidic linkage (C1, O6 and C6 atoms) are identical with the positions of the atoms in the scissile α-1,4 linkage (C1, O4 and C4 atoms) of maltopentaose in the α-amylase structure from Bacillus subtilis. The comparison with the α-amylase suggests that Val195 of the dextran glucosidase and the corresponding residues of α-1,6-hydrolyzing enzymes participate in the determination of the substrate specificity of these enzymes.  相似文献   

8.
Secretion of cytoplasmic expressed proteins into culture medium has significant commercial advantages in large-scale production of proteins. Our previous study demonstrated that the membrane permeability of Escherichia coli could be significantly improved when Thermobifida fusca cutinase, without a signal peptide, was expressed in cytoplasm. This study investigated the extracellular production of other recombinant proteins, including both secretory and cytosolic proteins, with co-expression of cutinase. When the secretory enzymes, xylanase and α-amylase, were co-expressed with cutinase, the culture period was shortened by half, and the productivity was 7.9 and 2.0-fold to that of their individual control without co-expression, respectively. When the normally cytosolic proteins, xylose isomerase and trehalose synthase, were co-expressed with cutinase, more than half of the target proteins were “secreted” into the culture medium. Moreover, by using β-galactosidase to detect membrane leakage, the improved secretion of the above model proteins was confirmed not to be due to cell lysis. The study provides a novel strategy for enhancing extracellular secretion of recombinant proteins in E. coli.  相似文献   

9.
Trehalose and glycerol are known as good stabilizers of function and structure of several macromolecules against stress conditions. We previously reported that they have comparable effectiveness on protecting two yeast cytosolic enzymes against thermal inactivation. However, enzyme protection has always been associated to a decrease in catalytic activity at the stabilizing conditions i.e., the presence of the protective molecule. In the present study we tested trehalose and glycerol on thermal protection of the mammalian cytosolic enzyme phosphofructokinase. Here we found that trehalose was able to protect phosphofructokinase against thermal inactivation as well as to promote an activation of its catalytic activity. The enzyme incubated in the presence of 1 M trehalose did not present any significant inactivation within 2 h of incubation at 50 degrees C, contrasting to control experiments where the enzyme was fully inactivated during the same period exhibiting a t0.5 for thermal inactivation of 56+/-5 min. On the other hand, enzyme incubated in the presence of 37.5% (v/v) glycerol was not protected against incubation at 50 degrees C. Indeed, when phosphofructokinase was incubated for 45 min at 50 degrees C in the presence of lower concentrations of glycerol (7.5-25%, v/v), the remaining activity was 2-4 times lower than control. These data show that the compatibility of effects previously shown for trehalose and glycerol with some yeast cytosolic enzymes can not be extended to all globular enzyme system. In the case of phosphofructokinase, we believe that its property of shifting between several different complex oligomers configurations can be influenced by the physicochemical properties of the stabilizing molecules.  相似文献   

10.
α-Ketoglutarate : glyoxylate carboligase activity has been reported by other laboratories to be present in mitochondria and in the cytosol of mammalian tissues; the mitochondrial activity is associated with the α-ketoglutarate decarboxylase moiety of the α-ketoglutarate dehydrogenase complex. The cellular distribution of the carboligase has been re-examined here using marker enzymes of known localization in order to monitor the composition of subcellular fractions prepared by differential centrifugation. Carboligase activity paralleled the activity of the mitochondrial matrix enzyme citrate synthase in subcellular fractions prepared from rat liver, heart and brain as well as from rabbit liver. Whole rat liver mitochondria upon lysis released both carboligase and citrate synthase. The activity patterns of several other extramitochondrial marker enzymes differed significantly from that of carboligase in rat liver. In addition, the distribution pattern of carboligase was similar to that of α-ketoglutarate decarboxylase and of α-ketoglutarate dehydrogenase complex.The data indicate that α-ketoglutarate : gloxylate carboligase activity is located exclusively within the mitochondria of the rat and rabbit tissues investigated. There is no evidence for a cytosolic form of the enzyme. Thus the report from another laboratory that the molecular etiology of the human genetic disorder hyperoxaluria type I is a deficiency of cytosolic carboligase must be questioned.  相似文献   

11.
Previous biochemical studies have indicated that the membrane-bound thyrotropin-releasing hormone (TRH)-degrading enzyme (TRH-DE) from brain and liver and the serum TRH-DE are derived from the same gene. These studies also suggested that the serum enzyme is of liver origin. The present study was undertaken to verify these hypotheses. In different species, a close relationship between the activities of the serum enzyme and the particulate liver enzyme was noticed. The activity of the serum enzyme decreased when rats were treated with thioacetamide, a known hepatotoxin. With hepatocytes cultured in a sandwich configuration, release of the TRH-DE into the culture medium could also be demonstrated. The trypsin-solubilized particulate liver TRH-DE and the serum TRH-DE were purified to electrophoretic homogeneity. Both enzymes and the brain TRH-DE were recognized by a monoclonal antibody generated with the purified brain enzyme as antigen. Lectin blot analysis indicated that the serum enzyme and the liver enzyme are glycoproteins containing a sugar structure of the complex type, whereas the brain enzyme exhibits an oligomannose/hybrid glycostructure. A molecular mass of 97 000 Da could be estimated for all three enzymes after deglycosylation and SDS/PAGE followed by Western blotting. Fragment analysis of the serum TRH-DE revealed that the peptide sequences correspond to the cDNA deduced amino-acid sequences of the membrane-bound brain TRH-DE, whereby two peptides were identified that are encoded by exon 1. These data strongly support the hypothesis that the TRH-DEs are all derived from the same gene, whereby the serum enzyme is generated by proteolytic cleavage of the particulate liver enzyme.  相似文献   

12.
Summary Protein tyrosine kinase (PTK) activities in methyl nitrosourea (MNU)-induced rat mammary carcinoma has been investigated by using poly (glu: tyr; 4 : 1) as an exogenous substrate. The PTK activity of the mammary carcinoma was almost equally distributed between the particulate and soluble (cytosolic) fractions at 110,000 × g. The activity of the particulate enzyme was stimulated by non-ionic detergent Triton X-100 by about 2-fold whereas the detergent had no effect on the cytosolic form. More than 60% of the particulate enzyme could be solubilized by 5% Triton X-100. Although, both particulate and cytosolic PTKs catalyzed the phosphorylation of several tyrosine containing synthetic substrates to various degrees, poly (glu: tyr; 4 : 1) was the best substrate (apparent Km, 0.7 mg/ml). Both forms of enzymes utilized ATP as the phosphoryl group donor, with an apparent Km of 40 µM. Among various divalent cations tested, Co2, Mn2 and Mg2 were able to fulfill the divalent cation requirement of both forms of the PTKs. All these cations exerted biphasic effects on the kinase activities, however, Mg2 was the most potent cation. Agents such as epidermal growth factor, insulin and platelet derived growth factor which stimulate their respective receptor-PTK activities were without effect on the PTK activities of mammary carcinoma. On the other hand, though heparin and quercetin inhibited both enzyme activities in a concentration dependent manner, the particulate form was more sensitive to inhibition than the cytosolic form. These data indicate that MNU-induced rat mammary carcinoma expresses both particulate and cytosolic forms of PTKs and that there are significant differences in the properties of the two forms of PTKs. Differential effects of some agents on mammary carcinoma PTKs suggest that these enzymes may be acutely regulated in vivo and could play an important role in mammary carcinogenesis.Abbreviations PTK Protein Tyrosine Kinase - EGF Epidermal Growth Factor - PDGF Platelet Derived Growth Factor  相似文献   

13.
Leuconostoc mesenteroides NRRL B-1426 dextransucrase synthesized a high molecular mass dextran (>2 × 106 Da) with ~85.5% α-(1→6) linear and ~14.5% α-(1→3) branched linkages. This high molecular mass dextran containing branched α-(1→3) linkages can be readily hydrolyzed for the production of enzyme-resistant isomalto-oligosaccharides. The acceptor specificity of dextransucrase for the transglycosylation reaction was studied using sixteen different acceptors. Among the sixteen acceptors used, isomaltose was found to be the best, having 89% efficiency followed by gentiobiose (64%), glucose (30%), cellobiose (25%), lactose (22.5%), melibiose (17%), and trehalose (2.3%) with reference to maltose, a known best acceptor. The β-linked disaccharide, gentiobiose, showed significant efficiency for oligosaccharide production that can be used as a potential prebiotic.  相似文献   

14.
Trehalases and trehalose hydrolysis in fungi   总被引:10,自引:0,他引:10  
The simultaneous presence of two different trehalose-hydrolysing activities has been recognised in several fungal species. While these enzymes, known as acid and neutral trehalases, share a strict specificity for trehalose, they are nevertheless rather different in subcellular localisation and in several biochemical and regulatory properties. The function of these apparently redundant activities in the same cell was not completely understood until recently. Biochemical and genetic studies now suggest that these enzymes may have specialised and exclusive roles in fungal cells. It is thought that neutral trehalases mobilise cytosolic trehalose, under the control of developmental programs, chemical and nutrient signals, or stress responses. On the other hand, acid trehalases appear not to mobilise cytosolic trehalose, but to act as `carbon scavenger' hydrolases enabling cells to utilise exogenous trehalose as a carbon source, under the control of carbon catabolic regulatory circuits. Although much needs to be learned about the molecular identity of trehalases, it seems that in fungi at least one class of acid trehalases evolved independently from the other trehalases.  相似文献   

15.
The chimeric α-glucosidases of Mucor javanicus and Aspergillus oryzae, which has high activity toward not only maltooligosaccharides but also soluble starch and has high activity toward maltooligosaccharides but faint activity toward soluble starch, respectively, were constructed by shuffling the C-terminal regions where low homology is observed between the two enzymes. The chimera genes were expressed in Pichia pastoris to produce and secrete the enzymes that have predicted molecular masses in the culture medium. The two chimeric M. javanicus α-glucosidases, of which the N- and C-terminal regions are substituted for those of A. oryzae, respectively, decreased in soluble starch-hydrolyzing activity, however, increased in maltose-hydrolyzing activity by 2.1 and 4.9 times higher than that of the native form of M. javanicus α-glucosidase, respectively. The chimeric enzymes changed on the Vmax values for maltose significantly, whereas the Km values were similar to that of the native enzyme.  相似文献   

16.
Accumulation of trehalose has been implicated in the tolerance of yeast cells to several forms of stress, including heat-shock and high ethanol levels. However, yeast lacking trehalase, the enzyme that degrades trehalose, exhibit poor survival after exposure to stress conditions. This suggests that optimal cell viability also depends on the capacity to rapidly degrade the high levels of trehalose that build up under stress. Here, we initially examined the effects of trehalose on the activity of an important antioxidant enzyme, glutathione reductase (GR), from Saccharomyces cerevisiae. At 25 degrees C, GR was inhibited by trehalose in a dose-dependent manner, with 70% inhibition at 1.5M trehalose. The inhibition was practically abolished at 40 degrees C, a temperature that induces a physiological response of trehalose accumulation in yeast. The inhibition of GR by trehalose was additive to the inhibition caused by ethanol, indicating that enzyme function is drastically affected upon ethanol-induced stress. Moreover, two other yeast enzymes, cytosolic pyrophosphatase and glucose 6-phosphate dehydrogenase, showed temperature dependences on inhibition by trehalose that were similar to the temperature dependence of GR inhibition. These results are discussed in terms of the apparent paradox represented by the induction of enzymes involved in both synthesis and degradation of trehalose under stress, and suggest that the persistence of high levels of trehalose after recovery from stress could lead to the inactivation of important yeast enzymes.  相似文献   

17.
A DNA fragment encoding two enzymes leading to trehalose biosynthesis, maltooligosyltrehalose synthase (BvMTS) and maltooligosyltrehalose trehalohydrolase (BvMTH), was cloned from the nonpathogenic bacterium Brevibacterium helvolum. The open reading frames for the two proteins are 2,331 and 1,770 bp long, respectively, and overlap by four nucleotides. Recombinant BvMTS, BvMTH, and fusion gene BvMTSH, constructed by insertion of an adenylate in the overlapping region, were expressed in Escherichia coli. Purified BvMTS protein catalyzed conversion of maltopentaose to maltotriosyltrehalose, which was further hydrolyzed by BvMTH protein to produce trehalose and maltotriose. The enzymes shortened maltooligosaccharides by two glucose units per cycle of sequential reactions and released trehalose. Maltotriose and maltose were not catalyzed further and thus remained in the reaction mixtures depending on whether the substrates had an odd or even number of glucose units. The bifunctional in-frame fusion enzyme, BvMTSH, catalyzed the sequential reactions more efficiently than an equimolar mixture of the two individual enzymes did, presumably due to a proximity effect on the catalytic sites of the enzymes. The recombinant enzymes produced trehalose from soluble starch, an abundant natural source for trehalose production. Addition of α-amylase to the enzyme reaction mixture dramatically increased trehalose production by partial hydrolysis of the starch to provide more reducing ends accessible to the BvMTS catalytic sites.  相似文献   

18.
Numerous studies have demonstrated a rapid increase in the respiration rate during aging of slices of tuber and storage roots. To determine the molecular mechanisms of this phenomenon, the role of enzyme binding to the subcellular particulate fraction has been assessed in carrot (Daucus carota L.) and sugar beet (Beta vulgaris L.). Soluble versus particulate fractions were separated by centrifugation at 16,000g and both fractions assayed for the activities of six glycolytic enzymes. Preparations from sliced and aged tissues showed elevated percentages of five enzymes associated with the particulate fraction as compared with controls. The stimulation of respiration which occurs during aging of underground storage organ slices may result, in part, from an association of enzymes with the particulate fraction of the cell promoting an elevated glycolytic rate.  相似文献   

19.
Two isozymes of dihydroxyacetone phosphate reductase in dunaliella   总被引:1,自引:0,他引:1       下载免费PDF全文
Two isoforms of dihydroxyacetone phosphate reductase were present in Dunaliella tertiolecta. The major form was located in the chloroplast and the minor form in the cytosol. The chloroplastic reductase eluted first from a DEAE cellulose column followed immediately by the cytosolic form. Both forms were unstable and cold labile. Addition of 5 millimolar dithiothreitol helped to stabilize the enzymes. The cytosolic isoform of DHAP reductase was detected only if the cells were in an active log phase of growth. Then its activity was 20 to 30% of the total reductase activity. When cell cultures entered late log phase of growth the activity of the cytosolic form of the enzyme disappeared, but the chloroplastic form remained. The cytosolic DHAP reductase from Dunaliella has some properties similar to the cytosolic isoform from spinach leaves. Detergents inhibited both enzymes. However, neither form of the algal dihydroxyacetone phosphate reductase was stimulated by fructose 2,6-bisphosphate. In Dunaliella the properties of the chloroplastic form were those expected for glycerol production for osmoregulation, whereas the cytosolic form, like the reductases in leaves, is more likely involved in glycerol phosphate formation for lipid synthesis.  相似文献   

20.
Extracellular pullulanases were purified from cell-free culture supernatants of the marine thermophilic archaea Thermococcus litoralis (optimal growth temperature, 90°C) and Pyrococcus furiosus (optimal growth temperature, 98°C). The molecular mass of the T. litoralis enzyme was estimated at 119,000 Da by electrophoresis, while the P. furiosus enzyme exhibited a molecular mass of 110,000 Da under the same conditions. Both enzymes tested positive for bound sugar by the periodic acid-Schiff technique and are therefore glycoproteins. The thermoactivity and thermostability of both enzymes were enhanced in the presence of 5 mM Ca2+, and under these conditions, enzyme activity could be measured at temperatures of up to 130 to 140°C. The addition of Ca2+ also affected substrate binding, as evidenced by a decrease in Km for both enzymes when assayed in the presence of this metal. Each of these enzymes was able to hydrolyze, in addition to the α-1,6 linkages in pullulan, α-1,4 linkages in amylose and soluble starch. Neither enzyme possessed activity against maltohexaose or other smaller α-1,4-linked oligosaccharides. The enzymes from T. litoralis and P. furiosus appear to represent highly thermostable amylopullulanases, versions of which have been isolated from less-thermophilic organisms. The identification of these enzymes further defines the saccharide-metabolizing systems possessed by these two organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号