首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of various pretreatments on the activities of several drug metabolizing enzymes was investigated in microsomes and postmicrosomal supernatant fractions isolated from whole body homogenates of Drosophila melanogaster larvae of different strains. Pretreatments of larvae with either phenobarbital (PB), β-naphthoflavone (BNF) or a mixture of polychlorinated biphenyls (Aroclor 1254, PCB) for 24 h increased microsomal benzo[a]pyrene (BP) monooxygenase activity 2- to 6-fold in all strains as compared to untreated larvae. A simultaneous increase in the contents of cytochrome P-450 occurred after pretreatment with PB and PCB. Comparison of the turnover rates of BP per molecule of cytochrome P-450 indicated that BP was a poor substrate for control cytochrome P-450 whereas BNF induced a most active hemoprotein for this metabolism. Marked differences in the qualitative pattern of BP metabolites were obtained between microsomes isolated from BNF-treated larvae or rat liver microsomes. 3-Hydroxy-BP (3-OH-BP) was the dominating metabolite with both preparations, while the BP dihydrodiols were formed in minor quantities in Drosophila as compared to rat liver. Metyrapone and SKF 525-A inhibited BP metabolism in microsomes isolated from untreated and BNF treated larvae of all strains. In contrast, α-naphthoflavone (ANF) stimulated the BP monooxygenase activity of microsomes isolated from untreated larvae approx. 3-fold but only slightly influenced the activity of microsomes from BNF treated larvae indicating that the latter species of cytochrome P-450 was less sensitive to ANF.In all strains, PCB and PB treatments approximately doubled microsomal epoxide hydrolase activity and increased cytosolic glutathione-S-transferase activity 25–60%, significant only in strain Berlin K after PB treatment. The activities of epoxide hydrolase and glutathione-S-transferase in control larvae were comparable in the different strains, whereas the content of cytochrome P-450 and BP monooxygenase activity was higher in the Hikone R strain. Variability in the induction response to the various pretreatment was observed among the three strains.  相似文献   

2.
艾氏剂环氧化酶及细胞色素P-450对小菜蛾抗药性发展的影响   总被引:13,自引:1,他引:12  
陈言群  杨帆 《昆虫学报》1994,37(3):280-285
本文对室内长期饲养的小菜蛾(Plutella xylostella L.)敏感品系和田间采集的抗性种群体内的艾氏剂环氧化酶及细胞色素P-450进行了比较研究。结果证明,艾氏剂环氧化酶在感性和抗性小菜蛾间存在着量及质的差异。 抗性种群的艾氏剂环氧化酶的Vmax和Km值分别为感性品系的5.4倍和6.5倍。抗性种群的细胞色素P-450的含量是感性品系的1.1-1.3倍。艾氏剂环氧化酶在量上及质上的差异及细胞色素P-450含量的提高是导致小菜蛾抗药性发生与发展的重要机制之一。而且质的差异较之量的差异可能起着更为重要的作用,  相似文献   

3.
《Insect Biochemistry》1989,19(5):481-488
Cytochrome P-450, cytochrome b5 and cytochrome P-450 reductase were purified from house fly abdomens using high performance liquid chromatography (HPLC). Using a new technique, cytochrome P-450 was separated from the bulk of other proteins after polyethylene glycol fractionation and hydrophobic interaction chromatography (HIC) using a phenyl-5PW column. This technique resulted in 91% recovery of the cytochrome P-450s in a single concentrated fraction that also contained the remaining cytochrome b5 and cytochrome P-450 reductase activity. Further purification by anion exchange on a DEAE-5SW column resolved the cytochrome P-450s, cytochrome b5 and cytochrome P-450 reductase into individual fractions. The ion exchange step yielded one fraction that contained a high specific content of P-450 (14.4 nmol/mg protein). This cytochrome P-450 fraction ran as a single band at 54.3 kDa in sodium dodecyl sulfate polyacrylamide (SDS-PAGE) gel electrophoresis and had a carboxy ferrocytochrome absorbance maximum at 447 nm.Further purification of the anion exchange cytochrome b5 fraction, by C8 reverse phase HPLC, resulted in a cytochrome b5 fraction with a specific content of 51.8 nmol/mg protein and an apparent molecular mass of 19.7 kDa by SDS-PAGE. The anion exchange HPLC fraction containing the cytochrome P-450 reductase activity was further purified by NADP-agarose affinity chromatography. This step yielded cytochrome P-450 reductase with an apparent molecular mass of 72 kDa.  相似文献   

4.
Cytochrome P-450 difference spectra were obtained with microsomes prepared from several strains of the housefly, Musca domestica, that were susceptible or resistant to insecticides. Based on Type I, Type II and Type III spectral interactions, both quantitative and qualitative variations are apparent among strains. Cytochrome P-450 from Fc and dimethoate strains had spectral characteristics which were most different from those of susceptible strains. No correlation could be made between strains having known high mixed-function oxidase activity and any single cytochrome P-450 spectral characteristic.  相似文献   

5.
Based on the confirmation of asymmetrical cross-resistance between abamectin and tebufenozide in Plutella xylostella, the present work proved that the cytochrome P450 monooxygenase plays a decisive role in cross-resistance, and the expression of various cytochrome P450 (CYP450) genes in different strains was surveyed to elucidate the molecular basis of the underlying mechanisms. Enzyme analysis showed the activity of cytochrome P450 monooxygenase was notable enhanced in the strains resistant to both tebufenozide (3.07-fold) and abamectin (3.37-fold), suggesting that the enhancement of cytochrome P450 monooxygenase is the main detoxification mechanism responsible for the cross-resistance. CYP4M7 (64.58-fold) and CYP6K1 (41.97-fold) had extremely high expression levels in the Teb-R strain, selected using tebufenozide, which was highly resistant to tebufenozide (RR 185.5) and moderately cross-resistant to abamectin (RR 41.0). When this strain was subjected to further selection using abamectin, the resultant Aba-R strain showed a higher expression of CYP6K1 (60.32-fold). However, the expression of CYP4M7 was reduced (10.62-fold). Correspondingly, the Aba-R strain became more resistant to abamectin (RR 593.8) and less resistant to tebufenozide (RR 28.0). Therefore, we concluded that the over expression of CYP4M7 was the main cause for tebufenozide resistance, and that CYP6K1 mainly conferred abamectin resistance. The asymmetrical cross-resistance occurred because tebufenozide selection not only enhanced the expression of CYP4M7, but also that of CYP6K1. This is the first report on the molecular mechanism of asymmetrical cross-resistance between insecticides.  相似文献   

6.
The O-dealkylation of pentoxyresorufin (7-pentoxyphenoxazone) by rat liver microsomes was examined. The reaction appeared highly specific for certain phenobarbital inducible forms of cytochrome P-450 and was increased 95- to 140-fold by animal pretreatment with phenobarbital (75 mg/kg/day, four ip injections) and ~50-fold by Aroclor 1254 (500 mg/kg, one ip injection) while animal pretreatment with 3-methylcholanthrene (50 mg/kg/day, three ip injections) resulted in less than a 2-fold increase over the rate detected in control microsomes. It was observed that this activity, in microsomes for Aroclor-pretreated rats, was dependent on O2 and was inhibited by metyrapone and SKF 525-A, indicative of cytochrome(s) P-450 mediation in the reaction. When antibodies directed against purified cytochrome(s) P-450S were employed to inhibit the pentoxyresorufin O-dealkylation reaction, antibodies to P-450PB-B greatly inhibited the reaction (>90%), while antibodies to P-450PB-C or P-450PB/PCN-E had minimal effects. Assay of hepatic microsomes from rats which were pretreated with varying doses of phenobarbital (0.9–75 mg/kg/day, four ip injections) indicated that while aminopyrine-N-demethylase activity was induced only 2-fold at the maximum dose (75 mg/kg/day), pentoxyresorufin O-dealkylase activity was induced ~140-fold at this dose and ~4-fold by a dose of phenobarbital as low as 0.9 mg/kg.  相似文献   

7.
Hepatic microsomal cytochrome P-450 from the untreated coastal marine fish scup, Stenotomus chrysops, was solubilized and resolved into five fractions by ion-exchange chromatography. The major fraction, cytochrome P-450E (Mr = 54,300), was further purified to a specific content of 11.7 nmol heme/mg protein and contained a chromophore absorbing at 447 nm in the CO-ligated, reduced difference spectrum. NH2-terminal sequence analysis of cytochrome P-450E by Edman degradation revealed no homology with any known cytochrome P-450 isozyme in the first nine residues. S. chrysops liver NADPH-cytochrome P-450 reductase, purified 225-fold (Mr = 82,600), had a specific activity of 45–60 U/mg with cytochrome c, contained both FAD and FMN, and was isolated as the one-electron reduced semiquinone.Purified cytochrome P-450E metabolized several substrates including 7-ethoxycoumarin, acetanilide, and benzo[a]pyrene when reconstituted with lipid and hepatic NADPH-cytochrome P-450 reductase from either S. chrysops or rat. The purified, reconstituted monooxygenase system was sensitive to inhibition by 100 μM 7,8-benzoflavone, and analysis of products in reconstitutions with purified rat epoxide hydrolase indicated a preference for oxidation on the benzo-ring of benzo[a]pyrene consistent with the primary features of benzo[a]pyrene metabolism in microsomes. Cytochrome P-450E is identical to the major microsomal aromatic hydrocarbon-inducible cytochrome P-450 by the criteria of molecular weight, optical properties, and catalytic profile. It is suggested that substantial quantities of this aromatic hydrocarbon-inducible isozyme exist in the hepatic microsomes of some untreated S. chrysops. The characterization of this aryl hydrocarbon hydroxylase extends our understanding of the metabolism patterns observed in hepatic microsomes isolated from untreated fish.  相似文献   

8.
Rabbit lung and liver microsomes were subjected to three procedures which decreased NADPH cytochrome c reductase activity; flavoprotein antibody, trypsin and subtilisin digestion. The effects on benzphetamine and p-nitroanisode demethylation and amine metabolic-intermediate complex formation were investigated. In general, the proteolytic digestion had a greater inhibitory effect on oxidation reactions for a given loss of NADPH cytochrome c reductase activity than did flavoprotein antibody; and of the two proteases, subtilisin, which also diminises the cytochrome b5 reduction pathway, had a greater inhibitory effect than trypsin. Subtilisin digestion had similar effects in both liver and lung microsomes; a loss of flavoprotein without a loss of cytochrome P-450; but whereas all three oxidative reactions decreased in unison as the flavoprotein was lost in the liver, benzphetamine demethylation was less susceptible to flavoprotein depletion than the other two reactions in lung microsomes. With trypsin digestion flavoprotein was removed without loss of cytochrome P-450 only in lung microsomes; in liver microsomes the cytochrome P-450 was susceptible to tryptic degradation. In lung microsomes, benzphetamine and p-nitroanisole demethylations were less susceptible to flavoprotein loss than metabolic-intermediate complex formation.  相似文献   

9.
Five contemporary strains of the bollworm Helicoverpa armigera Hübner from China, Pakistan and India, all with high resistance to pyrethroids, were compared with a standard susceptible strain that originated from the Cote D'Ivoire in the 1970s ('SCD'). Two of the Chinese strains ('YGF' and 'YGFP') were derived by laboratory selection from a third, field collected strain ('YG'). The strain 'YG' exhibited 7-, 14- and 21-fold resistance to fenvalerate, cypermethrin and deltamethrin, respectively. After selection with fenvalerate for 14 generations ('YGF'), this increased to 1690-, 540- and 73-fold. Selection with a mixture of fenvalerate and piperonyl butoxide (PBO) for 14 generations ('YGFP') resulted in resistance ratios of 2510, 2920 and 286. The synergistic ratios to fenvalerate that resulted from pre-treatment of PBO were 5-, 462- and 12-fold in YG, YGF and YGFP strains, respectively. Resistance ratios for a Pakistani strain (PAK) were 2320-, 4100- and 223-fold to fenvalerate, cypermethrin and deltamethrin, respectively. The synergistic ratio of PBO to these pyrethroids was 450-, 950- and 11-fold. The strong synergism of pyrethroids by PBO implied that an oxidative metabolism could be involved in pyrethroid resistance in these resistant strains. The activities of cytochrome P450 monooxygenases from midguts of final instar larvae to p-nitroanisole (PNOD), ethoxycoumarin (ECOD), methoxyresorufin (MROD) significantly increased in all the resistant strains when compared with the susceptible strain. This further implies that cytochrome P450 monooxygenases are involved in pyrethroid resistance in Asian H. armigera. Comparative in vitro studies of the metabolism of 14C-deltamethrin by midgut microsomes of the resistant PAK and susceptible SCD strains showed that the resistant strain had a much greater capacity than the susceptible strain for the metabolic degradation of deltamethrin. This enhanced metabolic degradation occurred in the presence of NADPH which suggested an oxidative detoxification. In the resistant strains, minor increases in glutathione S-transferase activity (to the substrates CDNB and DCNB), and esterase activity (to the substrate alpha-naphthyl acetate) further suggested that, of the putative metabolic mechanisms, oxidases are the most important. This study provides the first evidence that cytochrome P450 monooxygenases are a major metabolic mechanism responsible for pyrethroid resistance in H. armigera from Asia.  相似文献   

10.
A minor form of hepatic microsomal cytochrome P-450 has been purified to apparent homogeneity from rats treated with the polychlorinated biphenyl mixture, Aroclor 1254. This newly isolated hemoprotein, cytochrome P-450e, is inducible in rat liver by Aroclor 1254 and phenobarbital, but not by 3-methylcholanthrene. Two other hemoproteins, cytochromes P-450b and P-450c, have also been highly purified during the isolation of cytochrome P-450e based on chromatographic differences among these proteins. By Ouchterlony double-diffusion analysis with antibody to cytochrome P-450b, highly purified cytochrome P-450e is immunochemically identical to cytochrome P-450b but does not cross-react with antibodies prepared against other rat liver cytochromes P-450 (P-450a, P-450c, P-450d) or epoxide hydrolase. Purified cytochrome P-450e is a single protein-staining band in sodium dodecyl sulfate-polyacrylamide gels with a minimum molecular weight (52,500) slightly greater than cytochromes P-450b or P-450d (52,000) but clearly distinct from cytochromes P-450a (48,000) and P-450c (56,000). The carbon monoxide-reduced difference spectral peak of cytochrome P-450e is at 450.6 nm, whereas the peak of cytochrome P-450b is at 450 nm. Ethyl isocyanide binds to ferrous cytochromes P-450e and P-450b to yield two spectral maxima at 455 and 430 nm. At pH 7.4, the 455:430 ratio is 0.7 and 1.4 for cytochromes P-450b and P-450e, respectively. Metyrapone binds to reduced cytochromes P-450e and P-450b (absorption maximum at 445–446 nm) but not cytochromes P-450a, P-450c, or P-450d. Metabolism of several substrates catalyzed by cytochrome P-450e or P-450b reconstituted with NADPH-cytochrome c reductase and dilauroylphosphatidylcholine was compared. The substrate specificity of cytochrome P-450e usually paralleled that of cytochrome P-450b except that the rate of metabolism of benzphetamine, benzo[a]pyrene, 7-ethoxycoumarin, hexobarbital, and testosterone at the 16α-position catalyzed by cytochrome P-450e was only 15–25% that of cytochrome P-450b. In contrast, cytochrome P-450e catalyzed the 2-hydroxylation of estradiol-17β more efficiently (threefold) than cytochrome P-450b. Cytochrome P-450d, however, catalyzed the metabolism of estradiol-17β at the greatest rate compared to cytochromes P-450a, P-450b, P-450c, or P-450e. The peptide fragments of cytochromes P-450e and P-450b, generated by either proteolytic or chemical digestion of the hemoproteins, were very similar but not identical, indicating that these two proteins show minor structural differences.  相似文献   

11.
Many insects have evolved resistance to abamectin but the mechanisms involved in this resistance have not been well characterized. P-glycoprotein (P-gp), an ATP-dependent drug-efflux pump transmembrane protein, may be involved in abamectin resistance. We investigated the role of P-gp in abamectin (ABM) resistance in Drosophila using an ABM-resistant strain developed in the laboratory. A toxicity assay, Western blotting analysis and a vanadate-sensitive ATPase activity assay all demonstrated the existence of a direct relationship between P-gp expression and ABM resistance in these flies. Our observations indicate that P-gp levels in flies' heads were higher than in their thorax and abdomen, and that both P-gp levels and LC50 values were higher in resistant than in susceptible and P-gp-deficient strains. In addition, P-gp levels in the blood–brain barrier (BBB) of resistant flies were higher than in susceptible and P-gp-deficient flies, which is further evidence that a high level of P-gp in the BBB is related to ABM resistance. Furthermore, we found greater expression of Drosophila EGFR (dEGFR) in the resistant strain than in the susceptible strain, and that the level of Drosophila Akt (dAkt) was much higher in resistant than in susceptible flies, whereas that in P-gp-deficient flies was very low. Compared to susceptible flies, P-gp levels in the resistant strain were markedly suppressed by the dEGFR and dAkt inhibitors lapatinib and wortmannin. These results suggest that the increased P-gp in resistant flies was regulated by the dEGFR and dAkt pathways and that increased expression of P-gp is an important component of ABM resistance in insects.  相似文献   

12.
用苯巴比妥钠(2mg/g)和氰戊菊酯(0.2mg/g)拌饲料处理,对敏感品系棉铃虫Helicoverpa armigera中肠的细胞色素P450和细胞色素c还原酶含量均具有明显的诱导作用(两者都使细胞色素P450含量提高了2.24倍,使细胞色素c还原酶的含量分别提高1.33和1.40倍),但对细胞色素b5诱导作用不显著(仅为对照的1.23和1.15倍);此外,苯巴比妥钠对敏感棉铃虫中肠的艾氏剂环氧化酶活性和甲氧试卤灵-O-脱甲基酶活性也有显著的诱导作用(分别提高了2.75和2.66倍),但对7-乙氧香豆素-O-脱乙基酶活性没有诱导作用,而氰戊菊酯对敏感棉铃虫中肠的艾氏剂环氧化酶活性则有2.02倍的诱导作用。同一浓度的苯巴比妥钠和氰戊菊酯使抗性品系棉铃虫中肠的细胞色素P450含量分别提高1.21和1.15倍,使细胞色素c还原酶含量分别提高1.48和1.86倍(差异显著),但是细胞色素b5含量没有明显变化(分别为对照的1.15和0.98倍);此外,氰戊菊酯能使抗性棉铃虫中肠的艾氏剂环氧化酶活性提高1.53倍,但苯巴比妥钠对该酶活性则有明显抑制作用。  相似文献   

13.
1. The topography of cytochrome P-450 in vesicles from smooth endoplasmic reticulum of rat liver has been examined. Approx. 50% of the cytochrome is directly accessible to the action of trypsin in intact vesicles whereas the remainder is inaccessible and partitioned between luminal-facing or phospholipid-embedded loci. Analysis by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis reveals three major species of the cytochrome. Of these, the variant with a mol.wt. of 52000 is induced by phenobarbitone and this species is susceptible to trypsin. 2. After trypsin treatment of smooth membrane, some NADPH–cytochrome P-450 (cytochrome c) reductase activity remains and this remaining activity is enhanced by treatment with 0.05% deoxycholate, which renders the membranes permeable to macromolecules. In non-trypsin-treated control membranes the reductase activity is increased to a similar extent. These observations suggest an asymmetric distribution of NADPH–cytochrome P-450 (cytochrome c) reductase in the membrane. 3. As compared with dithionite, NADPH reduces only 44% of the cytochrome P-450 present in intact membranes. After tryptic digestion, none of the remaining cytochrome P-450 is reducible by NADPH. 4. In the presence of both a superoxide-generating system (xanthine plus xanthine oxidase) and NADPH, all the cytochrome P-450 in intact membrane (as judged by dithionite reducibility) is reduced. The cytochrome P-450 remaining after trypsin treatment of smooth vesicles cannot be reduced by this method. 5. The superoxide-dependent reduction of cytochrome P-450 is prevented by treatment of the membranes with mersalyl, which inhibits NADPH–cytochrome P-450 (cytochrome c) reductase. Thus the effect of superoxide may involve NADPH–cytochrome P-450 reductase and cytosolically orientated membrane factor(s).  相似文献   

14.
An intraperitoneal dose of CS2 (500mg/kg) to male rats resulted in loss of liver microsomal mixed-function-oxidase activity (85% loss of biphenyl 4-hydroxylase), followed by denaturation of liver cytochrome P-450 to cytochrome P-420, and degradative loss of both cytochromes (50% loss). Losses of NADPH–cytochrome c reductase (20%) and cytochrome b5 were considerably less. Intraperitoneal administration of CS2 (100mg/kg) to rats pretreated wtih phenobarbitone or 3-methylcholanthrene resulted in similar losses, but the rate of destruction was greater with cytochrome P-450 than with cytochrome P-448. At 12h after intraperitoneal injection of CS2 to non-pretreated rats, a new cytochrome (P-448) appeared. Rat liver microsomal preparations incubated with CS2 in the presence of NADPH and O2 resulted in loss of cytochrome P-450 and mixed-function-oxidase activity directly related to the concentration of CS2 (10–100μm) and to the period of incubation. Addition of EDTA (1mm) completely inhibited this destruction of cytochrome P-450 by CS2 in vitro. Addition of CS2 to liver microsomal preparations resulted in moderate increases in the Ks values for type-I or type-II substrates, but these were insufficient to account for the inhibition of the mixed-function oxidases. We therefore suggest that desulphuration of CS2 leads to binding of the S to cytochrome P-450, denaturation of cytochrome P-450 to cytochrome P-420, and ultimately to destruction of these cytochromes by autoxidation.  相似文献   

15.
A susceptible strain of Musca domestica containing visible mutant markers on chromosomes II, III, and V was crossed with multiresistant R-Fc and R-diazinon strains. F1 flies were backcrossed to the mutant parent, resultant progenies were isolated according to phenotype, and substrains were established. The level of resistance to diazinon, aldrin epoxidase activity, and cytochrome P450 difference spectra of microsomes from each substrain were measured. Titers of cytochrome P450, measured as CO spectra, as well as type I, type II, and type III cytochrome P450 substrate difference spectra were compared in microsomal preparations obtained from phenotypes containing vatious resistant chromosome combinations. In both resistant strains, high levels of cytochrome P450 were controlled by a gene(s) on chromosome II. In R-diazinon, qualitative spectral changes were also controlled by chromosome II, whereas in R-Fc both chromosomes II and V contributed to qualitative changes in cytochrome P450. Both quantitative and qualitative characteristics were intermediate in heterozygous flies, suggesting incomplete dominance for their inheritance. Findings are discussed in relation to known genetics of microsomal resistance to insecticides.  相似文献   

16.
Cytochrome P-450, NADPH-cytochrome c reductase, biphenyl hydroxylase, and epoxide hydratase have been compared in intact rat liver and in primary hepatocyte cultures. After 10 days in culture, microsomal NADPH-cytochrome c reductase and epoxide hydratase activities declined to a third of the liver value, while cytochrome P-450 decreased to less than a tenth. Differences in the products of benzo[a]pyrene metabolism and gel electrophoresis of the microsomes indicated a change in the dominant form(s) of cytochrome P-450 in the cultured hepatocytes. Exposure of the cultured cells to phenobarbital for 5 days resulted in a threefold induction in NADPH-cytochrome c reductase and epoxide hydratase activities which was typical of liver induction of these enzymes. Exposure of the cells to 3-methylcholanthrene did not affect these activities. Cytochrome P-450 was induced over two times by phenobarbital and three to four times by 3-methylcholanthrene. The λmax of the reduced carbon monoxide complex (450.7 nm) and analysis of microsomes by gel electrophoresis showed that the phenobarbital-induced cytochrome P-450 was different from the species induced by 3-methylcholanthrene (reduced carbon monoxide λmax = 447.9 nm). However, metabolism of benzo[a]pyrene (specific activity and product distribution) was similar in microsomes of control and phenobarbital- and 3-methylcholan-threne-induced hepatocytes and the specific activity per nmole of cytochrome P-450 was higher than in liver microsomes. The activities for 2- and 4-hydroxylation of biphenyl were undetectable in all hepatocyte microsomes even though both activities were induced by 3-methylcholanthrene in the liver. Substrate-induced difference spectra and gel electrophoresis indicated an absence in phenobarbital-induced hepatocytes of most forms of cytochrome P-450 which were present in phenobarbital-induced rat liver microsomes. It is concluded that the control of cytochrome P-450 synthesis in these hepatocytes is considerably different from that found in whole liver, while other microsomal enzymes may be near to normal. Hormonal deficiencies in the culture medium and differential hormonal control of the various microsomal enzymes provide a likely explanation of these effects.  相似文献   

17.

Background

Spinosad is important in pest management strategies of multiple insect pests. However, spinosad resistance is emerging in various pest species. Resistance has in some species been associated with alterations of the target-site receptor, but in others P450s seems to be involved. We test the possible importance of nine cytochrome P450 genes in the spinosad-resistant housefly strain 791spin and investigate the influence of spinosad on P450 expression in four other housefly strains.

Results

Significant differences in P450 expression of the nine P450 genes in the four strains after spinosad treatment were identified in 40% of cases, most of these as induction. The highly expressed CYP4G2 was induced 6.6-fold in the insecticide susceptible WHO-SRS females, but decreased 2-fold in resistant 791spin males. CYP6G4 was constitutively higher expressed in the resistant strain compared to the susceptible strain. Furthermore, CYP6G4 gene expression was increased in susceptible WHO-SRS flies by spinosad while the expression level did not alter significantly in resistant fly strains. Expression of CYP6A1 and male CYP6D3 was constitutively higher in the resistant strain compared to the susceptible. However, in both cases male expression was higher than female expression.

Conclusion

CYP4G2, CYP6A1, CYP6D3 and CYP6G4 have expressions patterns approaching the expectations of a hypothesized sex specific spinosad resistance gene. CYP4G2 fit requirements of a spinosad resistance gene best, making it the most likely candidate. The overall high expression level of CYP4G2 throughout the strains also indicates importance of this gene. However, the data on 791spin are not conclusive concerning spinosad resistance and small contributions from multiple P450s with different enzymatic capabilities could be speculated to do the job in 791spin. Differential expression of P450s between sexes is more a rule than an exception. Noteworthy differences between spinosad influenced expression of P450 genes between a field population and established laboratory strains were shown.  相似文献   

18.
The ability of phenobarbital and 3-methylcholanthrene (3MC) to induce liver microsomal and soluble enzymes was compared in Sprague-Dawley and Long-Evans rats. 3MC increased the V for the aniline hydroxylase and stimulated the formation of the hemoprotein P448 to a similar extent in the 2 strains of rats. On the other hand phenobarbital increased the V for the microsomal enzyme aniline hydroxylase and aminopyrine demethylase and enhanced the activity of the soluble enzyme aldehyde dehydrogenase only in Sprague-Dawley rats. It induced a more marked increase of cytochrome P450 in the Sprague-Dawley than in the Long-Evans strain.  相似文献   

19.
Hypolipidaemic drugs induce peroxisomal proliferation in the liver and many induce the formation of the hepatic endoplasmic reticulum in general and the formation of cytochrome P-450 in particular. We have induced the formation of rat liver microsomal cytochrome P-450 by the administration of the hypolipidaemic drug clofibrate, isolated the endoplasmic reticulum, solubilized the cytochrome P-450 from these membranes and subdivided the cytochrome P-450 into four fractions by the use of hydrophobic, anionic, cationic and adsorption chromatography. One of these fractions (cytochrome P-450 fraction 1) was highly purified to a specific content of 17nmol of cytochrome P-450/mg of protein and the protein was active in a reconstituted enzyme system towards the 12- and 11-hydroxylation of the fatty acid, dodecanoic (lauric) acid, with preferential activity towards the 12-hydroxy metabolite. This reconstituted activity was absolutely dependent on NADPH, NADPH-cytochrome P-450 reductase and cytochrome P-450, indicating the role of the mixed-function oxidase system in the metabolism of lauric acid. Another fraction of the haemoprotein (cytochrome P-450 fraction 2) preferentially formed 11-hydroxylauric acid, whereas a third fraction (cytochrome P-450 fraction 3) exhibited only trace laurate oxidase activity and was similar to the phenobarbitone form of the haemoprotein in that these last two cytochromes rapidly turned-over the drug benzphetamine. The molecular weights and spectral properties of these cytochrome P-450 fractions are reported, along with the phenobarbitone-induced form of the enzyme and the nature of the cytochrome(s) induced by clofibrate pretreatment are discussed in the terms of possible haemoprotein heterogeneity.  相似文献   

20.
The purpose of this study was to evaluate the cytochrome P450-dependent monooxygenase activities in methidathion resistant and susceptible strains of Amblyseius womersleyi Schicha. Artificial laboratory selections for resistance and susceptibility to methidathion were performed in an organophosphate resistant strain of A. womersleyi (Kanaya strain). Selections for susceptibility were also performed in a susceptible strain of this predaceous mite (Ishigaki Strain). After the selection process, the LC50 of methidathion for the selected strains of A. womersleyi were 816 mg/l (Kanaya R), 4.61 mg/l (Kanaya S) and 1.59 mg/l (Ishigaki S). The monooxygenase activities were determined biochemically by the O-deethylation of 7-ethoxycoumarin (7-EC). The monooxygenase activity in adult females of Kanaya R strain (51.1 pmol/30 min/mg protein) was 3.60- and 5.42-fold higher than the activity observed for Kanaya S and Ishigaki S strains, respectively. Significant correlation between monooxygenase activity and LC50 (mg/l) of methidathion was observed analyzing 16 populations of A. womersleyi with different susceptibilities to methidathion. Monooxygenase activity was also evaluated in different life stages (egg, larva, protonymph, deutonymph and adult) of A. womersleyi. The lowest activity was observed for the larval stage, which presented the highest susceptibility to methidathion. Protonymph, deutonymph and adult presented the highest monooxygenase activities. These stages were the most tolerant to methidathion. Monooxygenase activities of the Kanaya R strain were higher than of the Kanaya S strain in all developmental stages. The present study can be helpful for the implementation of a program involving release of insecticide-resistant populations of A. womersleyi in the field. The monooxygenase activity determination is easier and quicker than the estimation of LC50, requiring fewer mites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号